IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997 3

Evolutionary Computation: Comments
on the History and Current State

Thomas Bick, Ulrich Hammel, and Hans-Paul Schwefel

_Abstract—Evolutionary computation has started to receive and steady (still exponential) increase in the number of pub-
significant attention during the last decade, although the origins |ications (see, e.g., the bibliography of [10]) and conferences

can be traced back to the late 1950's. This article surveys the j, this field, a clear demonstration of the scientific as well as
history as well as the current state of this rapidly growing . | f thi bi
field. We describe the purpose, the general structure, and the economic relevance of this subject matter.

working principles of different approaches, including genetic ~ But what are the benefits of evolutionary computation
algorithms (GA) [with links to genetic programmingGP) and (compared to other approaches) which may justify the effort
classifier system¢CS)], evolution strategie¢ES), and evolutionary jnyested in this area? We argue that the most significant advan-
programming (EP) by analysis and comparison of their most 46 of ysing evolutionary search lies in the gain of flexibility
important constituents (i.e., representations, variation operators, ) . e .
reproduction, and selection mechanism). Finally, we give a brief and adaptability to the task at hand, in combination with robust

overview on the manifold of application domains, although this performance (although this depends on the problem class) and
necessarily must remain incomplete. global search characteristics. In fact, evolutionary computation
Index Terms—Classifier systems, evolution strategies, evolu- Should be understood as a general adaptable concept for
tionary computation, evolutionary programming, genetic algo- problem solving, especially well suited for solving difficult
rithms, genetic programming. optimization problems, rather than a collection of related and
ready-to-use algorithms.
The majority of current implementations of evolutionary
] . algorithms descend from three strongly related but indepen-
HIS first issue of the IEEE RAANSACTIONS ON gently developed approachegenetic algorithmsevolutionary
EVOLUTIONARY COMPUTATION marks an important point programming and evolution strategies
in the history of the rapidly growing fi_el_d of gvolu_tionary Genetic algorithms, introduced by Holland [6], [11], [12],
computanor_], and we are glad to participate in this gvergnd subsequently studied by De Jong [13]-[16], Goldberg
In preparatlgn for Fh|s summary, we .strove to prowdeagg]_[ZlL and others such as Davis [22], Eshelman [23], [24],
comprehenglve review of both the h|§tory and the st rrest [25], Grefenstette [26]-[29], Koza [30], [31], Mitchell
_of the arF in the field for_ both the novice and the exp_efgz]’ Riolo [33], [34], and Schaffer [35]-[37], to name only
in_evolutionary computation. Our selections of materia] g, have been originally proposed as a general model of
are necessarily subjective, and we regret any significalliantive processes, but by far the largest application of the

omllsilonsh h . ¢ ut , btechniques is in the domain of optimization [15], [16]. Since
Although the origins of evolutionary computation can is is true for all three of the mainstream algorithms presented

traced back to the late 1950's (see e.g., the influencing wor Shis o : s
. paper, we will discuss their capabilities and performance
of Bremermann [1], Friedberg [2], [3], Box [4], and others)mainly as optimization strategies.

the field remained relatively unknown to the broader scientific Evolutionary programming, introduced by Fogel [9], [38]

community for almost three decades. This was largely dlé?]d extended in Burgin [39], [40], Atmar [41], Fogel

t_o the lack of available powerful comput_er platforms at th?%fz]_[‘m]’ and others, was originally offered as an attempt
time, but also due to some methodological shortcommgst create artificial intelligence. The approach was to evolve

those early approaches (see, e.g., Fogel [5, p. 103]). fini . . :
inite state machines (FSM) to predict events on the basis of
The fundamental work of Holland [6], Rechenberg mformer observations. An FSM is an abstract machine which

Schwefel [8], and Fogel [9] served to slowly change this Pl ansforms a sequence of input symbols into a sequence of

ture during the 1970's, and we currently observe a remarka%l&tput symbols. The transformation depends on a finite set of
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others, were initially designed with the goal of solving difficulbbjective functions, frequently lead to difficult if not unsolv-
discrete and continuous, mainly experimental [55], parametdile optimization tasks (see [83, p. 6]). But even in the latter
optimization problems. case, the identification of an improvement of the currently
During the 1980’s, advances in computer performance eknown best solution through optimization is often already a big
abled the application of evolutionary algorithms to solveuccess for practical problems, and in many cases evolutionary
difficult real-world optimization problems, and the solutionglgorithms provide an efficient and effective method to achieve
received a broader audience. In addition, beginning in 1985, ihis.
ternational conferences on the techniques were offered (mainlyOptimization problems occur in many technical, economic,
focusing on genetic algorithms [56]-[61], with an early emand scientific projects, like cost-, time-, and risk-minimization
phasis on evolutionary programming [62]—-[66], as small worler quality-, profit-, and efficiency-maximization [10], [22] (see
shops on theoretical aspects of genetic algorithms [67]-[69]so [80, part G]). Thus, the development of general strategies
as a genetic programming conference [70], with the geis of great value.
eral theme of problem solving methods gleaned from natureln real-world situations the objective functiofi and the
[71]-[74], and with the general topic of evolutionary computaconstraintsg,; are often not analytically treatable or are even
tion [75]-[78]). But somewhat surprisingly, the researchers imot given in closed form, e.g., if the function definition is
the various disciplines of evolutionary computation remaindzhsed on a simulation model [84], [85].
isolated from each other until the meetings in the early 1990’s The traditional approach in such cases is to develop a formal
[59], [63], [71]. model that resembles the original functions close enough but is
The remainder of this paper is intended as an overvieselvable by means of traditional mathematical methods such as
of the current state of the field. We cannot claim that thisnear and nonlinear programming. This approach most often
overview is close to complete. As good starting points faequires simplifications of the original problem formulation.
further studies we recommend [5], [18], [22], [31], [32],Thus, an important aspect of mathematical programming lies
[48], and [79]-[82]. In addition moderated mailing listand in the design of the formal model.
newsgroups allow one to keep track of current events and No doubt, this approach has proven to be very successful
discussions in the field. in many applications, but has several drawbacks which mo-
In the next section we describe the application domain tifated the search for novel approaches, where evolutionary
evolutionary algorithms and contrast them with the traditionabmputation is one of the most promising directions. The

approach of mathematical programming. most severe problem is that, due to oversimplifications, the
computed solutions do not solve the original problem. Such
Il. OPTIMIZATION, EVOLUTIONARY COMPUTATION, problems, e.g., in the case of simulation models, are then often

AND MATHEMATICAL PROGRAMMING considered unsolvable.

N . - The fundamental difference in the evolutionary computation
In general, an optimization problem requires finding a

setting 2 € M of free parameters of the system unde?pproaCh is to adapt the method to the problem at hand. In our

consideration, such that a certain quality criterjonV — IR opinion, evolutionary algorithms should not be considered as

(typically called theobjective functioh is maximized (or, off-the-peg, ready-to-use algorithms but rather as a general
equivalently, minimized) concept which can be tailored to most of the real-world

applications that often are beyond solution by means of
f(#) — max. (1) traditional methods. Once a successful EC-framework has been

o . ) . developed it can be incrementally adapted to the problem

The objective function might be given by real-world systemgnger consideration [86], to changes of the requirements of

of arbitrary complexity. The solution to thglobal opti- the project, to modifications of the model, and to the change
mization problem (1) requires finding a vect@t such that ot nardware resources.

V& € M: f(£) £ f(&) = f*. Characteristics such as
multimodality i.e., the existence of severtcal maximaz’
with Ill. THE STRUCTURE OF AN EVOLUTIONARY ALGORITHM

Je>0VEEM: p(Z, &) <e= f(@) < f(@) (2 Evolutionary algorithms mimic the process of natural evo-
lution, the driving process for the emergence of complex and

(wherep denotes a distance measure M), constraintsi.e., \ell-adapted organic structures. To put it succinctly and with
restrictions on the set/ by functionsg;: M — IR such that strong simplifications, evolution is the result of the interplay
the set offeasiblesolutionsF* C M is only a subset of the petween the creation of new genetic information and its
domain of the variables evaluation and selection. A single individual of a population
F={FeM]|g@) >0V} 3) ics affected by other individuals of thg population (e.g., by

ood competition, predators, and mating), as well as by the

and other factors, such as large dimensionality, strong na@mvironment (e.g., by food supply and climate). The better an
linearities, nondifferentiability, and noisy and time-varyingndividual performs under these conditions the greater is the
LFor example, GA-List-Request@AIC.NRLINAVY.MIL and EP-List- Chance for the individual to live for a longer while and generate
Request@magenta.me.fau.edu. offspring, which in turn inherit the (disturbed) parental genetic
2For example, comp.ai.genetic. information. Over the course of evolution, this leads to a
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penetration of the population with the genetic information salection
of individuals of above-average fitness. The nondeterministic _ P
nature of reproduction leads to a permanent production of i Son. o e
novel genetic information and therefore to the creation of Ty visg | phenonpaspace
differing offspring (see [5], [79], and [87] for more details). Pihs i Pn I| goafch apace A
This neo-Darwinian model of organic evolution is reflected d |5:-t.- i RS {0
by the structure of the following general evolutionary algo- L
rithm. . - dacoding lurchion '
Algorithm 1: )
FETin
t = O7 GfmralorE
initialize P(t); o ol
evaluate P(t)7 ! ! - - ..-7_..-% el .";.-I..II:I |
while not terminate  do Gl ,f'.'-'.:-_ff’é.:l: *'n::’,:E“ AR,
P'(t) := variation [P(®)]; o R T -J'l:-|:ru'.=-:.~'|l:1I|:I||
evaluate  [P'(1)]; s e
P(t+1) =select [P'(t)UQ]; Fig. 1. The relation of genotype space and phenotype space [5, p. 39].
t=t+1;
od

operators often work on abstract mathematical objects like
binary strings, thegenotype spaceObviously, a mapping or

In this algorithm,P(¢) denotes a population @findividuals codir_lg fungtion between the p.henc.)type and genotype space is
at generatiort. ( is a special set of individuals that might'®duired. Fig. 1 sketches the situation (see also [5, pp. 38-43]).
be considered for selection, e.q? = P(t) (but Q = In_general, two different approaches can be followed. The
0 is possible as well). An offspring populatiof” () of first is to choose one of the standard algorithms and to design

size \ is generated by means of variation operators such &sd€coding function according to the requirements of the

recombination and/or mutation (but others such as inversigfgorithm. The sepond suggests desig.niljg the representation
[11, pp. 106-109] are also possible) from the populafih). as close as possible to the characteristics of the phenotype

The offspring individuals are then evaluated by calculating tf@ace, almost avoiding the need for a decoding function.
objective function values'(z,) for each of the solutions Many empirical and theoretical results are available for the

represented by individuals it (t), and selection based Onstar;dard instances of evolutionary algorithms, which i_s clear.ly
the fitness values is performed to drive the process towd# Important advantage of the first apprqach, especially with
better solutions. It should be noted that= 1 is possible, '€9ard to the reuse and parameter setting of operators. On
thus including so-calledteady-stateselection schemes [gg], (€ other hand, a complex coding function may introduce
[89] if used in combination with) = P(t). Furthermore, by ad(_jltlonal nqnllnearltles and other mathemaUCQI difficulties
choosingl < A < ; an arbitrary value of thegeneration which can hinder the search process substantially [79, pp.

gap[90] is adjustable, such that the transition between strict‘%;l_zzn’ [82, p. 97].

generational and steady-state variants of the algorithm is alsoThere is no general answer to the question of which one of

taken into account by the formulation offered here. It shouf§€ WO approaches mentioned above to follow for a specific
also be noted thak > i, i.e., a reproduction surplus, is theProject, but many practical applications have shown that the
normal case in nature best solutions could be found after imposing substantial mod-

ifications to the standard algorithms [86]. We think that most
practitioners prefer natural, problem-related representations.
Michalewicz [82, p. 4] offers:

As mentioned, at least three variants of evolutionary al- |t seems that a “natural” representation of a potential
gorithms have to be distinguished: genetic algorithms, evo- solution for a given problem plus a family of appli-
lutionary programming, and evolution strategies. From these cable “genetic” operators might be quite useful in the
(“canonical”) approaches innumerable variants have been degpproximation of solutions of many problems, and this

IV. DESIGNING AN EVOLUTIONARY ALGORITHM

rived. Their main differences lie in: nature-modeled approach. is a promising direction for
¢ the representation of individuals; problem solving in general.
* the design of the variation operators (mutation and/or Fyrthermore, many researchers also use hybrid algorithms,
recombination); i.e., combinations of evolutionary search heuristics and tradi-
* the selection/reproduction mechanism. tional as well as knowledge-based search techniques [22, p.

In most real-world applications the search space is defing€], [91], [92].
by a set of objects, e.g., processing units, pumps, heaterdt should be emphasized that all this becomes possible
and coolers of a chemical plant, each of which have differebécause the requirements for the application of evolution-
parameters such as energy consumption, capacity, etc. Thageheuristics are so modest compared to most other search
parameters which are subject to optimization constitute tkechniques. In our opinion, this is one of the most important
so-called phenotype spaceOn the other hand the geneticstrengths of the evolutionary approach and one of the rea-
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sons for the popularity evolutionary computation has gainesh additional multimodality, thus making the combined objec-

throughout the last decade. tive function f = f’ o A’ (where f’: M — IR) more complex
than the original probleny’ was. In fact, the schema theory
A. The Representation relies on approximations [11, pp. 78-83] and the optimization

- . : riterion to minimize theoverall expected loss (corresponding
Surprisingly, despite the fact that the representation prot%o'the sum of all fitness values of all individuals ever sampled

lem, i.e., the choice or design of a well-suited genetic represep- . . o I
. . . . ucimg the evolution) rather than the criterion to maximize the
tation for the problem under consideration, has been descrll:be

by many researchers [82], [93], [94] only few a publicationsest flt.nes.s value ever found [15.]' n congludlng f[h's brief
- : ) ! o xcursion into the theory of canonical genetic algorithms, we
explicitly deal with this subject except for specialized researc

T . . would like to emphasize the recent work by Vose [106]-[109]
directions such agenetic programminB1], [95], [96] and the . . .
evolution of neural networks [97], [98]. and others [110], [111] on modeling genetic algorithms by

. ) . . . Mi;\rkov chain theory. This approach has already provided
Canonical genetic algorithms use a binary representation_0 oo . . .
Lo : ; a remarkable insight into their convergence properties and
individuals as fixed-length strings over the alphaket 1} . .
. dynamical behavior and led to the development of so-called
[11], such that they are well suited to handle pseudo-Boolea . . : .
ST executable modelthat facilitate the direct simulation of ge-
optimization problems of the form . . . .
netic algorithms by Markov chains for problems of sufficiently
£:{0, 1} - R (4) small dimension [112], [113].
’ In contrast to genetic algorithms, the representation in
Sticking to the binary representation, genetic algorithms g#volution strategiesnd evolutionary programmings directly
ten enforce the utilization of encoding and decoding functiofgsed on real-valued vectors when dealing with continuous
h: M — {0, 1}t andh’: {0, 1}* — M that facilitate mapping Parameter optimization problems of the general form
solutions# € M to binary stringsh(Z) € {0, 1} and vice
versa, which sometimes requires rather complex mappings

, . R
andh - In case of cor)t|nuous_parametgropt|m|zat|on proble bth methods have originally been developed and are also
for instance, genetic algorithms typically represent a real-

e - . 7 ¢ used, however, for combinatorial optimization problems [42],
valued vectorZ € RR™ by a binary stringy € {0, 1}* as \
] . o2 . - . [43], [55]. Moreover, since many real-world problems have
follows: the binary string is logically divided inta segments

of equal length?” (i.e., £ — n - #/), each segment is decoded t complex search spaces which cannot be mapped “canonically

. Co . 0 one of the representations mentioned so far, many strate
yield the corresponding integer value, and the integer value P y 9y

is in turn linearly mapped to the intervaky, v] C R variants, e.g., for integer [114], mixed-integer [115], structure

(corresponding with théth segment of the binary string) Ofppt|m|zat|or_1 [1h16|].’ [117], and Othﬁ s [8.2’ ch. 10], hgve begn
real values [18]. introduced in the literature, but exhaustive comparative studies

. . : e§pecially for nonstandard representations are still missing.
The strong preference for using binary representations e actual development of the field is characterized by a
solutions in genetic algorithms is derived fr@ohema theory

[11], which analyzes genetic algorithms in terms of the rhrogre.T-sing inte?raft]ion of the diflfetr)e?t r‘:}pproa_cheT, Sl.“r:]h tTat
expected schema sampling behavior under the assumpuo% |ut|.|zat|on ° t"e corpmoln [abels genetic gg(,?nt'rr;],
that mutation and recombination are detrimental. The terr%VO utlon_ strategy, an_d evo utionary programming” might
Lo Pe sometimes even misleading.
schemalenotes a similarity template that represents a subset of
{0, 1}*, and theschema theorerof genetic algorithms offers )
that the canonical genetic algorithm provides a near-optinf Mutation
sampling strategy (in terms of minimizing expected losses) Of course, the design of variation operators has to obey the
for schemata by increasing the number of well-performingaathematical properties of the chosen representation, but there
short (i.e., with small distance between the left-most and rigtare still many degrees of freedom.
most defined position), and low-order (i.e., with few specified Mutation in genetic algorithms was introduced as a ded-
bits) schemata (so-called building blocks) over subsequécated “background operator” of small importance (see [11,
generations (see [18] for a more detailed introduction to thpp. 109-111]). Mutation works by inverting bits with very
schema theorem). The fundamental argument to justify thenall probability such ag,,, = 0.001 [13], p,,, € [0.005, 0.01]
strong emphasis on binary alphabets is derived from the fd&18], or p,, = 1/¢ [119], [120]. Recent studies have im-
that the number of schemata is maximized for a given finifgessively clarified, however, that much larger mutation rates,
number of search points under a binary alphabet [18, mtecreasing over the course of evolution, are often helpful with
40-41]. Consequently, the schema theory presently seemsespect to the convergence reliability and velocity of a genetic
favor binary representations of solutions (but see [99] for adgorithm [101], [121], and that even self-adaptive mutation
alternative view and [100] for a transfer of schema theory tates are effective for pseudo-Boolean problems [122]-[124].
S-expression representations used in genetic programming). Originally, mutation in evolutionary programming was im-
Practical experience, as well as some theoretical hints plemented as a random change (or multiple changes) of the
garding the binary encoding of continuous object variable®scription of the finite state machines according to five dif-
[101]-[105], however, indicate that the binary representatidarent modifications: change of an output symbol, change of a
has some disadvantages. The coding function might introdstate transition, addition of a state, deletion of a state, or change

fiMCR"— R. (5)
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@ (b) ©

Fig. 2. Two-dimensional contour plot of the effect of the mutation operator in case of self-adaptation of (a) a single step sizterfbdizes, and (c)
covariancesz™* denotes the optimizer. The ellipses represent one line of equal probability to place an offspring that is generated by mutation from the parent
individual located at the center of the ellipses. Five sample individuals are shown in each of the plots.

of the initial state. The mutations were typically performedh the middle of Fig. 2. The locations of equal probability
with uniform probability, and the number of mutations for aensity for descendants are concentric hyperellipses (just one
single offspring was either fixed or also chosen according i®depicted in Fig. 2) around the parental midpoint. In the case
a probability distribution. Currently, the most frequently usedonsidered here, i.e., up tovariances, but no covariances, the
mutation scheme as applied to real-valued representationsvies of the hyperellipses are congruent with the coordinate
very similar to that of evolution strategies. axes.

In evolution strategies, the individuals consist of object Two modifications of this scheme have to be mentioned: a
variablesz; € IR (1 < ¢ < n) and so-calledstrategy simplified version uses just one step-size parameter for all of
parameterswhich are discussed in the next section. Mutatiotihe object variables. In this case the hyperellipses are reduced
is then performed independently on each vector element foyhyperspheres, as depicted in the left part of Fig. 2. A more
adding a normally distributed random value with expectatiaglaboratecorrelated mutatiorscheme allows for the rotation
zero and standard deviatien (the notationV;(-, -) indicates of hyperellipses, as shown in the right part of Fig. 2. This
that the random variable is sampled anew for each value méchanism aims at a better adaptation to the topology of the
the indexi) objective function (for details, see [79]).

, The settings for thdearning ratest and 7’ are recom-
vy =i+ o Ni(0, 1). (6) mended as Spper bounds fo? the choice of these parameters

This raises the question of how to control the so-called stégee [126, pp. 167-168]), but one should have in mind that,

size s of (6), which is discussed in the next section. depending on the particular topological characteristics of the
objective function, the optimal setting of these parameters
C. Self-Adaptation might differ from the values proposed. For the case of one self-

. adaptable step size, however, Beyer has recently theoretically

forlnst[elpzi]izic:x?;g: g‘;r?:éjocr%%rggﬂg”ﬁ%ﬂ?ggﬁam;{cg‘;‘n;; Oown that, for the sphere model (a quadratic bowl), the setting
j S - X 1 is the optimal choice, maximizing the convergence
the representation in order to facilitate the evolutionseyf- 70 0 1/+/n P g g

. . . velocity [127].
adaptationof these parameters by applying evolutionary op- The amount of information included into the individuals

erators to the object variables and the strategy parametersg Mmeans of the self-adaptation principle increases from the
mutation at the same time, i.e., searching the space of soluti ple case of one standard deviation up to the order of
an_d strategy parar_nete_rs S|multane_ously. This way, a suita additional parameters, which reflects an enormous degree
adjustment and diversity of mutation parameters should f freedom for theinternal modelsof the individuals. This

prn/(;?giournmdj{ a;t::t:?g\/%f:énf[arlcis'Consists of obiect growing degree of freedom often enhances the global search
variables # 131/%" and strate - gcr:ag)ete & c R Tlhe capabilities of the algorithm at the cost of the expense in
mutationxo eerator works b ggdgin a normilll J&istribute omputation time, and it also reflects a shift from the precise
P L " Y 9 5 Y daptationof a few strategy parameters (as in case of one
random vectorZ € IRR™ with z; ~ N(0,s7) (i.e., the : o A
- _ % . step size) to the exploitation of a largkversity of strategy
components ofZ are normally distributed with expectation .
. 9 parameters. In case of correlated mutations, Rudolph [128]
zero and variance?). - .
The effect of muftation is now defined as has shown that an approximation of the Hessian could be
computed with an upper bound pf+ A = (n? + 3n + 4)/2

oi=0; exp[r’ - N(0,1)+7 - N;(0, 1)] (7) on the population size, but the typical population sizes 15
@) =z + o) - N;(0, 1) (8) and A = 100, independently of:, are certainly not sufficient
’ ’ ’ to achieve this.
wheret’ x (v2n)™t and T « (y/2v/n)7 L. The choice of a logarithmic normal distribution for the

This mutation scheme, which is most frequently used modification of the standard deviations; is presently
evolution strategies, is schematically depicted (for= 2) also acknowledged in evolutionary programming literature
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[129]-[131]. Extensive empirical investigations indicate soma the same way as the vector of binary variables is evolved.
advantage of this scheme over the original additive selfhe results reported in [123] demonstrate that the mechanism
adaptation mechanism introduced independently (but abgiglds a significant improvement in performance of a canonical
20 years later than in evolution strategies) in evolutionagenetic algorithm on the test functions used.

programming [132] where

ol =0 [L+a- N, 1)] (©)

D. Recombination

The variation operators of canonical genetic algorithms,
(with a setting ofa =~ 0.2 [131]). Recent preliminary inves- mutation, and recombination are typically applied with a
tigations indicate, however, that this becomes reversed wigirong emphasis on recombination. The standard algorithm
noisy objective functions are considered, where the additiperforms a so-called one-point crossover, where two indi-
mechanism seems to outperform multiplicative modificatioréduals are chosen randomly from the population, a position
[133]. in the bitstrings is randomly determined as the crossover
A study by Gehlhaar and Fogel [134] also indicates that thp@int, and an offspring is generated by concatenating the
order of the modifications of; and o; has a strong impact left substring of one parent and the right substring of the
on the effectiveness of self-adaptation: It appears importarther parent. Numerous extensions of this operator, such as
to mutate the standard deviations first and to use the mutatecreasing the number of crossover points [138], uniform
standard deviations for the modification of object variablesrossover (each bit is chosen randomly from the corresponding
As the authors point out in that study, the reversed mechanigarental bits) [139], and others, have been proposed, but
might suffer from generating offspring that have useful objesimilar to evolution strategies no generally useful recipe for
variable vectors but poor strategy parameter vectors becatlse choice of a recombination operator can be given. The
these have not been used to determine the position of theoretical analysis of recombination is still to a large extent
offspring itself. an open problem. Recent work amulti-parent recombination
More work needs to be performed, however, to achieve amere more than two individuals participate in generating a
clear understanding of the general advantages or disadvantsgjegle offspring individual, clarifies that this generalization
of one self-adaptation scheme compared to the other mecbh-recombination might yield a performance improvement
nisms. A recent theoretical study by Beyer presents a first siepmany application examples [140]-{142]. Unlike evolution
toward this goal [127]. In this work, the author shows thatrategies, where it is either utilized for the creation of all
the self-adaptation principle works for a variety of differenmembers of the intermediate population (the default case) or
probability density functions for the modification of the stemot at all, the recombination operator in genetic algorithms is
size, i.e., itis an extremely robust mechanism. Moreover, [12Fjpically applied with a certain probability., and commonly
clarifies that (9) is obtained from the corresponding equatigmoposed settings of the crossover probability are= 0.6
for evolution strategies with one self-adaptable step size B3] and p. € [0.75, 0.95] [118].
Taylor expansion breaking off after the linear term, such thatIn evolution strategies recombination is incorporated into
both methods behave equivalently for small settings of thlee main loop of the algorithm as the first operator (see
learning ratesr and «, when+ = «. This prediction was Algorithm 1) and generates a new intermediate population of
confirmed perfectly by an experiment reported in [135]. X individuals by A-fold application to the parent population,
Apart from the early work by Schaffer and Morishima [37]creating one individual per application from(1 < o < p)
self-adaptation has only recently been introduced in geneiiglividuals. Normally,p = 2 or ¢ = p (so-called global
algorithms as a mechanism for evolving the parameters reicombination) are chosen. The recombination types for object
variation operators. In [37punctuated crossovewas offered variables and strategy parameters in evolution strategies often
as a method for adapting both the number and positidiffer from each other, and typical examples discrete re-
of crossover points for a multipoint crossover operator icombination(random choices of single variables from parents,
canonical genetic algorithms. Although this approach seemeaimparable to uniform crossover in genetic algorithms) and
promising, the operator has not been used widely. A simplatermediary recombinatior{often arithmetic averaging, but
approach toward self-adapting the crossover operator waber variants such as geometrical crossover [143] are also
presented by Spears [136], who allowed individuals to choopessible). For further details on these operators, see [79].
between two-point crossover and uniform crossover by meansThe advantages or disadvantages of recombination for a
of a self-adaptable operator choice bit attached to the rggarticular objective function can hardly be assessed in advance,
resentation of individuals. The results indicated that, in casad certainly no generally useful setting of recombination op-
of crossover operators, rather than adapting to the single besttors (such as the discrete recombination of object variables
operator for a given problem, the mechanism seems to benefil global intermediary of strategy parameters as we have
from the existing diversity of operators available for crossovetlaimed in [79, pp. 82-83]) exists. Recently, Kursawe has
Concerning the mutation operator in genetic algorithmsnpressively demonstrated that, using an inappropriate setting
some effort to facilitate self-adaptation of the mutation ratef the recombination operator, the (15 100)-evolution strategy
has been presented by Smith and Fogarty [123], based with » self-adaptable variances might even diverge on a sphere
earlier work by Bck [137]. These approaches incorporate thmodel forn = 100 [144]. Kursawe shows that the appropriate
mutation ratep,,, € [0, 1] into the representation of individualschoice of the recombination operator not only depends on
and allow for mutation and recombination of the mutation ratbe objective function topology, but also on the dimension of
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the objective function and the number of strategy parametesedected to replace the parents (in this ca®e,= @ in
incorporated into the individuals. Only recently, Rechenbe/jgorithm 1). Notice that this mechanism allows that the
[46] and Beyer [142] presented first results concerning theest member of the population at generatior- 1 might
convergence velocity analysis of global recombination in caperform worse than the best individual at generationi.e.,
of the sphere model. These results clarify that, for using otlee method is nogtlitist, thus allowing the strategy to accept
(rather thann as in Kursawe’s experiment) optimally chosenemporary deteriorations that might help to leave the region of
standard deviatiow, a p-fold speedup is achieved by bothattraction of a local optimum and reach a better optimum. In
recombination variants. Beyer’s interpretation of the resultspntrast, the 4 + A) strategy selects thg survivors from
however, is somewhat surprising because it does not put dotie union of parents and offspring, such that a monotonic
the success of this operator on the existence of building bloaksurse of evolution is guaranteed) [= P(t) in Algorithm
which are usefully rearranged in an offspring individual, but]. Due to recommendations by Schwefel, however, the\]
rather explains it as genetic repairof the harmful parts of strategy is preferred over the 4 \) strategy, although recent
mutation. experimental findings seem to indicate that the latter performs
Concerning evolutionary programming, a rash statemess well as or better than the,()) strategy in many practical
based on the common understanding of the contending straases [134]. It should also be noted that both schemes can be
tures as individuals would be to claim that evolutionarinterpreted as instances of the general«, )) strategy, where
programming simply does not use recombination. Rather tharK x < oc denotes the maximum life span (in generations)
focusing on the mechanism of sexual recombination, howevef,an individual. Forx = 1, the selection method yields the
Fogel [145] argues that one may examine and simulate {is, A) strategy, while it turns into theu(+ \) strategy for
functional effect and correspondingly interpret a string of = oo [54].
symbols as a reproducing population or species, thus makingA minor difference between evolutionary programming and
recombination a nonissue (refer to [145] for philosophica&volution strategies consists in the choice of a probabilistic

reasons underlining this choice). variant of {+ + )) selection in evolutionary programming,
] where each solution out of offspring and parent individuals is
E. Selection evaluated againsj > 1 (typically, ¢ < 10) other randomly

Unlike the variation operators which work on the genetighosen solutions from the union of parent and offspring
representation, the selection operator is based solely on gividuals [ = P(t) in Algorithm 1]. For each comparison,

fitness values of the individuals. a “win” is assigned if an individual's score is better or
In genetic algorithms, selection is typically implemente@qual to that of its opponent, and theindividuals with the
as a probabilistic operator, using the relative fitng&g) = greatest number of wins are retained to be parents of the next

f(d’i)/zle f(@;) to determine the selection probability ofgeneration. As shown in [79, pp. 96-99], this selection method
an individual @ (proportional selection This method re- is a probabilistic version ofi(+ ) selection which becomes
quires positive fitness values and a maximization task, so ttia@re and more deterministic as the numbesf competitors
scaling functionsare often utilized to transform the fitnesds increased. Whether or not a probabilistic selection scheme
values accordingly (see, e.g., [18, p. 124]). Rather than usiligould be preferable over a deterministic scheme remains an
absolute fitness valuesank-based selectiomethods utilize open question.
the indexes of individuals when ordered according to fitnessEvolutionary algorithms can easily be ported to parallel
values to calculate the corresponding selection probabiliti@@mputer architectures [150], [151]. Since the individuals can
Linear [146] as well as nonlinear [82, p. 60] mappings havee modified and, most importantly, evaluated independently
been proposed for this type of selection operafournament Of each other, we should expect a speed-up scaling linear
selection[147] works by taking a random uniform samplewith the number of processing units as long asp does
of a certain sizeg > 1 from the population, selecting thenot exceed the population size But selection operates on
best of these individuals to survive for the next generationthe whole population so this operator eventually slows down
and repeating the process until the new population is filledie overall performance, especially for massively parallel
This method gains increasing popularity because it is eadfghitectures wherg > p. This observation motivated the
to implement, computationally efficient, and allows for finedevelopment of parallel algorithms using local selection within
tuning the selective pressure by increasing or decreasing Sdpopulations like imigration modelg53], [152] or within
tournament size;. For an overview of selection methodssmall neighborhoods of spatially arranged individuals like in
and a characterization of their selective pressure in termsdffusion model$153]-[156] (also callectellular evolutionary
numerical measures, the reader should consult [148] and [148porithms[157]-[159]). It can be observed that local selection
While most of these selection operators have been introdudeg@hniques not only yield a considerable speed-up on parallel
in the framework of a generational genetic algorithm, thegfchitectures, but also improve the robustness of the algorithms
can also be used in combination with the steady-state ad@], [116], [160].
generation gap methods outlined in Section Il

The (u, A)-evolution strategy uses a deterministic selection . . .
scheme. The notation.( \) indicates that: parents create - Other Evolutionary Algorithm Variants
A > p offspring by means of recombination and mutation, Although it is impossible to present a thorough overview
and the bestu offspring individuals are deterministically of all variants of evolutionary computation here, it seems
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appropriate to explicitty mentiororder-based genetic algo- tions to repair algorithms, constraint-preserving opera-
rithms [18], [82], classifier systemfl61], [162], andgenetic tors, and decoders; see [169] for an overview).
programming[31], [70], [81], [163] as branches of genetic 3) Expert knowledge about the problem needs to be incor-
algorithms that have developed into their own directions of  porated into the representation and the operators in order
research and application. The following overview is restricted  to guide the search process and increase its convergence
to a brief statement of their domain of application and some  velocity—without running into the trap, however, of

literature references: being confused and misled by expert beliefs and habits
e Order-based genetic a|gorithm3,vere proposed for which mlght not correspond with the best solutions.

searching the space germutationsr: {1, ---, n} — 4) An objective function needs to be developed, often in

{1, ---, n} directly rather than using complex decoding cooperation with experts from the particular application

functions for mapping binary strings to permutations field.
and preserving feasible permutations under mutation and®) The parameters of the evolutionary algorithm need to be
crossover (as proposed in [164]). They apply specialized ~ set (or tuned) and the feasibility of the approach needs to
recombination (such a®rder crossoveror partially be assessed by comparing the results to expert solutions
matched crossovgrand mutation operators (such as  (used so far) or, if applicable, solutions obtained by other
random exchanges of two elements of the permutation)  algorithms.
which preserve permutations (see [82, ch. 10] for an Most of these topics require experience with evolutionary
overview). algorithms as well as cooperation between the application’s
 Classifier systemgse an evolutionary algorithm to searctexpert and the evolutionary algorithm expert, and only few
the space oproduction rules(often encoded by strings general results are available to guide the design of the al-
over a ternary alphabet, but also sometimes using sygerithm (e.g., representation-independent recombination and
bolic rules [165]) of a learning system capable of inmutation operators [170], [171], the requirement that small
duction and generalization [18, ch. 6], [161], [166]changes by mutation occur more frequently than large ones
[167]. Typically, the Michigan approach and th®itts- [48], [172], and a quantification of the selective pressure im-
burgh approach are distinguished according to whethgosed by the most commonly used selection operators [149]).
an individual corresponds with a single rule of the ruleNevertheless, evolutionary algorithms often yield excellent
based system (Michigan) or with a complete rule bagesults when applied to complex optimization problems where
(Pittsburgh). other methods are either not applicable or turn out to be
» Genetic programmingpplies evolutionary search to theunsatisfactory (a variety of examples can be found in [80]).
space of tree structures which may be interpreted asimportant practical problem classes where evolutionary al-
computer programs in a language suitable to modificatigorithms yield solutions of high quality include engineering
by mutation and recombination. The dominant approactesign applications involving continuous parameters (e.g.,
to genetic programming uses (a subset of) LISP prograrits the design of aircraft [173], [174] structural mechanics
(S expressions) as genotype space [31], [163], but othgtoblems based on two-dimensional shape representations
programming languages including machine code are algd’5], electromagnetic systems [176], and mobile manipula-
used (see, e.g., [70], [81], and [168]). tors [177], [178]), discrete parameters (e.g., for multiplierless

Throughout this section we made the attempt to compa#iital filter optimization [179], the design of a linear collider
the constituents of evolutionary algorithms in terms of theld80], or nuclear reactor fuel arrangement optimization [181]),
canonical forms. But in practice the borders between theddd mixed-integer representations (e.g., for the design of
approaches are much more fluid. We can observe a steady éivivable networks [182] and optical multilayer systems
lution in this field by modifying (mutating), (re)combining, and115]). Combinatorial optimization problems with a straight-
validating (evaluating) the current approaches, permanerif@fward binary representation of solutions have also been
improving the population of evolutionary algorithms. treated successfully with canonical genetic algorithms and
their derivatives (e.g., set partitioning and its application to
airline crew scheduling [183], knapsack problems [184], [185],
and others [186]). Relevant applications to combinatorial prob-

Practical application problems in fields as diverse as engéms utilizing a permutation representation of solutions are
neering, natural sciences, economics, and business (to men§igld found in the domains of scheduling (e.g., production
only some of the most prominent representatives) often exhibheduling [187] and related problems [188]), routing (e.g.,
a number of characteristics that prevent the straightforwasgl vehicles [189] or telephone calls [190]), and packing (e.g.,
application of standard instances of evolutionary algorithmgf pallets on a truck [191]).

Typical problems encountered when developing an evolution-The existing range of successful applications is extremely
ary algorithm for a practical application include the followingproad, thus by far preventing an exhaustive overview—the

1) A suitable representation and corresponding operatdigt of fields and example applications should be taken as a

need to be developed when the canonical representationt for further reading rather than a representative overview.
is different from binary strings or real-valued vectors. Some of the most challenging applications with a large profit

2) Various constraints need to be taken into account Ipptential are found in the field of biochemical drug design,

means of a suitable method (ranging from penalty fung¢here evolutionary algorithms have gained remarkable interest

V. APPLICATIONS
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and success in the past few years as an optimization proce- are encouraging [171], as well, as is the work on complex
dure to support protein engineering [134], [192]-[194]. Also, nonstandard representations such as in the field of genetic
finance and business provide a promising field of profitable programming.

applications [195], but of course few details are published e« Likewise, the field still lacks a sound formal charac-
about this work (see, e.g., [196]). In fact, the relation between terization of the application domain and the limits of
evolutionary algorithms and economics has found increasing evolutionary computation. This requires future efforts in
interest in the past few years and is now widely seen as a the field of complexity theory.

promising modeling approach for agents acting in a complex,There exists a strong relationship between evolutionary
uncertain situation [197]. computation and some other techniques, e.g., fuzzy logic and
In concluding this section, we refer to the research field @lural networks, usually regarded as elements of artificial
computational intelligenc¢see Section VI for details) and theintelligence. Following Bezdek [208], their main common
applications of evolutionary computation to the other maigharacteristic lies in their numerical knowledge representation,
fields of computational intelligence, namely fuzzy logic anghich differentiates them from traditional symbolic artificial
neural networks. An overview of the utilization of genetigntelligence. Bezdek suggested the teramputational intelli-

algorithms to train and construct neural networks is given iencefor this special branch of artificial intelligence with the
[198], and of course other variants of evolutionary algorithn¥sllowing characteristics

can also be used for this task (see e.g., [199] for an evolution—l) numerical knowledge representation;

ary programming, [200] for an evolution strategy example, and 2) adaptability: ’

[97] and [201] for genetic algorithm examples). Similarly, both 3y ¢t tolerar;ce'

the rule base and membership functions of fuzzy systems car processing speed comparable to human cognition pro-
be optimized by evolutionary algorithms, typically yielding cesses:

improvements of the performance of the fuzzy system (€.9..5y eror rate optimality (e.g., with respect to a Bayesian
[202]-[206]). The interaction of computational intelligence estimate of the probability of a certain error on future
techniques and hybridization with other methods such as data).

expert systems and local optimization techniques certainIyWe regard computational intelligence as one of the most
opens a new direction of research toward hybrid systems ; S . . . i
. . i . innovative research directions in connection with evolutionary

that exhibit problem solving capabilities approaching those . . -
i . : . computation, since we may expect that efficient, robust, and

of naturally intelligent systems in the future. Evolutlonar)é
algorithms, seen as a technique to evolve machine intellige
(see [5]), are one of the mandatory prerequisites for achiev
this goal by means of algorithmic principles that are alrea

working quite successfully in natural evolution [207].

£ aesy—to—use solutions to complex real-world problems will be
iaceveloped on the basis of these complementary techniques.
(rr?this field, we expect an impetus from the interdisciplinary
c%operation, e.g., techniques for tightly coupling evolutionary
and problem domain heuristics, more elaborate techniques for
self-adaptation, as well as an important step toward machine

VI. SUMMARY AND OUTLOOK intelligence.

. . ._Finally, it should be pointed out that we are far from using
To summarize, the current state of evolutionary computatiq . . - :
: . . all potentially helpful features of evolution within evolutionary
research can be characterized as in the following.

) alggrithms. Comparing natural evolution and the algorithms
* The basic concepts have been developed more than g ssed here, we can immediately identify a list of important
years ago, but it took almost two decades for thefierences, which all might be exploited to obtain more

potential to be recognized by a larger audience. robust search algorithmenda better understanding of natural
* Application-oriented research in evolutionary computas, q|ution.

tion is quite successful and almost dominates the field (if |
we consider the majority of papers). Only few potential
application domains could be identified, if any, where
evolutionary algorithms have not been tested so far. In
many cases they have been used to produce good, if not
superior, results.

* In contrast, the theoretical foundations are to some extent
still weak. To say it more pithy: “We know that they
work, but we do not know why.” As a consequence,
inexperienced users fall into the same traps repeatedly,
since there are only few rules of thumb for the design
and parameterization of evolutionary algorithms.

A constructive approach for the synthesis of evolution-
ary algorithms, i.e., the choice or design of the represen-
tations, variation operators, and selection mechanisms is
needed. But first investigations pointing in the direction of 3The term “computational intelligence” was originally coined by Cercone
design principles for representation-independent operatars McCalla [209].

Natural evolution works under dynamically changing
environmental conditions, with nonstationary optima and
even changing optimization criteria, and the individuals
themselves are also changing the structure of the adap-
tive landscape during adaptation [210]. In evolutionary
algorithms, environmental conditions are often static,
but nonelitist variants are able to deal with changing
environments. It is certainly worthwhile, however, to
consider a more flexible life span concept for individuals
in evolutionary algorithms than just the extremes of a
maximum life span of one generation [as in & §)
strategy] and of an unlimited life span (as in an elitist
strategy), by introducing an aging parameter as in the
(1, &, A) strategy [54].
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e The long-term goal of evolution consists of the main-
tenance ofevolvability of a population [95], guaranteed
by mutation, and a preservation of diversity within the

the idea that each individual might have its own internal
strategy to deal with its environment. This strategy might
be more complex than the simple mutation parameters
population (the ternmeliorization describes this more presently taken into account by evolution strategies and
appropriately than optimization or adaptation does). In evolutionary programming.
contrast, evolutionary algorithms often aim at finding a with all this in mind, we are convinced that we are just
precise solution and converging to this solution. beginning to understand and to exploit the full potential of
* In natural evolution, many criteria need to be met advolutionary computation. Concerning basic research as well
the same time, while most evolutionary algorithms args practical applications to challenging industrial problems,
designed for single fitness criteria (see [211] for agvolutionary algorithms offer a wide range of promising
overview of the existing attempts to apply evolutionaryurther investigations, and it will be exciting to observe the

algorithms to multiobjective optimization). The conceptfuture development of the field.

of diploidy or polyploidy combined withdominanceand
recessivity[50] as well as the idea of introducing two
sexes with different selection criteria might be helpful
for such problems [212], [213].

Natural evolution neither assumes global knowled
(about all fithess values of all individuals) nor
generational synchronization, while many evolutionar
algorithms still identify an iteration of the algorithm
with one complete generation update. Fine-grained asyr
chronously parallel variants of evolutionary algorithm
introducing local neighborhoods for recombination an
selection and a time-space organization like in cellular
automata [157]-[159] represent an attempt to overcome
these restrictions. [1]
The co-evolution of species such as in predator-prey
interactions implies that the adaptive landscape of inf]
dividuals of one species changes as members of the
other species make their adaptive moves [214]. Both th
work on competitive fitness evaluation presented in [215]4]
and the co-evolution of separate populations [216], [217

; 5
present successful approaches to incorporate the asplét

of mutual interaction of different adaptive landscapedél
into evolutionary algorithms. As clarified by the work 7]
of Kauffman [214], however, we are just beginning to
explore the dynamics of co-evolving systems and to
exploit the principle for practical problem solving and 18]
evolutionary simulation.

The genotype-phenotype mapping in nature, realized Pﬁ%]]
the genetic codeas well as theepigenetic apparatu§.e.,

the biochemical processes facilitating the development
and differentiation of an individual’s cells into organs, ;;
and systems), has evolved over time, while the mapping
is usually fixed in evolutionary algorithms (dynamicll2]
parameter encoding as presented in [218] being a no-
table exception). An evolutionary self-adaptation of thgs]
genotype-phenotype mapping might be an interesting
way to make the search more flexible, starting with a
coarse-grained, volume-oriented search and focusing @A
promising regions of the search space as the evolution
proceeds. [15]
Other topics, such as multicellularity ar@htogenyof
individuals, up to the development of their own brain
(individual learning, such as accounted for by the Baldwin
effect in evolution [219]), are usually not modeled in
evolutionary algorithms. The self-adaptation of strateg[)}n
parameters is just a first step into this direction, realizing
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