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Evolutionary Computation: Comments
on the History and Current State

Thomas B̈ack, Ulrich Hammel, and Hans-Paul Schwefel

Abstract—Evolutionary computation has started to receive
significant attention during the last decade, although the origins
can be traced back to the late 1950’s. This article surveys the
history as well as the current state of this rapidly growing
field. We describe the purpose, the general structure, and the
working principles of different approaches, including genetic
algorithms (GA) [with links to genetic programming(GP) and
classifier systems(CS)], evolution strategies(ES), and evolutionary
programming (EP) by analysis and comparison of their most
important constituents (i.e., representations, variation operators,
reproduction, and selection mechanism). Finally, we give a brief
overview on the manifold of application domains, although this
necessarily must remain incomplete.

Index Terms—Classifier systems, evolution strategies, evolu-
tionary computation, evolutionary programming, genetic algo-
rithms, genetic programming.

I. EVOLUTIONARY COMPUTATION: ROOTS AND PURPOSE

T HIS first issue of the IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION marks an important point
in the history of the rapidly growing field of evolutionary
computation, and we are glad to participate in this event.
In preparation for this summary, we strove to provide a
comprehensive review of both the history and the state
of the art in the field for both the novice and the expert
in evolutionary computation. Our selections of material
are necessarily subjective, and we regret any significant
omissions.

Although the origins of evolutionary computation can be
traced back to the late 1950’s (see e.g., the influencing works
of Bremermann [1], Friedberg [2], [3], Box [4], and others),
the field remained relatively unknown to the broader scientific
community for almost three decades. This was largely due
to the lack of available powerful computer platforms at that
time, but also due to some methodological shortcomings of
those early approaches (see, e.g., Fogel [5, p. 103]).

The fundamental work of Holland [6], Rechenberg [7],
Schwefel [8], and Fogel [9] served to slowly change this pic-
ture during the 1970’s, and we currently observe a remarkable
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and steady (still exponential) increase in the number of pub-
lications (see, e.g., the bibliography of [10]) and conferences
in this field, a clear demonstration of the scientific as well as
economic relevance of this subject matter.

But what are the benefits of evolutionary computation
(compared to other approaches) which may justify the effort
invested in this area? We argue that the most significant advan-
tage of using evolutionary search lies in the gain of flexibility
and adaptability to the task at hand, in combination with robust
performance (although this depends on the problem class) and
global search characteristics. In fact, evolutionary computation
should be understood as a general adaptable concept for
problem solving, especially well suited for solving difficult
optimization problems, rather than a collection of related and
ready-to-use algorithms.

The majority of current implementations of evolutionary
algorithms descend from three strongly related but indepen-
dently developed approaches:genetic algorithms, evolutionary
programming, and evolution strategies.

Genetic algorithms, introduced by Holland [6], [11], [12],
and subsequently studied by De Jong [13]–[16], Goldberg
[17]–[21], and others such as Davis [22], Eshelman [23], [24],
Forrest [25], Grefenstette [26]–[29], Koza [30], [31], Mitchell
[32], Riolo [33], [34], and Schaffer [35]–[37], to name only
a few, have been originally proposed as a general model of
adaptive processes, but by far the largest application of the
techniques is in the domain of optimization [15], [16]. Since
this is true for all three of the mainstream algorithms presented
in this paper, we will discuss their capabilities and performance
mainly as optimization strategies.

Evolutionary programming, introduced by Fogel [9], [38]
and extended in Burgin [39], [40], Atmar [41], Fogel
[42]–[44], and others, was originally offered as an attempt
to create artificial intelligence. The approach was to evolve
finite state machines (FSM) to predict events on the basis of
former observations. An FSM is an abstract machine which
transforms a sequence of input symbols into a sequence of
output symbols. The transformation depends on a finite set of
states and a finite set of state transition rules. The performance
of an FSM with respect to its environment might then be
measured on the basis of the machine’s prediction capability,
i.e., by comparing each output symbol with the next input
symbol and measuring the worth of a prediction by some
payoff function.

Evolution strategies, as developed by Rechenberg [45], [46]
and Schwefel [47], [48], and extended by Herdy [49], Kursawe
[50], Ostermeier [51], [52], Rudolph [53], Schwefel [54], and
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others, were initially designed with the goal of solving difficult
discrete and continuous, mainly experimental [55], parameter
optimization problems.

During the 1980’s, advances in computer performance en-
abled the application of evolutionary algorithms to solve
difficult real-world optimization problems, and the solutions
received a broader audience. In addition, beginning in 1985, in-
ternational conferences on the techniques were offered (mainly
focusing on genetic algorithms [56]–[61], with an early em-
phasis on evolutionary programming [62]–[66], as small work-
shops on theoretical aspects of genetic algorithms [67]–[69],
as a genetic programming conference [70], with the gen-
eral theme of problem solving methods gleaned from nature
[71]–[74], and with the general topic of evolutionary computa-
tion [75]–[78]). But somewhat surprisingly, the researchers in
the various disciplines of evolutionary computation remained
isolated from each other until the meetings in the early 1990’s
[59], [63], [71].

The remainder of this paper is intended as an overview
of the current state of the field. We cannot claim that this
overview is close to complete. As good starting points for
further studies we recommend [5], [18], [22], [31], [32],
[48], and [79]–[82]. In addition moderated mailing lists1 and
newsgroups2 allow one to keep track of current events and
discussions in the field.

In the next section we describe the application domain of
evolutionary algorithms and contrast them with the traditional
approach of mathematical programming.

II. OPTIMIZATION, EVOLUTIONARY COMPUTATION,
AND MATHEMATICAL PROGRAMMING

In general, an optimization problem requires finding a
setting of free parameters of the system under
consideration, such that a certain quality criterion
(typically called theobjective function) is maximized (or,
equivalently, minimized)

(1)

The objective function might be given by real-world systems
of arbitrary complexity. The solution to theglobal opti-
mization problem (1) requires finding a vector such that

. Characteristics such as
multimodality, i.e., the existence of severallocal maxima
with

(2)

(where denotes a distance measure on), constraints, i.e.,
restrictions on the set by functions such that
the set offeasiblesolutions is only a subset of the
domain of the variables

(3)

and other factors, such as large dimensionality, strong non-
linearities, nondifferentiability, and noisy and time-varying

1For example, GA-List-Request@AIC.NRL.NAVY.MIL and EP-List-
Request@magenta.me.fau.edu.

2For example, comp.ai.genetic.

objective functions, frequently lead to difficult if not unsolv-
able optimization tasks (see [83, p. 6]). But even in the latter
case, the identification of an improvement of the currently
known best solution through optimization is often already a big
success for practical problems, and in many cases evolutionary
algorithms provide an efficient and effective method to achieve
this.

Optimization problems occur in many technical, economic,
and scientific projects, like cost-, time-, and risk-minimization
or quality-, profit-, and efficiency-maximization [10], [22] (see
also [80, part G]). Thus, the development of general strategies
is of great value.

In real-world situations the objective function and the
constraints are often not analytically treatable or are even
not given in closed form, e.g., if the function definition is
based on a simulation model [84], [85].

The traditional approach in such cases is to develop a formal
model that resembles the original functions close enough but is
solvable by means of traditional mathematical methods such as
linear and nonlinear programming. This approach most often
requires simplifications of the original problem formulation.
Thus, an important aspect of mathematical programming lies
in the design of the formal model.

No doubt, this approach has proven to be very successful
in many applications, but has several drawbacks which mo-
tivated the search for novel approaches, where evolutionary
computation is one of the most promising directions. The
most severe problem is that, due to oversimplifications, the
computed solutions do not solve the original problem. Such
problems, e.g., in the case of simulation models, are then often
considered unsolvable.

The fundamental difference in the evolutionary computation
approach is to adapt the method to the problem at hand. In our
opinion, evolutionary algorithms should not be considered as
off-the-peg, ready-to-use algorithms but rather as a general
concept which can be tailored to most of the real-world
applications that often are beyond solution by means of
traditional methods. Once a successful EC-framework has been
developed it can be incrementally adapted to the problem
under consideration [86], to changes of the requirements of
the project, to modifications of the model, and to the change
of hardware resources.

III. T HE STRUCTURE OF ANEVOLUTIONARY ALGORITHM

Evolutionary algorithms mimic the process of natural evo-
lution, the driving process for the emergence of complex and
well-adapted organic structures. To put it succinctly and with
strong simplifications, evolution is the result of the interplay
between the creation of new genetic information and its
evaluation and selection. A single individual of a population
is affected by other individuals of the population (e.g., by
food competition, predators, and mating), as well as by the
environment (e.g., by food supply and climate). The better an
individual performs under these conditions the greater is the
chance for the individual to live for a longer while and generate
offspring, which in turn inherit the (disturbed) parental genetic
information. Over the course of evolution, this leads to a
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penetration of the population with the genetic information
of individuals of above-average fitness. The nondeterministic
nature of reproduction leads to a permanent production of
novel genetic information and therefore to the creation of
differing offspring (see [5], [79], and [87] for more details).

This neo-Darwinian model of organic evolution is reflected
by the structure of the following general evolutionary algo-
rithm.

Algorithm 1:

:=
initialize
evaluate
while not terminate do

:= variation ;
evaluate ;

:= select
:=

od

In this algorithm, denotes a population of individuals
at generation . is a special set of individuals that might
be considered for selection, e.g., (but

is possible as well). An offspring population of
size is generated by means of variation operators such as
recombination and/or mutation (but others such as inversion
[11, pp. 106–109] are also possible) from the population .
The offspring individuals are then evaluated by calculating the
objective function values for each of the solutions
represented by individuals in , and selection based on
the fitness values is performed to drive the process toward
better solutions. It should be noted that is possible,
thus including so-calledsteady-stateselection schemes [88],
[89] if used in combination with . Furthermore, by
choosing an arbitrary value of thegeneration
gap [90] is adjustable, such that the transition between strictly
generational and steady-state variants of the algorithm is also
taken into account by the formulation offered here. It should
also be noted that , i.e., a reproduction surplus, is the
normal case in nature.

IV. DESIGNING AN EVOLUTIONARY ALGORITHM

As mentioned, at least three variants of evolutionary al-
gorithms have to be distinguished: genetic algorithms, evo-
lutionary programming, and evolution strategies. From these
(“canonical”) approaches innumerable variants have been de-
rived. Their main differences lie in:

• the representation of individuals;
• the design of the variation operators (mutation and/or

recombination);
• the selection/reproduction mechanism.

In most real-world applications the search space is defined
by a set of objects, e.g., processing units, pumps, heaters,
and coolers of a chemical plant, each of which have different
parameters such as energy consumption, capacity, etc. Those
parameters which are subject to optimization constitute the
so-called phenotype space. On the other hand the genetic

Fig. 1. The relation of genotype space and phenotype space [5, p. 39].

operators often work on abstract mathematical objects like
binary strings, thegenotype space. Obviously, a mapping or
coding function between the phenotype and genotype space is
required. Fig. 1 sketches the situation (see also [5, pp. 38–43]).

In general, two different approaches can be followed. The
first is to choose one of the standard algorithms and to design
a decoding function according to the requirements of the
algorithm. The second suggests designing the representation
as close as possible to the characteristics of the phenotype
space, almost avoiding the need for a decoding function.

Many empirical and theoretical results are available for the
standard instances of evolutionary algorithms, which is clearly
an important advantage of the first approach, especially with
regard to the reuse and parameter setting of operators. On
the other hand, a complex coding function may introduce
additional nonlinearities and other mathematical difficulties
which can hinder the search process substantially [79, pp.
221–227], [82, p. 97].

There is no general answer to the question of which one of
the two approaches mentioned above to follow for a specific
project, but many practical applications have shown that the
best solutions could be found after imposing substantial mod-
ifications to the standard algorithms [86]. We think that most
practitioners prefer natural, problem-related representations.
Michalewicz [82, p. 4] offers:

It seems that a “natural” representation of a potential
solution for a given problem plus a family of appli-
cable “genetic” operators might be quite useful in the
approximation of solutions of many problems, and this
nature-modeled approach is a promising direction for
problem solving in general.

Furthermore, many researchers also use hybrid algorithms,
i.e., combinations of evolutionary search heuristics and tradi-
tional as well as knowledge-based search techniques [22, p.
56], [91], [92].

It should be emphasized that all this becomes possible
because the requirements for the application of evolution-
ary heuristics are so modest compared to most other search
techniques. In our opinion, this is one of the most important
strengths of the evolutionary approach and one of the rea-
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sons for the popularity evolutionary computation has gained
throughout the last decade.

A. The Representation

Surprisingly, despite the fact that the representation prob-
lem, i.e., the choice or design of a well-suited genetic represen-
tation for the problem under consideration, has been described
by many researchers [82], [93], [94] only few a publications
explicitly deal with this subject except for specialized research
directions such asgenetic programming[31], [95], [96] and the
evolution of neural networks [97], [98].

Canonical genetic algorithms use a binary representation of
individuals as fixed-length strings over the alphabet
[11], such that they are well suited to handle pseudo-Boolean
optimization problems of the form

(4)

Sticking to the binary representation, genetic algorithms of-
ten enforce the utilization of encoding and decoding functions

and that facilitate mapping
solutions to binary strings and vice
versa, which sometimes requires rather complex mappings
and . In case of continuous parameter optimization problems,
for instance, genetic algorithms typically represent a real-
valued vector by a binary string as
follows: the binary string is logically divided into segments
of equal length (i.e., ), each segment is decoded to
yield the corresponding integer value, and the integer value
is in turn linearly mapped to the interval
(corresponding with theth segment of the binary string) of
real values [18].

The strong preference for using binary representations of
solutions in genetic algorithms is derived fromschema theory
[11], which analyzes genetic algorithms in terms of their
expected schema sampling behavior under the assumption
that mutation and recombination are detrimental. The term
schemadenotes a similarity template that represents a subset of

, and theschema theoremof genetic algorithms offers
that the canonical genetic algorithm provides a near-optimal
sampling strategy (in terms of minimizing expected losses)
for schemata by increasing the number of well-performing,
short (i.e., with small distance between the left-most and right-
most defined position), and low-order (i.e., with few specified
bits) schemata (so-called building blocks) over subsequent
generations (see [18] for a more detailed introduction to the
schema theorem). The fundamental argument to justify the
strong emphasis on binary alphabets is derived from the fact
that the number of schemata is maximized for a given finite
number of search points under a binary alphabet [18, pp.
40–41]. Consequently, the schema theory presently seems to
favor binary representations of solutions (but see [99] for an
alternative view and [100] for a transfer of schema theory to

-expression representations used in genetic programming).
Practical experience, as well as some theoretical hints re-

garding the binary encoding of continuous object variables
[101]–[105], however, indicate that the binary representation
has some disadvantages. The coding function might introduce

an additional multimodality, thus making the combined objec-
tive function (where ) more complex
than the original problem was. In fact, the schema theory
relies on approximations [11, pp. 78–83] and the optimization
criterion to minimize theoverall expected loss (corresponding
to the sum of all fitness values of all individuals ever sampled
during the evolution) rather than the criterion to maximize the
best fitness value ever found [15]. In concluding this brief
excursion into the theory of canonical genetic algorithms, we
would like to emphasize the recent work by Vose [106]–[109]
and others [110], [111] on modeling genetic algorithms by
Markov chain theory. This approach has already provided
a remarkable insight into their convergence properties and
dynamical behavior and led to the development of so-called
executable modelsthat facilitate the direct simulation of ge-
netic algorithms by Markov chains for problems of sufficiently
small dimension [112], [113].

In contrast to genetic algorithms, the representation in
evolution strategiesandevolutionary programmingis directly
based on real-valued vectors when dealing with continuous
parameter optimization problems of the general form

(5)

Both methods have originally been developed and are also
used, however, for combinatorial optimization problems [42],
[43], [55]. Moreover, since many real-world problems have
complex search spaces which cannot be mapped “canonically”
to one of the representations mentioned so far, many strategy
variants, e.g., for integer [114], mixed-integer [115], structure
optimization [116], [117], and others [82, ch. 10], have been
introduced in the literature, but exhaustive comparative studies
especially for nonstandard representations are still missing.
The actual development of the field is characterized by a
progressing integration of the different approaches, such that
the utilization of the common labels “genetic algorithm,”
“evolution strategy,” and “evolutionary programming” might
be sometimes even misleading.

B. Mutation

Of course, the design of variation operators has to obey the
mathematical properties of the chosen representation, but there
are still many degrees of freedom.

Mutation in genetic algorithms was introduced as a ded-
icated “background operator” of small importance (see [11,
pp. 109–111]). Mutation works by inverting bits with very
small probability such as [13],
[118], or [119], [120]. Recent studies have im-
pressively clarified, however, that much larger mutation rates,
decreasing over the course of evolution, are often helpful with
respect to the convergence reliability and velocity of a genetic
algorithm [101], [121], and that even self-adaptive mutation
rates are effective for pseudo-Boolean problems [122]–[124].

Originally, mutation in evolutionary programming was im-
plemented as a random change (or multiple changes) of the
description of the finite state machines according to five dif-
ferent modifications: change of an output symbol, change of a
state transition, addition of a state, deletion of a state, or change
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(a) (b) (c)

Fig. 2. Two-dimensional contour plot of the effect of the mutation operator in case of self-adaptation of (a) a single step size, (b)n step sizes, and (c)
covariances.x� denotes the optimizer. The ellipses represent one line of equal probability to place an offspring that is generated by mutation from the parent
individual located at the center of the ellipses. Five sample individuals are shown in each of the plots.

of the initial state. The mutations were typically performed
with uniform probability, and the number of mutations for a
single offspring was either fixed or also chosen according to
a probability distribution. Currently, the most frequently used
mutation scheme as applied to real-valued representations is
very similar to that of evolution strategies.

In evolution strategies, the individuals consist of object
variables ( ) and so-calledstrategy
parameters, which are discussed in the next section. Mutation
is then performed independently on each vector element by
adding a normally distributed random value with expectation
zero and standard deviation(the notation indicates
that the random variable is sampled anew for each value of
the index )

(6)

This raises the question of how to control the so-called step
size of (6), which is discussed in the next section.

C. Self-Adaptation

In [125] Schwefel introduced an endogenous mechanism
for step-size control by incorporating these parameters into
the representation in order to facilitate the evolutionaryself-
adaptationof these parameters by applying evolutionary op-
erators to the object variables and the strategy parameters for
mutation at the same time, i.e., searching the space of solutions
and strategy parameters simultaneously. This way, a suitable
adjustment and diversity of mutation parameters should be
provided under arbitrary circumstances.

More formally, an individual consists of object
variables and strategy parameters . The
mutation operator works by adding a normally distributed
random vector with (i.e., the
components of are normally distributed with expectation
zero and variance ).

The effect of mutation is now defined as

(7)

(8)

where and .
This mutation scheme, which is most frequently used in

evolution strategies, is schematically depicted (for )

in the middle of Fig. 2. The locations of equal probability
density for descendants are concentric hyperellipses (just one
is depicted in Fig. 2) around the parental midpoint. In the case
considered here, i.e., up tovariances, but no covariances, the
axes of the hyperellipses are congruent with the coordinate
axes.

Two modifications of this scheme have to be mentioned: a
simplified version uses just one step-size parameter for all of
the object variables. In this case the hyperellipses are reduced
to hyperspheres, as depicted in the left part of Fig. 2. A more
elaboratecorrelated mutationscheme allows for the rotation
of hyperellipses, as shown in the right part of Fig. 2. This
mechanism aims at a better adaptation to the topology of the
objective function (for details, see [79]).

The settings for thelearning rates and are recom-
mended as upper bounds for the choice of these parameters
(see [126, pp. 167–168]), but one should have in mind that,
depending on the particular topological characteristics of the
objective function, the optimal setting of these parameters
might differ from the values proposed. For the case of one self-
adaptable step size, however, Beyer has recently theoretically
shown that, for the sphere model (a quadratic bowl), the setting

is the optimal choice, maximizing the convergence
velocity [127].

The amount of information included into the individuals
by means of the self-adaptation principle increases from the
simple case of one standard deviation up to the order of

additional parameters, which reflects an enormous degree
of freedom for theinternal modelsof the individuals. This
growing degree of freedom often enhances the global search
capabilities of the algorithm at the cost of the expense in
computation time, and it also reflects a shift from the precise
adaptationof a few strategy parameters (as in case of one
step size) to the exploitation of a largediversity of strategy
parameters. In case of correlated mutations, Rudolph [128]
has shown that an approximation of the Hessian could be
computed with an upper bound of
on the population size, but the typical population sizes
and , independently of , are certainly not sufficient
to achieve this.

The choice of a logarithmic normal distribution for the
modification of the standard deviations is presently
also acknowledged in evolutionary programming literature
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[129]–[131]. Extensive empirical investigations indicate some
advantage of this scheme over the original additive self-
adaptation mechanism introduced independently (but about
20 years later than in evolution strategies) in evolutionary
programming [132] where

(9)

(with a setting of [131]). Recent preliminary inves-
tigations indicate, however, that this becomes reversed when
noisy objective functions are considered, where the additive
mechanism seems to outperform multiplicative modifications
[133].

A study by Gehlhaar and Fogel [134] also indicates that the
order of the modifications of and has a strong impact
on the effectiveness of self-adaptation: It appears important
to mutate the standard deviations first and to use the mutated
standard deviations for the modification of object variables.
As the authors point out in that study, the reversed mechanism
might suffer from generating offspring that have useful object
variable vectors but poor strategy parameter vectors because
these have not been used to determine the position of the
offspring itself.

More work needs to be performed, however, to achieve any
clear understanding of the general advantages or disadvantages
of one self-adaptation scheme compared to the other mecha-
nisms. A recent theoretical study by Beyer presents a first step
toward this goal [127]. In this work, the author shows that
the self-adaptation principle works for a variety of different
probability density functions for the modification of the step
size, i.e., it is an extremely robust mechanism. Moreover, [127]
clarifies that (9) is obtained from the corresponding equation
for evolution strategies with one self-adaptable step size by
Taylor expansion breaking off after the linear term, such that
both methods behave equivalently for small settings of the
learning rates and , when . This prediction was
confirmed perfectly by an experiment reported in [135].

Apart from the early work by Schaffer and Morishima [37],
self-adaptation has only recently been introduced in genetic
algorithms as a mechanism for evolving the parameters of
variation operators. In [37],punctuated crossoverwas offered
as a method for adapting both the number and position
of crossover points for a multipoint crossover operator in
canonical genetic algorithms. Although this approach seemed
promising, the operator has not been used widely. A simpler
approach toward self-adapting the crossover operator was
presented by Spears [136], who allowed individuals to choose
between two-point crossover and uniform crossover by means
of a self-adaptable operator choice bit attached to the rep-
resentation of individuals. The results indicated that, in case
of crossover operators, rather than adapting to the single best
operator for a given problem, the mechanism seems to benefit
from the existing diversity of operators available for crossover.

Concerning the mutation operator in genetic algorithms,
some effort to facilitate self-adaptation of the mutation rate
has been presented by Smith and Fogarty [123], based on
earlier work by B̈ack [137]. These approaches incorporate the
mutation rate into the representation of individuals
and allow for mutation and recombination of the mutation rate

in the same way as the vector of binary variables is evolved.
The results reported in [123] demonstrate that the mechanism
yields a significant improvement in performance of a canonical
genetic algorithm on the test functions used.

D. Recombination

The variation operators of canonical genetic algorithms,
mutation, and recombination are typically applied with a
strong emphasis on recombination. The standard algorithm
performs a so-called one-point crossover, where two indi-
viduals are chosen randomly from the population, a position
in the bitstrings is randomly determined as the crossover
point, and an offspring is generated by concatenating the
left substring of one parent and the right substring of the
other parent. Numerous extensions of this operator, such as
increasing the number of crossover points [138], uniform
crossover (each bit is chosen randomly from the corresponding
parental bits) [139], and others, have been proposed, but
similar to evolution strategies no generally useful recipe for
the choice of a recombination operator can be given. The
theoretical analysis of recombination is still to a large extent
an open problem. Recent work onmulti-parent recombination,
where more than two individuals participate in generating a
single offspring individual, clarifies that this generalization
of recombination might yield a performance improvement
in many application examples [140]–[142]. Unlike evolution
strategies, where it is either utilized for the creation of all
members of the intermediate population (the default case) or
not at all, the recombination operator in genetic algorithms is
typically applied with a certain probability , and commonly
proposed settings of the crossover probability are
[13] and [118].

In evolution strategies recombination is incorporated into
the main loop of the algorithm as the first operator (see
Algorithm 1) and generates a new intermediate population of

individuals by -fold application to the parent population,
creating one individual per application from( )
individuals. Normally, or (so-called global
recombination) are chosen. The recombination types for object
variables and strategy parameters in evolution strategies often
differ from each other, and typical examples arediscrete re-
combination(random choices of single variables from parents,
comparable to uniform crossover in genetic algorithms) and
intermediary recombination(often arithmetic averaging, but
other variants such as geometrical crossover [143] are also
possible). For further details on these operators, see [79].

The advantages or disadvantages of recombination for a
particular objective function can hardly be assessed in advance,
and certainly no generally useful setting of recombination op-
erators (such as the discrete recombination of object variables
and global intermediary of strategy parameters as we have
claimed in [79, pp. 82–83]) exists. Recently, Kursawe has
impressively demonstrated that, using an inappropriate setting
of the recombination operator, the (15 100)-evolution strategy
with self-adaptable variances might even diverge on a sphere
model for [144]. Kursawe shows that the appropriate
choice of the recombination operator not only depends on
the objective function topology, but also on the dimension of
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the objective function and the number of strategy parameters
incorporated into the individuals. Only recently, Rechenberg
[46] and Beyer [142] presented first results concerning the
convergence velocity analysis of global recombination in case
of the sphere model. These results clarify that, for using one
(rather than as in Kursawe’s experiment) optimally chosen
standard deviation , a -fold speedup is achieved by both
recombination variants. Beyer’s interpretation of the results,
however, is somewhat surprising because it does not put down
the success of this operator on the existence of building blocks
which are usefully rearranged in an offspring individual, but
rather explains it as agenetic repairof the harmful parts of
mutation.

Concerning evolutionary programming, a rash statement
based on the common understanding of the contending struc-
tures as individuals would be to claim that evolutionary
programming simply does not use recombination. Rather than
focusing on the mechanism of sexual recombination, however,
Fogel [145] argues that one may examine and simulate its
functional effect and correspondingly interpret a string of
symbols as a reproducing population or species, thus making
recombination a nonissue (refer to [145] for philosophical
reasons underlining this choice).

E. Selection

Unlike the variation operators which work on the genetic
representation, the selection operator is based solely on the
fitness values of the individuals.

In genetic algorithms, selection is typically implemented
as a probabilistic operator, using the relative fitness

to determine the selection probability of
an individual (proportional selection). This method re-
quires positive fitness values and a maximization task, so that
scaling functionsare often utilized to transform the fitness
values accordingly (see, e.g., [18, p. 124]). Rather than using
absolute fitness values,rank-based selectionmethods utilize
the indexes of individuals when ordered according to fitness
values to calculate the corresponding selection probabilities.
Linear [146] as well as nonlinear [82, p. 60] mappings have
been proposed for this type of selection operator.Tournament
selection [147] works by taking a random uniform sample
of a certain size from the population, selecting the
best of these individuals to survive for the next generation,
and repeating the process until the new population is filled.
This method gains increasing popularity because it is easy
to implement, computationally efficient, and allows for fine-
tuning the selective pressure by increasing or decreasing the
tournament size . For an overview of selection methods
and a characterization of their selective pressure in terms of
numerical measures, the reader should consult [148] and [149].
While most of these selection operators have been introduced
in the framework of a generational genetic algorithm, they
can also be used in combination with the steady-state and
generation gap methods outlined in Section III.

The ( )-evolution strategy uses a deterministic selection
scheme. The notation ( ) indicates that parents create

offspring by means of recombination and mutation,
and the best offspring individuals are deterministically

selected to replace the parents (in this case, in
Algorithm 1). Notice that this mechanism allows that the
best member of the population at generation might
perform worse than the best individual at generation, i.e.,
the method is notelitist, thus allowing the strategy to accept
temporary deteriorations that might help to leave the region of
attraction of a local optimum and reach a better optimum. In
contrast, the ( ) strategy selects the survivors from
the union of parents and offspring, such that a monotonic
course of evolution is guaranteed [ in Algorithm
1]. Due to recommendations by Schwefel, however, the ()
strategy is preferred over the ( ) strategy, although recent
experimental findings seem to indicate that the latter performs
as well as or better than the ( ) strategy in many practical
cases [134]. It should also be noted that both schemes can be
interpreted as instances of the general ( ) strategy, where

denotes the maximum life span (in generations)
of an individual. For , the selection method yields the
( ) strategy, while it turns into the ( ) strategy for

[54].
A minor difference between evolutionary programming and

evolution strategies consists in the choice of a probabilistic
variant of ( ) selection in evolutionary programming,
where each solution out of offspring and parent individuals is
evaluated against (typically, ) other randomly
chosen solutions from the union of parent and offspring
individuals [ in Algorithm 1]. For each comparison,
a “win” is assigned if an individual’s score is better or
equal to that of its opponent, and theindividuals with the
greatest number of wins are retained to be parents of the next
generation. As shown in [79, pp. 96–99], this selection method
is a probabilistic version of ( ) selection which becomes
more and more deterministic as the numberof competitors
is increased. Whether or not a probabilistic selection scheme
should be preferable over a deterministic scheme remains an
open question.

Evolutionary algorithms can easily be ported to parallel
computer architectures [150], [151]. Since the individuals can
be modified and, most importantly, evaluated independently
of each other, we should expect a speed-up scaling linear
with the number of processing units as long as does
not exceed the population size. But selection operates on
the whole population so this operator eventually slows down
the overall performance, especially for massively parallel
architectures where . This observation motivated the
development of parallel algorithms using local selection within
subpopulations like inmigration models[53], [152] or within
small neighborhoods of spatially arranged individuals like in
diffusion models[153]–[156] (also calledcellular evolutionary
algorithms[157]–[159]). It can be observed that local selection
techniques not only yield a considerable speed-up on parallel
architectures, but also improve the robustness of the algorithms
[46], [116], [160].

F. Other Evolutionary Algorithm Variants

Although it is impossible to present a thorough overview
of all variants of evolutionary computation here, it seems
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appropriate to explicitly mentionorder-based genetic algo-
rithms [18], [82], classifier systems[161], [162], andgenetic
programming[31], [70], [81], [163] as branches of genetic
algorithms that have developed into their own directions of
research and application. The following overview is restricted
to a brief statement of their domain of application and some
literature references:

• Order-based genetic algorithmswere proposed for
searching the space ofpermutations

directly rather than using complex decoding
functions for mapping binary strings to permutations
and preserving feasible permutations under mutation and
crossover (as proposed in [164]). They apply specialized
recombination (such asorder crossover or partially
matched crossover) and mutation operators (such as
random exchanges of two elements of the permutation)
which preserve permutations (see [82, ch. 10] for an
overview).

• Classifier systemsuse an evolutionary algorithm to search
the space ofproduction rules(often encoded by strings
over a ternary alphabet, but also sometimes using sym-
bolic rules [165]) of a learning system capable of in-
duction and generalization [18, ch. 6], [161], [166],
[167]. Typically, theMichigan approach and thePitts-
burgh approach are distinguished according to whether
an individual corresponds with a single rule of the rule-
based system (Michigan) or with a complete rule base
(Pittsburgh).

• Genetic programmingapplies evolutionary search to the
space of tree structures which may be interpreted as
computer programs in a language suitable to modification
by mutation and recombination. The dominant approach
to genetic programming uses (a subset of) LISP programs
( expressions) as genotype space [31], [163], but other
programming languages including machine code are also
used (see, e.g., [70], [81], and [168]).

Throughout this section we made the attempt to compare
the constituents of evolutionary algorithms in terms of their
canonical forms. But in practice the borders between these
approaches are much more fluid. We can observe a steady evo-
lution in this field by modifying (mutating), (re)combining, and
validating (evaluating) the current approaches, permanently
improving the population of evolutionary algorithms.

V. APPLICATIONS

Practical application problems in fields as diverse as engi-
neering, natural sciences, economics, and business (to mention
only some of the most prominent representatives) often exhibit
a number of characteristics that prevent the straightforward
application of standard instances of evolutionary algorithms.
Typical problems encountered when developing an evolution-
ary algorithm for a practical application include the following.

1) A suitable representation and corresponding operators
need to be developed when the canonical representation
is different from binary strings or real-valued vectors.

2) Various constraints need to be taken into account by
means of a suitable method (ranging from penalty func-

tions to repair algorithms, constraint-preserving opera-
tors, and decoders; see [169] for an overview).

3) Expert knowledge about the problem needs to be incor-
porated into the representation and the operators in order
to guide the search process and increase its convergence
velocity—without running into the trap, however, of
being confused and misled by expert beliefs and habits
which might not correspond with the best solutions.

4) An objective function needs to be developed, often in
cooperation with experts from the particular application
field.

5) The parameters of the evolutionary algorithm need to be
set (or tuned) and the feasibility of the approach needs to
be assessed by comparing the results to expert solutions
(used so far) or, if applicable, solutions obtained by other
algorithms.

Most of these topics require experience with evolutionary
algorithms as well as cooperation between the application’s
expert and the evolutionary algorithm expert, and only few
general results are available to guide the design of the al-
gorithm (e.g., representation-independent recombination and
mutation operators [170], [171], the requirement that small
changes by mutation occur more frequently than large ones
[48], [172], and a quantification of the selective pressure im-
posed by the most commonly used selection operators [149]).
Nevertheless, evolutionary algorithms often yield excellent
results when applied to complex optimization problems where
other methods are either not applicable or turn out to be
unsatisfactory (a variety of examples can be found in [80]).

Important practical problem classes where evolutionary al-
gorithms yield solutions of high quality include engineering
design applications involving continuous parameters (e.g.,
for the design of aircraft [173], [174] structural mechanics
problems based on two-dimensional shape representations
[175], electromagnetic systems [176], and mobile manipula-
tors [177], [178]), discrete parameters (e.g., for multiplierless
digital filter optimization [179], the design of a linear collider
[180], or nuclear reactor fuel arrangement optimization [181]),
and mixed-integer representations (e.g., for the design of
survivable networks [182] and optical multilayer systems
[115]). Combinatorial optimization problems with a straight-
forward binary representation of solutions have also been
treated successfully with canonical genetic algorithms and
their derivatives (e.g., set partitioning and its application to
airline crew scheduling [183], knapsack problems [184], [185],
and others [186]). Relevant applications to combinatorial prob-
lems utilizing a permutation representation of solutions are
also found in the domains of scheduling (e.g., production
scheduling [187] and related problems [188]), routing (e.g.,
of vehicles [189] or telephone calls [190]), and packing (e.g.,
of pallets on a truck [191]).

The existing range of successful applications is extremely
broad, thus by far preventing an exhaustive overview—the
list of fields and example applications should be taken as a
hint for further reading rather than a representative overview.
Some of the most challenging applications with a large profit
potential are found in the field of biochemical drug design,
where evolutionary algorithms have gained remarkable interest
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and success in the past few years as an optimization proce-
dure to support protein engineering [134], [192]–[194]. Also,
finance and business provide a promising field of profitable
applications [195], but of course few details are published
about this work (see, e.g., [196]). In fact, the relation between
evolutionary algorithms and economics has found increasing
interest in the past few years and is now widely seen as a
promising modeling approach for agents acting in a complex,
uncertain situation [197].

In concluding this section, we refer to the research field of
computational intelligence(see Section VI for details) and the
applications of evolutionary computation to the other main
fields of computational intelligence, namely fuzzy logic and
neural networks. An overview of the utilization of genetic
algorithms to train and construct neural networks is given in
[198], and of course other variants of evolutionary algorithms
can also be used for this task (see e.g., [199] for an evolution-
ary programming, [200] for an evolution strategy example, and
[97] and [201] for genetic algorithm examples). Similarly, both
the rule base and membership functions of fuzzy systems can
be optimized by evolutionary algorithms, typically yielding
improvements of the performance of the fuzzy system (e.g.,
[202]–[206]). The interaction of computational intelligence
techniques and hybridization with other methods such as
expert systems and local optimization techniques certainly
opens a new direction of research toward hybrid systems
that exhibit problem solving capabilities approaching those
of naturally intelligent systems in the future. Evolutionary
algorithms, seen as a technique to evolve machine intelligence
(see [5]), are one of the mandatory prerequisites for achieving
this goal by means of algorithmic principles that are already
working quite successfully in natural evolution [207].

VI. SUMMARY AND OUTLOOK

To summarize, the current state of evolutionary computation
research can be characterized as in the following.

• The basic concepts have been developed more than 35
years ago, but it took almost two decades for their
potential to be recognized by a larger audience.

• Application-oriented research in evolutionary computa-
tion is quite successful and almost dominates the field (if
we consider the majority of papers). Only few potential
application domains could be identified, if any, where
evolutionary algorithms have not been tested so far. In
many cases they have been used to produce good, if not
superior, results.

• In contrast, the theoretical foundations are to some extent
still weak. To say it more pithy: “We know that they
work, but we do not know why.” As a consequence,
inexperienced users fall into the same traps repeatedly,
since there are only few rules of thumb for the design
and parameterization of evolutionary algorithms.

A constructive approach for the synthesis of evolution-
ary algorithms, i.e., the choice or design of the represen-
tations, variation operators, and selection mechanisms is
needed. But first investigations pointing in the direction of
design principles for representation-independent operators

are encouraging [171], as well, as is the work on complex
nonstandard representations such as in the field of genetic
programming.

• Likewise, the field still lacks a sound formal charac-
terization of the application domain and the limits of
evolutionary computation. This requires future efforts in
the field of complexity theory.

There exists a strong relationship between evolutionary
computation and some other techniques, e.g., fuzzy logic and
neural networks, usually regarded as elements of artificial
intelligence. Following Bezdek [208], their main common
characteristic lies in their numerical knowledge representation,
which differentiates them from traditional symbolic artificial
intelligence. Bezdek suggested the termcomputational intelli-
gencefor this special branch of artificial intelligence with the
following characteristics3:

1) numerical knowledge representation;
2) adaptability;
3) fault tolerance;
4) processing speed comparable to human cognition pro-

cesses;
5) error rate optimality (e.g., with respect to a Bayesian

estimate of the probability of a certain error on future
data).

We regard computational intelligence as one of the most
innovative research directions in connection with evolutionary
computation, since we may expect that efficient, robust, and
easy-to-use solutions to complex real-world problems will be
developed on the basis of these complementary techniques.
In this field, we expect an impetus from the interdisciplinary
cooperation, e.g., techniques for tightly coupling evolutionary
and problem domain heuristics, more elaborate techniques for
self-adaptation, as well as an important step toward machine
intelligence.

Finally, it should be pointed out that we are far from using
all potentially helpful features of evolution within evolutionary
algorithms. Comparing natural evolution and the algorithms
discussed here, we can immediately identify a list of important
differences, which all might be exploited to obtain more
robust search algorithmsanda better understanding of natural
evolution.

• Natural evolution works under dynamically changing
environmental conditions, with nonstationary optima and
even changing optimization criteria, and the individuals
themselves are also changing the structure of the adap-
tive landscape during adaptation [210]. In evolutionary
algorithms, environmental conditions are often static,
but nonelitist variants are able to deal with changing
environments. It is certainly worthwhile, however, to
consider a more flexible life span concept for individuals
in evolutionary algorithms than just the extremes of a
maximum life span of one generation [as in a ( )
strategy] and of an unlimited life span (as in an elitist
strategy), by introducing an aging parameter as in the
( ) strategy [54].

3The term “computational intelligence” was originally coined by Cercone
and McCalla [209].
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• The long-term goal of evolution consists of the main-
tenance ofevolvability of a population [95], guaranteed
by mutation, and a preservation of diversity within the
population (the termmeliorization describes this more
appropriately than optimization or adaptation does). In
contrast, evolutionary algorithms often aim at finding a
precise solution and converging to this solution.

• In natural evolution, many criteria need to be met at
the same time, while most evolutionary algorithms are
designed for single fitness criteria (see [211] for an
overview of the existing attempts to apply evolutionary
algorithms to multiobjective optimization). The concepts
of diploidy or polyploidycombined withdominanceand
recessivity[50] as well as the idea of introducing two
sexes with different selection criteria might be helpful
for such problems [212], [213].

• Natural evolution neither assumes global knowledge
(about all fitness values of all individuals) nor a
generational synchronization, while many evolutionary
algorithms still identify an iteration of the algorithm
with one complete generation update. Fine-grained asyn-
chronously parallel variants of evolutionary algorithms,
introducing local neighborhoods for recombination and
selection and a time-space organization like in cellular
automata [157]–[159] represent an attempt to overcome
these restrictions.

• The co-evolution of species such as in predator-prey
interactions implies that the adaptive landscape of in-
dividuals of one species changes as members of the
other species make their adaptive moves [214]. Both the
work on competitive fitness evaluation presented in [215]
and the co-evolution of separate populations [216], [217]
present successful approaches to incorporate the aspect
of mutual interaction of different adaptive landscapes
into evolutionary algorithms. As clarified by the work
of Kauffman [214], however, we are just beginning to
explore the dynamics of co-evolving systems and to
exploit the principle for practical problem solving and
evolutionary simulation.

• The genotype-phenotype mapping in nature, realized by
the genetic codeas well as theepigenetic apparatus(i.e.,
the biochemical processes facilitating the development
and differentiation of an individual’s cells into organs
and systems), has evolved over time, while the mapping
is usually fixed in evolutionary algorithms (dynamic
parameter encoding as presented in [218] being a no-
table exception). An evolutionary self-adaptation of the
genotype-phenotype mapping might be an interesting
way to make the search more flexible, starting with a
coarse-grained, volume-oriented search and focusing on
promising regions of the search space as the evolution
proceeds.

• Other topics, such as multicellularity andontogenyof
individuals, up to the development of their own brains
(individual learning, such as accounted for by the Baldwin
effect in evolution [219]), are usually not modeled in
evolutionary algorithms. The self-adaptation of strategy
parameters is just a first step into this direction, realizing

the idea that each individual might have its own internal
strategy to deal with its environment. This strategy might
be more complex than the simple mutation parameters
presently taken into account by evolution strategies and
evolutionary programming.

With all this in mind, we are convinced that we are just
beginning to understand and to exploit the full potential of
evolutionary computation. Concerning basic research as well
as practical applications to challenging industrial problems,
evolutionary algorithms offer a wide range of promising
further investigations, and it will be exciting to observe the
future development of the field.
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[140] A. E. Eiben, P.-E. Raúe, and Zs. Ruttkay, “Genetic algorithms
with multi-parent recombination,” inParallel Problem Solving from
Nature—PPSN III, Int. Conf. on Evolutionary Computation.Berlin:
Springer, 1994, vol. 866 ofLecture Notes in Computer Science, pp.
78–87.

[141] A. E. Eiben, C. H. M. van Kemenade, and J. N. Kok, “Orgy in the
computer: Multi-parent reproduction in genetic algorithms,” inAdvances
in Artificial Life. 3rd Int. Conf. on Artificial Life,F. Morán, A. Moreno,
J. J. Merelo, and P. Chac´on, Eds. Berlin: Springer, 1995, vol. 929 of
Lecture Notes in Artificial Intelligence,pp. 934–945.

[142] H.-G. Beyer, “Toward a theory of evolution strategies: On the benefits
of sex—the (�=�; �)-theory,” Evolutionary Computation,vol. 3, no. 1,
pp. 81–111, 1995.

[143] Z. Michalewicz, G. Nazhiyath, and M. Michalewicz, “A note on use-
fulness of geometrical crossover for numerical optimization problems,”
in Proc. 5th Annu. Conf. on Evolutionary Programming.Cambridge,
MA: The MIT Press, 1996, pp. 305–312.

[144] F. Kursawe, “Toward self-adapting evolution strategies,” inProc. 2nd
IEEE Conf. Evolutionary Computation, Perth, Australia.Piscataway,
NJ: IEEE Press, 1995, pp. 283–288.

[145] D. B. Fogel, “On the philosophical differences between evolutionary
algorithms and genetic algorithms,” inProc. 2nd Annu. Conf. on Evo-
lutionary Programming. San Diego, CA: Evolutionary Programming
Society, 1993, pp. 23–29.

[146] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in
Proc. 1st Int. Conf. on Genetic Algorithms and Their Applications.
Hillsdale, NJ: Lawrence Erlbaum, 1985, pp. 101–111.

[147] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms:
Motivation, analysis, and first results,”Complex Syst.,vol. 3, no. 5,
pp. 493–530, Oct. 1989.
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