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Introduction to genetic fuzzy systems

- Brief Introducton —— — —

The use of genetic/evolutionary algorithms (GAs) to design
fuzzy systems constitutes one of the branches of the Soft
Computing paradigm: (GFSs)

The most known approach is that of
, where some components of a fuzzy rule-

based system (FRBS) are derived (adapted or learnt) using
a GA

Some other approaches include genetic fuzzy neural
networks and genetic fuzzy clustering, among others



Introduction to genetic fuzzy systems

- Brief Introducton —— — —

Evolutionary algorithms and machine learning:

Evolutionary algorithms were not specifically designed as
machine learning techniques, like other approaches like
neural networks

However, it is well known that a learning task can be
modelled as an optimization problem, and thus solved
through evolution

Their powerful search in complex, ill-defined problem spaces
has permitted applying evolutionary algorithms successfully
to a huge variety of machine learning and knowledge

discovery tasks

Their flexibility and capability to incorporate existing
knowledge are also very interesting characteristics for the

problem solving. 6



Introduction to genetic fuzzy systems

- Brief Introducton

Genetic Fuzzy Rule-Based Systems:

DESIGN PROCESS
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Introduction to genetic fuzzy systems

- Brief Introducton —— — —

Design of fuzzy rule-based systems:

« An FRBS (regardless it is a fuzzy model, a fuzzy logic
controller or a fuzzy classifier), is comprised by two main

components:

e The , storing the available problem
knowledge in the form of fuzzy rules

e The , applying a fuzzy reasoning method on

the inputs and the KB rules to give a system output

Both must be designed to build an FRBS for a specific

application:

e The KB is obtained from expert knowledge or by machine
learning methods

e The Inference System is set up by choosing the fuzzy operator
for each component (conjunction, implication, defuzzifier, etc.)

Sometimes, the latter operators are also parametric and
can be tuned using automatic methods 8



Introduction to genetic fuzzy systems
Brief Introduct
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Rule Data
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An Example of Fuzzy rule-based system



Introduction to genetic fuzzy systems

- Brief Introducton

The KB design involves two subproblems, related to
its two subcomponents:

— Definition of the (DB):

 Variable universes of discourse
* Scaling factors or functions

Granularity (number of linguistic terms/labels) per
variable

 Membership functions associated to the labels

— Derivation of the (RB): fuzzy rule
composition

10



Introduction to genetic fuzzy systems

-—Brief Introducton——— — — — — — 00—

As said, there are two different ways to design the
KB:

— From information

— By means of guided by the
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Introduction to genetic fuzzy systems

-~ Taxonomy of Genetic Fuzzy Systems

Genetic fuzzy systems

4/\

Genetic tuning Genetic learning of
FRBS components

e ™.
/_// “‘"\\\
7 ™.,
o i,

Genetic tuning of § Genetic KB Genetic learning
KB parameters § inference engine learning of KB components
o~ and inference
_ \& engine parameters
Genetic adaptive Genetic adaptive
inference system  defuzzification
methods

F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evolutionary
Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5

Associated Website: http://sci2s.ugr.es/gfs/ 12




Introduction to genetic fuzzy systems

-~ Taxonomy of Genetic Fuzzy Systems

Genetic KB
learning

Genetic rule | | Genetic rule Simultaneous
learning selection Genetic DB genetic learning of
(A priori DB) | | (A priori rule learning KB components
/\ extraction) /\
N\ ==
Genetic Genetic RB Genetic Genetic fuzzy rules
descriptive learning A prioiri Embedded lealjning. . learning.
rules for prediction genetic genetic of linguistic || (Approximate
extraction DB learning || DB learning || models Models, TS-rules ..)
RB and DB

13



Introduction to genetic fuzzy systems

Classically:
— performed on a predefined DB definition

— tuning of the membership function shapes by a
GA

TT VS s M L VL
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b b ¢ c

— tuning of the inference parameters

14



Introduction to genetic fuzzy systems

- 1. Genetic Tuning
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Introduction to genetic fuzzy systems

2. Genetic Rule Learning

A predefined Data Base definition is assumed

— The fuzzy rules (usually Mamdani-type) are
derived by a GA .

. P 1Y | !
P :B ;
M1 B B
- =T
Rule Base ‘

( R, =1IF }{1 is M and }{2 s P THER Yoois B,
R, = IF }{1 is p and }{2 5 M THEM ¥ois B,
R, =1F }{1 is M and }{2 s M THERM Y ois B,
R, =TF }{1 is ¢ and }{2 s o THEM Y is B,

16



Introduction to genetic fuzzy systems

Genetic Rule
=== > Learning
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Introduction to genetic fuzzy systems

-~ 3. Genetic Rule Selecton

— A predefined Rule Bases definition is
assumed

— The fuzzy rules are selection by a GA for
getting a compact rule base (more
interpretable, more precise)

18



Introduction to genetic fuzzy systems

Rule Extraction Genetic Rule
Process Selection

Evaluation
Module
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Rule '
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Introduction to genetic fuzzy systems

Initial Data Base

Selected Rule Base
=IFXis L, THEN YesS,
=IFXis S; THEN YesM,

Derived [R,=1FXis L, THEN YesS,
R,=IFXis S, THEN YesM,
Ry=IFXis M, THEN YesL,

Example of genetic rule selection

20



Introduction to genetic fuzzy systems

— Learning of the membership function shapes by a GA
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Introduction to genetic fuzzy systems

-~ 4. GeneticDB Learning

A priori Genetic
DB Learning
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Introduction to genetic fuzzy systems

~ - ~ -

The simultaneous derivation properly addresses the strong
dependency existing between the RB and the DB
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Rule Base
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1 2
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Introduction to genetic fuzzy systems
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Introduction to genetic fuzzy systems

6. Genetic Learning of KB Components and Inference Engine
Parameters

Rule Base Connectives
DefuzygigTH Conjunction
R 4 R, Ry R:R>5 RNnIR/ R Ry
{ESs;,...EL3} |{ESs,..,EL3} e {ESs,...EL3} |B1|B2 Bn [our | e Ol
CSCOR CSD CSC

Example of the coding scheme for learning an RB and the inference
connective parameters

25



Introduction to genetic fuzzy systems
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Introduction to genetic fuzzy systems

- WhydoweuseGAs?

= Wae can code different FS components in a chromosome:
= Identify relevant inputs

= Scaling factors

= Membership functions, shape functions, optimal shape of
membership funct., granularity (number of labels per
variable)

= Fuzzy rules, Any inference parameter, ....

We can define different mechanism for managing them
(combining genetic operators, coevolution,...)

C. C=
Caa Cim Cza Caz Cama Cam
1 1 1
Two points crossover BLX-alpha
Flip a gene at random Random mutation




Introduction to genetic fuzzy systems

- Whydoweuse GAs?

= Wae can consider multiple objectives in the learning
model (interpretability, precision, ....)

Pareto
, Solutions

Accuracy

Interpretability

28



Introductlon to genetlc fuzzy system

_' dalusS alil o U

The birth of GFSS‘ 1991

Thrift's ICGA91 paper (Mamdani-type Rule Base Learning. approach)

Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In: Proc. of 4th
International Conference on Genetic Algorithms (ICGA'91), pp 509-513

Valenzuela-Rendon’s PPSN-I paper (Scatter Mamdani-type KB Learning.
approach)

Valenzuela-Rendon M (1991) The fuzzy classifier system: A classifier system for

continuously varying variables. In: Proc. of 4th International Conference on Genetic
Algorithms (ICGA'91), pp 346-353

Pham and Karaboga’'s Journal of Systems Engineering paper (Relational matrix-
based FRBS learning. approach)

Pham DT, Karaboga D (1991) Optimum design of fuzzy logic controllers using genetic
algorithms. Journal of Systems Engineering 1:114-118).

Karr's Al Expert paper (Mamdani-type Data Base )

Karr C (1991) Genetic algorithms for fuzzy controllers. Al Expert 6(2):26-33.
Almost the whole basis of the area were established in the first year!



Introductlon to genetlc fuzzy system

s and Mmos ~1fA A~
' d LU Al U 9

P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl.
Conf. on Genetic Algorithms (ICGA’91), San Diego, USA, 1991, pp. 509-513

— Classical approach: Pittsburgh — the decision table is encoded in a
rule consequent array

— The output variable linguistic terms are numbered from 1 to n and
comprise the array values. The value 0 represents the rule absence,
thus making the GA able to learn the optimal number of rules

— The ordered structure allows the GA to use simple genetic operators

X,
S M L
X
NB R 123
5 — | M Y > {B, M, A}
R4 Re
M| —| M| —




Introductlon to genetlc fuzzy systems
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GFSs roadmap

o Establishment of the three classical learning approaches in the GFS field: Michigan,
Pittsburgh, and IRL

« Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSK

» Generic applications: Classification, Modeling, and Control

o First: Membership function parameter tuning

o Later: other DB components adaptation: scaling factors, context adaptation (scaling
functions), linguistic hedges, ...

o Recently: interpretability consideration



Introductlon to genetlc fuzzy systems

~ ‘-‘-

'

GFSs roadmap

o New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search (memetic
algorithms), ...

» Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt hybrids, ...

» Multiobjective evolutionary algorithms

o
—
-
c—t
(D
=

o Course of dimensionality (handling large data sets and complex problems):
e Rule selection (1995-...)
o Feature selection at global level and fuzzy rule level
e Hierarchical fuzzy modeling

o “Incremental” learning



Introduction to genetic fuzzy systems

Number of papers on GFSs published in JCR journals

Published Items in Each Year Citations in Each Year
san | : 3500 :
3000 4
400 -
2500 -
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Source: The Thomson Corporation ISI Web of Knowledge

QUEI’Y: (TS = (("GA-" OR "GA based" OR evolutionary OR "genetic algorithm*'" OR "genetic
programming' OR "evolution strate*'" OR "genetic learning' OR '"particle swarm' OR "differential
evolutio*" OR "ant system*'" OR "ant colony' OR "genetic optimi*'" OR "estimation of distribution
algorithm*") AND (" fuzzy rule*" OR "fuzzy system*'" OR '"fuzzy neural" OR "neuro-fuzzy'" OR "fuzzy
control*" OR "fuzzy logic cont*" OR "fuzzy class*" OR "fuzzy if"" OR "fuzzy model*" OR "fuzzy
association rule*'" OR '"fuzzy regression'"))

Date of analysis: July 6th, 2010 Number of papers: 3962
Number of citations: 18298 Average citations per paper: 4.62



Introduction to genetic fuzzy systems

Most cited papers on GFSs (classic approaches - papers until 2000)

1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy
controllers using genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 302

2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems
using genetic algorithms, IEEE TFS 3 (3) (1995) 260-270. Citations: 284

3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5)
(2000) 509-522 . Citations: 215

4., Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for
multidimensional pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 177

5. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999)
109-119. Citations: 126

6. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy
control, IEEE TSMC B 24 (1) (1994) 39-47. Citations: 125

7. Jin, YC (2000) Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability
improvement. IEEE Transactions on Fuzzy Systems 8(2):212-221. Citations: 121

8. Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for
Eelectingllilgguistic rules for pattern classification problems. Fuzzy Sets and Systems 89(2):135-150
itations:

9. Juang, C.F., Lin, J.Y., Lin, C.T., Genetic reinforcement learning through symbiotic evolution for fuzzy
controller design, IEEE TSMC B 30 (2) (2000) 290-302. Citations: 109

10. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, IJAR 12 (3-4)
(1995) 299-315. Citations: 108

34



Introduction to genetic fuzzy systems

GENETIC FUZZY SYSTEMS
Evolutionary Tuning and Learning of Fuzzy
Knowledge Bases.

0. Corddn, F. Herrera, F. Hoffmann, L. Magdalena
World Scientific, July 2001

GENETIC FUZZY SYSTEMS
[VULL{'HD RNING

D.5.Q Hnms
| ze |sm[mE LG |
| Po |welic iG]

Classification and
Modelling with

Linguistic Information

Jroes H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling
with Linguistic Information Granules. Advanced Approaches to
Linguistic Data Mining. Springer (2005)

—  F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects.
Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5,

—  F. Herrera, Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions,
International Journal of Computational Intelligence Research 1 (1) (2005) 59-67

— 0. Cordon, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten Years of Genetic Fuzzy
Systems: Current Framework and New Trends, FSS 141 (1) (2004) 5-31

—  F. Hoffmann, Evolutionary Algorithms for Fuzzy Control System Design, Proceedings of the IEEE
89 (9) (2001) 1318-1333

35
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GENETIC FUZZY SYSTEMS: APPLICATION TO

-A HVAC PROBLEM

Heating Ventilating and Air Conditioning Systems:
Problem

_

A B C D E F G

Aire del Exterior Aire Suministrado

Aire de Retorno

Aire de Salida

I - Enfriamiento
I - calentamiento Sala Sala,
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Fuzzy Logic Controllers for Energy

-~ Efficiency Consumption in Buildings

Heating Ventilating and Air Conditioning Systems:
Problem

and more
than a half is for indoor climate conditions

The use of specific technologies can save up to a 20% of the energy

conciimntion
W\l IJNAL IIJ\.I\II 1

The use of strategies could result in
energy savings ranging

Moreover, in current systems, are considered and
optimized independently without a global strategy

38



Fuzzy Logic Controllers for Energy

-~ Efficiency Consumption in Buildings

Generic Structure of an Office Building HVAC System

-
QOutside Air

Return Air

Exhaust Air —L
J

O

B - Cooling
- Heating Room; Room,

It maintain a good thermal quality in summer and winter

It dilutes and removes emissions from people, equipment and

activities and supplies clean air 19



Fuzzy Logic Controllers for Energy

Initial Data Base

V3: Thermal preferance - bl
— — 17 Variables
-0.60 0.60 0.00 100.00
Vi: PMV N /M\ V13: Valve old position

-15.00 15.00 V5: Required heat
— V4: Tout-Tin

. 02 V11: Thermal/Energy
e——————————— priority
-2.00 2.00
V5: Resulred heat
—-
: 0.00 100.00
_— V14: Valve new position
—l V4: Tout-Tin
u_u
. 0.00 3.00
Initial fUZZY sets V15: Fan coll speed
0.00 16.00
V9: Integral of PMV
e
—
—_— 2000.00 10000.00 V12: Ventllatlon/Energy
V10: Integral of energy priority

o

N
<
N
0
=
<
o
=0

— V8: Alr quality
preference
770.00 860.00
V6: CO2
-1.00 1.00
V11: Thermal/Energy
— —
priority 0.00 100.00
-0.20 0.20 V16: Old extract
V7: dCO2/dt fan speed

0.00 1.00
V12: Ventllation/Energy

\ priority —

-3.00 2.00 == 0.00 100.00

Va: Alr quality V17: New extract
preference fan speed
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Fuzzy Logic Controllers for Energy

Initial Rule Base and FLC Structure

et ' ettt
' 1 1 .
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- 3
! = a|[8 OlEErEE vl | v Hvige]2 vi1|| \15: Fan
1 1 > L3 1] -
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V3:iThermal " 538 (538 538 [E3 [I ) | [T L1 1
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p | HE Lzl a1(8 3 Jia Jia Jia Jui J 1
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. L3| L2| L3| L3 L —— o [E3 K3 [0 [0 K]
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1 14 La] 4| s [ [E8 [F3 [T [ [FI n 0 £ 38 [P0 [ K] '
: : 1 %] K] %] %] ] : : =rar = 1
L5| L5| L5| L4 1 [ [ [N K (K3 0 | — !
! N (A €] o] ] ] [ i
1 L [KI [ [K] K K] 1 .
: i | | ] el ] T \!1 2: Ventilation/Energy priority :
1 1
V9: Integral 1 1
1 T 2 JL2 Jiz2 J13 _JL3 1] 1
, of PMV N o1 | ] | ] 1] — :
' [ [0 [0 [0 [0 [ ]
V10aintegral of LIS | ] ) ] ] ] e el %1 = = 1 s " i
4 1
energy,consumption | e | ool el || Rules
1 v vy (%] o] ] s o1 N | O i
1 M-1b v8 [ =1 1 L1 1] 1] 2] s] |2
V6: CO.— L] 2] s ) Soooooooosoooo00000000 1
- GO 0 [ I I )
! EFEEE ' Layer 2: Priorities vl el [extract fan
1 L4 2| 3] L4] L L 2 2 ) | ) [ sheed
! V8: Aif, quality preference ! 1
V7: dCQ, /dt —— Ly L3] 3] L4, eLlh 0 i =B
= - : V16: Old extract 1 e e :
! [ o e ! Fan Speed 13| 13| L3] L3] 3|3 '
- * 172 Rules™ ¢ -
Layer 1: System Demands Layer 3: Control Decisions

Module 1a, : Thermal Demands Module 2: Energy Priorities
Module 1a,;: Thermal Preference  Module 3a: Required HVAC System Status
Module 1b: Air Quality Demands  Module 3b: Required Ventilation System Status
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Fuzzy Logic Controllers for Energy

-~ Efficiency Consumption in Buildings

Representation of the Test Cells

///r B\
- PASSAGEWAY \
CONTROL \
ROOM
= CELLE§ CELL
Ne 1 Ne7 || N°6
CELLECELL
Ne2 f Ne 3 [NCRENE

ATC Test Cells

Built in 1992.

Volume: 30 or 60 m?3

Full control of temperature range (-15/452C).

Full control of relative humidity (10/90%).
Maximum heating/cooling power: 48 kW.
Fully configurable test cells.

Equiped with various sensors for indoor
climate evaluation: air flow velocity,
relative humidity, CO2 concentration, etc.

Two adjacent twin cells were available

A calibrated and validated model of this site was
developed to evaluate each FLC

42



Fuzzy Logic Controllers for Energy

-~ Efficiency Consumption in Buildings

Goal: multi-criteria optimization of an expert FLC for an HVAC system: reduction of
the energy consumption but maintaining the required indoor comfort levels

O: Upper thermal comfort limit 3: if PMV > 0.5,0; = O; + (PMV —0.5).
O2 Lower thermal comfort limit: if PMV < —0.5,02 = Oz + (—~PMV —0.5).
Os IAQ requirement: if COs conc. > 800ppm, O3 = Oz + (CO2 — 800).

04 Energy consumption: O4 = O4+ Power at time ¢.

Os System stability: Cs = Cs+ System change from time ¢ to (£ — 1).

MODELS | #R | PMV>0.5 | PMV<-05 | CO, ENERGY STABILITY
0, 0, 0, 0, % 0, %
ON-OFF - 0,0 0 0 3206400 - 1136 -
FLC 172 0,0 0 0 2901686 | 9,50 | 1505 | -32,48
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GFS Models for Fuzzy Control of HVAC Systems:

Genetic Tuning

Problem Restrictions

The controller accuracy is assessed by means of simulations
which approximately take 3-4 minutes

Efficient tuning methodologies:

of each tuned parameter
teady-State Genetic Algorithms:
2000 evaluations = 1 run takes approximately 4 days

Considering a (31 individuals)

44



GFS Models for Fuzzy Control of HVAC Systems:

Improving the FLC Performance

m Local modification of the membership function definition
points -

! a a' c' c
a b C 45



-3.00 3.00
V3: Thermal preferance

V3: Thermal preferance

-15.00 15.00
Vda: To_ut-TIn

-2.00 2.00

V5: Required heat

V4: Toul-Tin

— Initial fuzzy sets

— Tuned fuzzy sets

0.00 16.00
Va: Integral of PMV

770.00 860.00
V6: CO2
-0.20 0.20

V7: dCO2/dt

-3.00 2.00
V8: Alr quality

2000.00 10000.00
V10: Integral of energy

consu mgtlon

0.00 100.00
V13: Valve old position

V5: Requlired heat

V11: Thermal/Energy
priority

0.00 100.00
V14: Valve new position

0.00 3.00
V15: Fan coll speed

/PN

-1.00 1.00
V11: Thermal/Energy

priority

7 |

D.00 1.00
V12: Ventllatlon/Energy

priority

preference

V1i2: Ventllation/Energy
priority

V&: Alr quality
preference

0.00 100.00
Vi6: Old extract
fan speed

0.00 100.00
V17: New extract
fan speed




GFS Models for Fuzzy Control of HVAC Systems:

-Genetic Lateral Tuning + Rule Selection

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, Improving Fuzzy Logic
Controllers Obtained by Experts: A Case Study in HVAC Systems. Applied
Intelligence, doi:10.1007/s10489-007-0107-6, 31:1 (2009) 10-35.

: label id. 1 and a displacement parameter o; €[-0.5,0.5]

-05 05 -05 05 -05 05
-
-05 05 -05 05
o=-0.3
1 08 a5 1 Sp 54 Sz Sa Sa
| 1 &
So 84 S2 S3 Sa
0.3
1 i i 1 I
R 1 »
0 1 T2 3 4
i !
' 25 = 0.3)
(SZ 1-0'3)
a) Simbolic Translation of a label b) Lateral Displacement of a Membership function

— New rule structure:

IF X; IS (S, a1) AND ... AND X, IS (S%, an) THEN Y IS (SYi, ay) 47



GFS Models for Fuzzy Control of HVAC Systems:

Ri=If XisHi THENYisL
Ro=lf Xis L; THENYisLs
Ra=I Xis M{THENY isH>

: Cr | \ Cs
L, My Hy L. M, H\ Ry R, R;

0 0 0 0 0 0 1 1 1

Lateral Tuning + Rule
Selection Process

Ls My Hy Ly Mz H, Ri Ry Rg

02 {04) o [-02]-03]-05] 1 [(o) 1
| /&
X'LE béig % lz Mz ‘z R1=)/XisH1THENYiSL2

0 St

Rs=If Xis M THENYisH>

Example of genetic lateral tuning and rule selection
48



GFS Models for Fuzzy Control of HVAC Systems:

MODELS PMV>0.5 | PMV<-0.5 | CO, ENERGY ESTABILITY
0, 0, 0, 0, % 0, %

TUNING 172 0,0 2596875 | 19,01 | 1051 7,48
SELECTION | 147 0,2 2867692 | 10,56 | 991 12,76
SEL+TUNING | 109 0,1 2492462 | 22,27 989 12,94
SEL + WEIGHTS | 102 0,7 2731798 | 14,80 942 17,08

172 0,9
172 0,9
105 1,0
115 0,4
118 0,8
133 0,5
104 0,6
93 0,5

2268689 | 29,25 | 1080 | 4,93
2386033 | 25,59 | 896 | 21,13
2218598 | 30,81 | 710 | 37,50
2358405 | 26,45 | 818 | 27,99
2286976 | 28,68 | 872 | 23,24
2311986 | 27,90 | 788 | 30,63
2388470 | 25,51 | 595 | 47,62
2277807 | 28,96 | 1028 | 9,51|

ol ol ol ol ol ol ol ol foh ol fol No)
ol ol ol ol ol ol ol ol foh ol Nl No)




GFS Models for Fuzzy Control of HVAC Systems:

-Genetic Lateral Tuning and Rule Selection

Tuned Data Base (GL-S1):

G
-1.00 1.60 0.00 100.00
17

V12

0.00 1.00 0.00 100.00

Vi3

Vi4 GENESYS FL.C
DATA BASE |

0.00 100.00
initial

V15
tuned

10000.00 0.00 3.00

i _2.00 2.00 2000.00

ST T A LT A R LT LT Ed s L LT PR LT L L A 4 T T4 T FR T T ST FeA LT AT T,

!




GFS Models for Fuzzy Control of HVAC Systems:

Selected Rule Base (GL-S;):
JRE e ' ey

1 1 :
v | wera 2 V3 ' !
1 L1fz]zfiafis 1 V13: Valve old position '
V1: PMV 0 1
0 ) e ;5 ; V5: Required heat !
1 L4 L5 1 i
V2: PMV 1 H REZEEmm i !
; E A 1| 1| 2| s i V11: Thermal/Energy priority V14: Valve
' Hr 1 mew position
Ly L1 L1 L1 3 ]2 Po;
1 1]y e L3 |3 [l2 JL1 J .
: = TR ' ; A & & e aC et L2]v14 ‘:Ib':ls F:r:j o
-1a, 1 1 2 [ fu1 ful il s
VS::ThermaI Erplayls i ' Tkl B : pe
preference =] %] I ' e H
1 L2 2| L2 1] N = 24t i
' 1 ' L2/ 11 ,
' 1 [ B3 3 Ji3 [z |01
V4: Tout-Tin b = e T | P B erersrerar B
1 14 4| La 1 - P EB[E] '
i gk 1 [ | ] 0
: 15| L5 L5| L4 : | L1L1 LBL‘1 2vs | 1 : L
1 1
L KKK '
E v ' e Elatlat] L3 T \!1 2: Ventllation/Energy priority H
V9: Integral [ — | [
1 of PMV I “eaed| || = L
1 1 1 1
V10zintegral of [ " sl P/ ol I | B 1 e s o s |
energy,consumption H X3 I H T A E -
1 1 L1 1 1 el
! M-tb ] v ' ' L] 1] 2| s ;
V6: CO,— L] e I Soooooooooooooooooooos 10 = V17: New
: U L1 L1 : Layer 2: Priorities . \nelloxtract fan
: vef- Vi An" lity prefe i bl e °
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19 13 i 1
V7: dCQ,/dt — ! V16: Old extract | L2 L2| B[] 13| L3 !
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Module 1a,: Thermal Demands Module 2: Energy Priorities
Module 1a,: Thermal Preference = Module 3a: Required HVAC System Status
Module 1b: Air Quality Demands  Module 3b: Required Ventilation System Status 51
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Interpretability Issues in Fuzzy System Design

Highly used criteria: Complexity criteria in the

learning of FRBS:s.
5 A
i Simple
T & Inaccurate /s
Ll L5 o= B,
E !‘i.ﬂ':. L L] ::_' I|l..i--'“‘l'lll ""':::::
LR |
l 5“'-._}_“‘ y & Complicated
= m'“{:._ & Accurate
=
Z >

Low «——— Complexity =3 High

Number of variables, labels, rules, conditions ...
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Interpretability Issues in Fuzzy System Design

- Semantic Criteria

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Interpretability considerations: semantic criteria

Semantics: the study of meanings

@ Distinguishability: Each linguistic label has semantic meaning
® Number of elements: Compatible with human capabilities
@® Coverage: Any element belongs to at least one fuzzy set
@® Normalization: At least one element has unitary membership
@ Complementarity: For each element. the sum of memberships is one
_J Cold Cool Warm Hat l Cold Cool Warm .- Hot

/ 1
/

i Temperature Temperature
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Interpretability Issues in Fuzzy System Design

- Syntactic Criteria

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Interpretability considerations: syntactic criteria

Syntax: the way in which linguistic elements are put together

@® Completeness: for any input, at least one rule must fire

® Rule—base simplicity: Set of rules as small as possible

@ Rule readability: small number of conditions in rule antecedents

@® Consistency: rules firing simultaneously must have similar consequents

(I ( e 7 ™\ e 7 ™
| R7| R | Ry Rp L Rp |

L M . k. A i
i ! T a T [ |

| R4 Rs | Re R4 | Rs | Ra . I Rs| Ra
i _:‘;_ih_ -"‘: ::—_"-,.r;:: : "\-—‘E'—|

R | R R RlllRQ 'R0

\ M A L 4 M vy b : . A
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Interpretability Issues in Fuzzy System Design

-~ Strategies to Satisfy Interpretability

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Strategies to satisfy interpretability criteria

@ Linguistic labels shared by all rules

® Normal. orthogonal membership functions

@® Don’t care conditions

' Cold Warm Hot | R I
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Interpretability Issues in Fuzzy System Design

Interpretability quality:

Y

What is the most interpretable rule base?

58



A Taxonomy on the Existent Interpretability

Most works in C1 and C2 are applied to classification
problems. They are the classic measures.

Rule Base Level uzzy Partition Level

C1 C

Number of rules Number of membership functions
Number of conditions Number of features

Complexity-
based
Interpretability

Cs Cs

. Consistency of rules Absolute Measures:
Semantic-based :
o Rules fired at the same time Completeness or coverage,
Interpretability Transparency of rule structure (rule weights, efc.)  normalization, distinguishability,
Cointension complementarity

Relative Measures

There are few works in C3 Most works in C4 impose absolute measures or

Still an open problem restrictions. Relativity could be a new possibility.
Still an open problem.




A Taxonomy on the Existent Interpretability

d Interpretability of FRBSs is still an open problem since there is no

single (or global) comprehensive measure to quantify the
interpretability of linguistic models

d To get a good global measure it would be necessary to consider
appropriate measures from all of the quadrants, in order to take into
account the different interpretability properties required for these kinds
of systems together.

M.J. Gacto, R. Alcala, F. Herrera

Interpretability of Linguistic Fuzzy Rule-Based Systems: An [HEEI%}EEEN
Overview on Interpretability Measures _;'"-E::-:_m

Information Sciences, doi: 10.1016/].ins.2011.02.021, in press (2011)

A thematic website is being developed to maintain this study at:

http://sci2s.ugr.es/ (under construction)

UV



O The different measures from each quadrant could be optimized as
different objectives within a multi-objective framework.

O They are contradictory to some degree. Not only accuracy is
contradictory to interpretability. The different measures represent
different properties and requirements.

[~ W ) s Le I‘ALHI‘: :LI I k :I s k [

A Together with accuracy, many interpretability objectives should be
optimized at the same. Two different solutions:

= Development of new EMO algorithms for many objective problems
(incoming for future)

= By grouping complexity measures and semantic measures into
two respective indexes.
(it would represent the present)



Applicability of MOGFSs to the I-A problem (2)

d In fact, a revision on the application of MOGFSs indicates that most
of the approaches have been applied to the Interpretability-accuracy
trade-off problem.

MOGFSs

We will focuss
on this type. m _

| A trade-off _Fuzzy
in FRBSs (I::cl:rftzrgl Association
Linguistic | Approoimate Rule Mining

T ‘\\ LN

— e o 7 .

- » A ¥ Y
. . Post-processing Learning
RBleaming || OF e“‘s’::gtm‘;’ KB leaming of FLC of FLC
parameters structure

12 papers 10 papers 12 papers

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera.
A review on the application of Multi-Objective Genetic Fuzzy Systems: current status and
further directions, in submission, 2011 (Available soon).
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Multiobjective Optimization

Two-Objective Maximization Problem:
Maximize f(x)=(f;(x), f5(X))

o (x)
A

mize

Maxi

> J1(%)

Maximize




Comparison between Two Solutions
Maximize f(x)=(f,(x), f,(X))

O A dominates

is dominated by A

(A is better than 5)

> f1(%)

>

Maximize




Comparison between Two Solutions
Maximize f(x)=(f,(x), f,(X))

O A and C are non-dominated

‘C with each other.

> f1(%)

e

Maximize




Pareto-Optimal Solutions

A Pareto-optimal solution is a solution that
IS not dominated by any other solutions.

f2(x)
A : :

Pareto-Optimal Solutions

® o

o O O o

o o o O ®

00°% o0,°
o O o ®

© 0 o 9o o




Pareto Front

The set of all Pareto-optimal solutions is
called the Pareto front of the problem.




EMO Algorithms

Evolutionary multiobjective optimization (EMO)
algorithms have been designed to search for
Pareto-optimal solutions in their single run.

f2(x)
0 . Pareto-Optimal Solutions
0o ® (Pareto front)
N| 0%0%,
E o °©o0°
.C% ° ©° ©o© ¢
o o ©
EE:Ezooc:)ocoo'
© 0 o 9o o




Comparison: Weighted Sum Approach

Maximize g(x)=wq f1(x) +wy f(X)

/2 (x)

Only a single solution is obtained
by the weighted sum approach.

W = (Wln Wz)

Maximize

> J1(X)

Maximize



Comparison: EMO Approach

Maximize f1(x), f(x)

f2(x) . o .

A Only a single solution is obtained

by the weighted sum approach.
ﬁ Multiple solutions are obtained
© |
= by an EMO algorithm.
Iz
=
> J1(X)

Maximize



- This approach is sensitive to the weight vector specification.

- This approach can not find any Pareto-optimal solutions in a
non-convex region of the Pareto front in the objective space.

f2(x)

Maximize

> J1(X)

Maximize



- This approach is sensitive to the weight vector specification.

- This approach can not find any Pareto-optimal solutions in a
non-convex region of the Pareto front in the objective space.

f2(x)

Maximize

> J1(X)

Maximize



EMO Approach

- EMO approach can find Pareto-optimal solutions even in a non-
convex region of the Pareto front in the objective space.

f2(x)

Maximize

easible

> J1(X)

Maximize



arison of the Two A

roaches

Two-objective maximization problem

| | ! | ! | ! | ! | ! | ! | ! | ! | !
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f,: Total profit from knapsack 1 f,: Total profit from knapsack 1

EMO Approach Weighted Sum Approach
Experimental results of a single run of each approach



Search Direction in Each A

Two-objective maximization problem

21000

20000

19000

18000

17000

f>: Total profit from knapsack 2

16000

— T T T T T T T
® 2000th generation _
o 50th generation
@ 20th generation

Pareto
n front A
a,,;:
- Q -
\
!
| | |

1 I 1 1 1 1 I 1
16000 17000 18000 19000 20000
f,: Total profit from knapsack 1

EMO Approach

21000

20000

19000

18000

17000

f>: Total profit from knapsack 2

16000

| ! | ! | !
® 2000th generation |
o 50th generation
© 20th generation

‘\ Pareto |
y front

1 I 1 I 1 I 1 I 1 I 1
16000 17000 18000 19000 20000
f,: Total profit from knapsack 1

Weighted Sum Approach

Both the diversity and the convergence should be improved in EMO.



Highly Cited EMO Papers

- Two Dominant Algorithms: NSGA-Il and SPEA

1. Deb K et al. (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-Il. IEEE TEC. NSGA-II

2. Zitzler E, Thiele L (1999) Multiobjective evolutionary
algorithms: A comparative case study and the Strength
Pareto approach. IEEE TEC. SPEA (=> SPEA2 in TIK-Report)

3.Fonseca CM, Fleming PJ (1998) Multiobjective optimization and
multiple constraint handling with evolutionary algorithms (Part |):
A unified formulation, I[EEE SMC Part A.

4.Zitzler E, Thiele L, Laumanns M (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE TEC.

5.Ishibuchi H, Murata T (1998) A multi-objective genetic local search
algorithm and its application to flowshop scheduling, IEEE SMC
Part C.



Goal of EMO Algorithms

An EMO algorithm is designed to search for

- all Pareto-optimal solutions

- uniformly distributed Pareto optimal solutions

- a solution set which approximates the Pareto front
in their single run.

1 1 1

20000 o "*\ 7
\~~
© ‘\‘
190001 \\ 7
“
(@) \
A Y
Y
.
18000F ' 7
)

|~~~ - Pareto front o o

© Obtained solution \

I‘

000™"12000 19000 20000




Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features.

| ! | ! | ! | ! | !

® 2000th generation _
o 50th generation
© 20th generation

21000 -

20000
19000
front -

18000

17000

f>: Total profit from knapsack 2

16000

[ I [ I [ I [ I [ I [
16000 17000 18000 19000 20000
f,: Total profit from knapsack 1

Desired search behavior of EMO algorithms



Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features:

. high fitness
(1) Pareto Dominance

Converge to the Pareto front

— Maximize

— Maximize
low fitness



1. Pareto Dominance «, ,;(,

20000
19000
18000

17000

f>: Total profit from knapsack

16000
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|
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Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features:

(1) Pareto Dominance ;é high fitness
Converge to the Pareto front E A @ low fitness
e
s ® .
2) Crowdin = ° high
(2) 5 T ® ® o fitness
Diversity maintenance ® ° . o ° g
>

— Maximize



Basic Ideas in EMO Algorithm Design

Example: Crowding Distance in NSGA-II

Distance between adjacent individuals

A
®--o.. B
W
0 bj (@ a+b
: S
s °
> Infinitely
large value '.\\
>

0 Maximize f,
Crowding distance of C is (a + b)



Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features:

Non-dominated

(1) Pareto Dominance solutions

S : :
Converge to the Pareto front & 7 (Elite solutions)
: = | @
(2) Crowding ? .
Diversity maintenance ° °
@
>

— Maximize

(3) Elitist Strategy

Non-dominated solutions are handled as elite solutions.



Basic Ideas in Recent EMO Algorithms

(1) Pareto Dominance (Convergence to the Pareto front)
(2) Crowding (Diversity Maintenance)
(3) Elite Strategy (Non -Dominated Solutions)

| | | | ' |

® ZOOOth generatlon
© 50th generation

@ 20th generation

21000 -

20000

19000

18000

17000

f>: Total profit from knapsack 2

16000

16000 17000 18000 19000 20000
f,: Total profit from knapsack 1



Hot Issues in EMO Research

Utilization of Decision Maker’s Preference
- Preference is incorporated into EMO algorithms.
- Interactive EMO approaches seem to be promising.

Handling of Many Objectives by EMO Algorithms
- Pareto dominance-based algorithms do not work well.
- More selection pressure is needed.

Hybridization with Local Search
- Hybridization often improves the performance of EMO.
- Balance between local and genetic search is important.

Design of New EMO Algorithms
- Indicator-based EMO algorithms
- Scalarizing function-based EMO algorithms
- Use of other search methods such as PSO, ACO and DE.



Hot Issue: Preference Incorporation

-EMO Approach to Decision Making =

Step 1: Evolutionary multiobjective optimization
==> Many non-dominated solutions (Candidates).

Step 2: Choice of a single solution by the decision maker.

/]

| ! | ! | !
® 2000th generation _
© 50th generation
© 20th generation

| ! | ! | ! | ! | ! | ! |
® 2000th generation _

© 50th generation

© 20th generation
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f>: Total profit from knapsack 2
f>: Total profit from knapsack 2

19000 - 19000
Pareto
18000 front - 18000
oy §
17000 “ - 17000
| I
1 | 1 | 1 | 1 | 1 | 1 | | |
16000 16000 17000 18000 19000 20000 16000

16000 17000 18000 19000 20000
f,: Total profit from knapsack 1 f,: Total profit from knapsack 1

Step 1 Step 2



EMO Approach to Decision Making

Difficulty in Step 1: It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a
single solution form a large number of alternatives.

DTLZ2 DTLZ2




EMO Approach to Decision Making

Difficulty in Step 1: It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a
single solution form a large number of alternatives.

One idea to tackle these two difficulties:
To search for a small number of non-dominate solutions.

DTLZ2




Utilization of Preference Information

21000 T T T T T T
! @
| -~ - -
20000 | 5o .
) N
N s N
oy N
& \
'g \
X 19000 . .
= N
.o \
AN .
\
180001 _ . pareto front ) . ]
@ Reference solution
O Obtained solution "
1 | X

1 1 L
17000 18000 19000 20000 21000

f1: Maximize

Basic Idea: Concentration on the preferred region of the
Pareto front. The decision maker is not always interested in
all the Pareto-front.



Utilization of Preference Information

21000 T T T T T T
! @
| -~ - -
20000 | 5o .
) N
N s N
oy N
& \
'g \
X 19000 . .
= N
.o \
\‘\\‘ \
\
180001 _ . pareto front ) . ]
@ Reference solution
O Obtained solution "
1 | X

1 1 L
17000 18000 19000 20000 21000

f1: Maximize

Difficulty: It is not easy to extract preference information
from the decision maker (DM). It may be much simpler to
compare different solutions. ==> Interactive Approaches.



Extraction of Preference Information

21000 T T Preference Extraction
. | (1) Relatively Easy Case
20000 S 1 = Number of Objectives: Two
MR { - Pareto Front: Known

. - The DM knows the problem

: 1 (2) Very Difficult Case
180001 pooeo frone Y { = Number of Objectives: Many

@ Reference solution | =-Pareto Front: Unknown

O Obtained solution ‘, | - The DM does not know the

18000 19000 20000 21000 problem very well.
f1: Maximize

Example: Flight Tickets (Cost, # of Stops, Total Time)

Case 1: You are planning to buy a ticket to your home town.
Case 2: You are planning to buy a ticket to Easter Island.

I
Y4
l

19000

f>: Maximize

17000



Another Hot Issue:

Evoluf Manv-Obiective Optimizati

Why are many-objective problems difficult?

1. Many Objectives: Difficulty in Multiobjective Search

Selection pressure toward the Pareto front becomes very
weak since almost all solutions are non-dominated.

2. Many Solutions: Difficulty in Approximation
A large number of non-dominated solutions are needed to
approximate the entire Pareto front.

3. Many Solutions with Many Objectives: Presentation

It is very difficult to present a large number of obtained
solutions in the high-dimensional object space to the
decision maker in a visually understandable manner.



Difficulties in Many-Objective Optimization

Q. Why are many-objective problems hard for EMO ?

A. Solutions with many objectives are usually non-dominated
with each other. This means very low selection pressure
toward the Pareto front in Pareto dominance-based EMO.

Five-Objective Maximization Example (Non-dominated Vectors)

N Ji N

Js f Is f fs 2

Ja /3

f4 Looks good f3 Not bad f4 Looks poor f3



Difficulties in Many-Objective Optimization

Percentage of Non-Dominated Vectors

We randomly generate vectors in a k-dimensional space.

p—
S
S

Percentage of Non-Dominated Vectors (%)
N
O

Percentage of Non-Dominated Vectors (%)
AN
)

—_—
S
()

o0
S
0.8
()

DN
e}
o)
S

[\
()
[\
S

-}
e}

2 4 6 8 10 12 14 16 18 20
Number of Objectives (k)

2 4 6 8 10 12 14 16 18 20
Number of Objectives (k)

(1) Among 200 vectors. (2) Among 2,000 vectors



Experimental Results of NSGA-II

Standard Implementation of NSGA-II
Generation Update: (100 + 100) ES

Current Population: 100 Individuals
Offspring Population: 100 Individuals

Next Population: The best 100 individuals from the current
population and the offspring population.

Fithess Evaluation: 1ist Criterion: Pareto Dominance
2nd Criterion: Crowding Distance

Test Problems
k-objective 500-item knapsack problems (£-500 problem)
k=2,4,6,8,10



Number of Non-Domlnated Solutlons

----- 2-500 —— 4-500 —— 6-500 m— 8-500 === 10-500

10-500:
10-objective
500-item problem

\®)
S
S

150

100

()]
S
p
@
X
F
@
a
R
Q)
=
c

1 10 100 1000 10000 100000
Number of Generations

All individuals are non-dominated solutions after a few generations
(10-500 problem) and after about 200 generations (2-500 problem).

Number of Non-Dominated Solutions



Very Simple Measure of Convergence

The sum of the given objectives: g(x) = f{(X) + f,(X)

T T
® 2000th generation
2 21000 |- o ggtﬂ generation |
> _ ¢ 20th generation
QS
N
Lo ] MaxSum
g 19000 |- g(X)_ B ax {g(X)}
3
L.g Pareto
£ 18000 front
s [Bg
= 17000 L
“Q ;
16000 ' :

[ I [ I [ [ [ I [
16000 17000 18000 19000 20000
f,: Total profit from knapsack 1



Very Simple Measure of Diversit

Range Measure

| | |
20000 —
S
£ toou Range=A+B
S
&.;.ﬂ
18000 —
—~ — — - Pareto front \\\
O Obtained solution \‘
\
| 1 | 1 |
17000 18000 19000 20000

f: Maximize



Experimental Results of NSGA-II

----- 2-500 —— 4-500 =—— 6-500 m——8-500 mm—— 10-500 ----.2-500 —— 4-500 =— 6-500 =—— 8-500 =—— 10-500
130 T T T T T T T T T 250 T T T T T T y T
g gozoo
) =
< <
< a7
2 = 150
Q
g g
;c_uN; g 100
£ S
£ Z 50
1 I IIO I l(I)O l 10I00 . 10(;00 l 100000 01 . 12) l l(I)O l IOIOO l IO(I)OO I 100000
Number of Generations Number of Generations
MaxSum: Convergence Range: Diversity of solutions

Observation: Only the convergence was improved in the early
generations. After that, only the diversity was improved.



roximation of the Pareto Front

Q:How many non-dominated solutions are needed to
approximate the entire Pareto-front of the k-objective

problem? (k=2, 3, 4,..)

A: Huge when £k is large (It exponentially increases with k)

19000

18000

17000

)
| - ---Pareto front O

O (Obtained solution &, '

I‘

TOI000 19000 20000

k=2

DTLZ2




Approximation with Finite Solutions

Two Strategies for Many-Objective Problems

(1) Sparse approximation of the entire Pareto front.

(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in the
case of many objectives.

200001

19000

18000f

|~~~ - Pareto front _
0 Obtained solution \

I‘

17000

(1) Sparse Approximation

18000

19000 20000

19000

18000
| —— -~ Pareto front

0 Obtained solution Y

)

17000

1800

19000 20000

(2) Dense Approximation



Approximation with Finite Solutions

Two Strategies for Many-Objective Problems

(1) Sparse approximation of the entire Pareto front.

(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in the
case of many objectives. orizz

0.6

0.8

11
fa

(1) Sparse Approximafion (2) Dense Approximation



Handling of Obtained Solutions

Difficulty: How to show a large number of non-dominated solutions.
N N N N N
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©
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Another Hot Issue: Hybridization

Multiobjective Memetic Algorithm (MOMA]

Powerful Approach to Single-Objective Optimization: MA

Evolutionary| Local — Memetic
algorithm search algorithm
LY I .I-I-inl-\ian-l-iu Mamatisr Alan -I-h - ANAON A
IVIUIVIVNV]IGWVLIVY TVIV II i Mmi 3 iLiil II- IVINVIVIM

Multiobjective Multiobjective | _ Multlobje_ctlve
— memetic

evolutionary | +
. local search .
algorithm algorithm



Design of MA and MOMA

One important implementation issue:

Specification of the balance between evolutionary
search and local search (or its dynamic adaptation).

Ishibuchi H, Yoshida T, Murata T (2003) Balance between
genetic search and local search in memetic algorithms for
multiobjective permutation flowshop scheduling. IEEE Trans.
on Evolutionary Computation.

Evolutionary
search

Local search




New Trend in EMO Algorithm Design

-IBEA: Indicator-Based Evolutionary Algorithm

Basic Idea
To maximize a performance indicator of a solution set
(not a solution): Hypervolume is often used.

Maximize f,

Maximize f,



New Trend in EMO Algorithm Design

IBEA: Indicator-Based Evolutionary Algorithm
Maximize I(.S) (Maximization of an Indicator Function)

subject to ‘S‘ <N whereS§ C {x‘xe X}

S': A set of solutions

N A pre-specified number
of required solutions

Maximize f,

X : A feasible region

Maximize f,



New Trend in EMO Algorithm Design

-MOEA/D: Use of Scalarizing Functions

MOEA/D: Multi-objective evolutionary algorithm based on
decomposition by Zhang and Li (IEEE TEC 2007)

Its Basic ldea (Decomposition): A multi-objective problem
is handled as a set of scalarizing function optimization

problems with different weight vectors.

; Weight vector

V4
l, _->*

-

l, _
s >0—>

(a) Two-objective case (b) Three-objective case



New Trend in EMO Algorithm Design

Initialization
Scalarizing fitness
A Parent selection ( function
Genetlc operatlon

PS
— ‘Generation update ‘ NSGA-II fitness

evaluatlon mechanism

End

Probability for scalarizing fitness functions:
Parent selection: P, Generation update: P

Ishibuchi et al. (PPSN 2006)



New Trend in EMO Algorithm Design

-Use of Other Meta-Heuristics (PSSO, ACO, etc.)

Highly Cited Papers

[1] Coello CAC, Pulido GT, Lechuga MS (2004) Handling Multiple
Objectives with Particle Swarm Optimization, IEEE TEC

[2] McMullen PR (2001) An Ant Colony Optimization Approach to
Addressing a JIT Sequencing Problem with Multiple
Objectives, Artificial Intelligence in Engineering

[3] Ray T, Liew KM (2002) A Swarm Metaphor for Multiobjective
Design Optimization, Engineering Optimization

[4] Li XD (2003) A Non-Dominated Sorting Particle Swarm
Optimizer for Multiobjective Optimization, GECCO 2003.

[5] Ho SL et al. (2005) A Particle Swarm Optimization-Based
Method for Multiobjective Design Optimizations, IEEE Trans.
on Magnetics




For More Information

£ EMOO Home Page — Windows Internet Explorer
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Complete List of References
in alphabetical order P

http://www.lania.mx/~ccoello/ EMOOQO/




For More Information

< ETH — SOP — PISA — Windows Internet Explorer =)
@Qv |’°"‘ http. /S wwan tik ee ethz.ch/sop/pisa V||*}";<| |’§ Live Search ||EE
D THMKE REE FTO BRECADE Y-llm AT

E‘m ETH - SOP - PISA ‘7|

SYSTEMS OPTIMIZATION

ETH Zuarich - D-ITET - TIK - SOP - PISA

o

PISA
M P1isa

H- Principles and
Documentation

‘@, PISA for Beginners A Platform and Programming Language

Independent Interface for Search
Algorithms

http://www.tik.ee.ethz. ch/sop/plsa/
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Main Motivations for MoGFSs
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Accuracy maximization Overfitting
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Multiobjective Design of Fuzzy Systems

Many non-dominated fuzzy systems can be obtained along
the tradeoff surface by a single run of an EMO algorithm.

Error

’~ Training data

>

0 S*  Complexity



Main Motivations for MoGFSs
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Current Trend in Fuzzy System Design
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Direction of Fuzzy System Research

~Multiobjective Fuzzy System Design (Late 1990s =)

Interpretable

Accurate
e fuzzy system

Small €—— Error ——> Large

Simple €—— Complexity ——> Complicated



Multiobjective Design of Fuzzy Systems

Use of EMO algorithms to search for a number
of non-dominated fuzzy systems

Interpretable
fuzzy system /

IIIIII

Accurate
----- fuzzy system
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Small €—— Error —> Large

Simple €—— Complexity ——> Complicated



Multiobjective Genetic Fuzzy Systems

H. Ishibuchi, T. Nakashima, M. Hii.
Classification and Modelling with Linguistic
s | Information Granules. Advanced Approaches
clasition and to Linguistic Data Mining.
Modelling with Springer-Verlag, 2004.

Linguistic Information
Granules
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Jin, Yaochu (Ed.)
Multi-Objective Machine Learning
Springer-Verlag, 2006

Literature (http://www.keel.es)
Multiobjective Genetic Algorithms and Rule L.earning

http://sci2s.ugr.es/keel/specific.php?area=44




Highly Cited MoGFS Papers

[1] Ishibuchi et al. (1997) Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern
classification problems. Fuzzy Sets & Systems.

[2] Ishibuchi et al. (2001) Three-objective genetics-based machine
learning for linguistic rule extraction. Information Sciences.

[3] Ishibuchi & Yamamoto (2004) Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy Sets & Systems.

[4] Wang et al. (2005) Multi-objective hierarchical genetic algorithm

for interpretable fuzzy rule-based knowledge extraction. Fuzzy
Sets & Systems.

[5] Johansen & Babuska (2003) Multiobjective identification of
Takagi-Sugeno fuzzy models. IEEE TFS.



Different Models of Multiobjective GFSs

Sibli | n gy

A-T trade-off FRBS approach Objectives MOEA ® MOSt Of them arc based
Authors Year Rules Type #0bj. Type Name Gen. Type Problem type
Ishibuchi et al. 1997,1998  Mam. LING. 2 A4C NoN. 1st N CLAs. on 2nd gen' MOEAS
w | Ishibuchi et al. 2001 Man. LinNG. 3 A4+CHC GEML 1st N CLAS.
Z | Ishibuchi et al. 2004 Man. LING. 3 A4+CH+C MOGLS 1st N CLAS.
Z °
Z | Setzkorn et al. 2005 Mam. LING. 3 A+CHC NON. md  Ie  ClLas. Usually no more than 3
: Ishibuchi et al. 2006 ManM. LING. 2 A4+C NSGA-II Ind G CLAS. b .
= | Ishibuchi et al. 2007 Mam. LING. 3 AtCHC GBML 2nd 1t CLas. objectives
= | Cococcioni et al. 2007 ManM. LiNG. 2 A+C (242)M-PAES  2nd 1+ REG
Xing et al. 2007 TSK LInG. = 2 A+C PMOCCA Ind N REG., Ts. c
Ducange et al. 2010 Man. LiNG. 3 A+A+C NSG AL ond G IME. CLAS. . Complexf[y at the
— | Wang et al. 2005 TSK LiNa. « 5 A+CH+CH5+5  MOHGA Ist Io REa. . . .
T | Alcald et al. 2007 MAM. LING. 2 A+C SPEA2acco nd Te REG. beg]nnlng’ Semantlc
= | Gonzalez et al. 2007 TSK APPROX. 2 A4C NoN. 2nd 1% REG. .
% | Gomez et al. 2007 TSK APPROX. 1 A+C+C+S MONEA nd N REG. aspects in the last years
e Fulkkinen et al. 2008 MaAM. LING. 3 A+C+C MNEGA-TI 2nd G CLAS.
2 | Pulkkinen et al. 2008 MaAM. LInG. 3 A4+A4S NSGA-TI Ind G CLAS.
| Guenounou et al. 2009 TSK LinNG. = 2 A+C NSCA-II 2nd G REG. )
» | Gacto et al. 2009 Man. LiNG. 2 A+C VARIOUS 2Znd G REG. MOSt Of them are
Z | Botta et al. 2009 Mam. LiNa. 2 A4S NSCA-II 2nd G REG. : : . g
; Marquez et al. 2009 Manm. LiNG. 2 A+C VARIOUS Znd  Iis REG. LlngU.lSth and Mamdanl
- Marquez et al. 2010 Man. LING. 3 A4CH5 NoN. 2nd 1% REG.
4]
£ | Giacto et al. W00 Mav L, 3 aicis SPEAZSI  ad 1e  Ruo type based approaches
Corddn et al. 2003 Man. LING. 2 A+C NoN. 1st N CLAS.
| Alcald et al. 2009 Man. LING. 2 A+C (24+2)M-PAES  2nd 1« REG . .
Z | Antonelli et al. 2009 Man. LIxG. 2 A+C (2+2)M-PAES 2nd 1+  REc * KB leamlng in the last
g_ Antonelli et al. 2009 Man. LING. 2 A+C (242)M-PAES  2nd I+ REG . .
£ | Casillas et al. 2009 DNF-RULES  LING. 2 A+C NoN. 2nd 1% REG ycears (granularity as im-
@ Fulkkinen et al. 2010 MaAM. LING. 2 A4+C NoN. 2nd I+ REG.
< | Aleal et al. 2010 Mam. LING. 3 A+C+C NSGA-II 2nd g CLas. portant factor)
Antonelli et al. 2011 MaAM. LING. 3 A4+CH+8 (242)M-PAES 2nd I+ REc
Antonelli et al. 2011 MAM. LinaG. 2 A+(C4+S) (242)M-PAES  2nd I REG.
Alcald et al. 2011 Maw. LING. 2 AtC NON. md 1i  REG. * Most of them are
Mam. = Mamdani, TSK = Takagi-Sugeno-Kang, LivG. = Linguistic, APPROX. = Approximate, »In the antecedent; . il . fth
A = Accuracy, C = Complexity, 5 = Semantic aspects; mproved versions o C
NoN. = No name, N = New algorithm, I = Improved version, G = General use; most known MOEAS
CLas. = Classification, REG. = Regression, TS. = Time Series, IMB. = Imbalanced;
tNSGA-II based, «PAES based, cMOGA based, «SPEA2 based. (particularly in the case of

KB learning)

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the
application of Multi-Objective Genetic Fuzzy Systems: current status and further directions, in submission, 2011.



Different Models of Multio

bjective GFSs

A-I trade-off FRBS approach Objectives MOEA

Authors Year Rules Type #0Obj. Type Name Gen.  Type Problem type
Ishibuchi et al. 1997,1998  Mam. LinG. 2 A+C NoN. 1st N CLAS.

Z

£ | Setzkorn et al. 200% NoN. nd 1 )

i | Ishibuchi et al. 2006 Mam. LG, NECA-II 2nd G CLAS.

;: Ishibuchi et al. 2007 Mam. LG, GBML 2nd I+ CLAS.

= | Cococecioni et al. 2007 Mam. LG, (242)M-PAES 2nd I+ REG.
Xing et al. 2007 PMOCCA 2nd N REG..Ts.
Ducange et al. 2010 NSGA-II Znd G ImB. CLas.
Wang et al 2007 1s 1 RE

Gonzalez et al. APPROX. A4+C NoN.
Gomez et al. 2007 TSK APPROX. A4+CHCH+S MONEA
Pulkkinen et al. 2008 Mam. LING. A+CHC NSGA-II
FPulkkinen et al. Ling. A+A+S

Ling

E

et
Botta et al.

NSCATT

DB TUNING { +RULE SELECT.)
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2nd (&
2nd G
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MAanmM. LinG. I dnd G REG
Marquez et al. 2009 Mam. LixG. A4C VARIOUS Ind I ie REG.
Marquez et al. 2010 Mam. LING. A+CHS NoN. 2Znd I+ REG.
Gacto et al. 2010 Mam. LinG. A+CHS SPEAZ2-5I1 Ind = REG.
50 ef : 2003 M Ling A+C NOoN 1st M CLAS
w || Aleals et al MAM. : {2+0)A PAES I e
:-—' ntonelll et al. Mam. JANG. A4 {242 ) M-PAR-S I * EG.
9;‘ Antonelli et al. 2009 Manm. Ling. 2 A4+C (24+2)M-PAES 2nd I+ R
& | Casillas et al. 2009 DNF-rULES LING. 2 A4C NoN. Ind 17 7. 41 i 0 =77 9 j
= | Pulkdcinen et al. 2010 Man. LIvG. 2 A+C NoN. a1+ 10 the tollowing we will see 1n deep a
= | Alcald et al. 2010 Mam. LING. 3 A+CHC NSGA-II 2Znd g 8 o
Antonelli et al. 2011 Mam. LinG. 3 A+CHS (24-2)M-PAES 2nd I« representatlve example fOI' eaCh type
Antonelli et al. 2011 Manm. Linag. 2 A4{C+5) (24-2)M-PAES 2nd I+
Alcala et al. i . 2011 Z\I.:\:\[. LING. 2 i _J\+1..' i NoN. i md 1t g FIRST TYPE RB Leamlng
MaMm. = Mamdani, TSK = Takagi-Sugeno-Kang, LING. = Linguistic, APPROX. = Approximate, =I1

A = Accuracy, C = Complexity, S = Semantic aspects;

NoN. = No name, N = New algorithm, I = Improved version, G = General use;
Cras. = Classification, REG. = Regression, Ts. = Time Series, IMB. = Imbalanced;
iNSGA-II based, «PAES based, c MOGA based, « SPEA2 based.

o SECOND TYPE: DB Tuning + Rule Select.

o THIRD TYPE: KB Learning

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the
application of Multi-Objective Genetic Fuzzy Systems: current status and further directions, in submission, 2011.



Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

FIRST TYPE: RULE BASE LEARNING - CLASSIFICATION

H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic
local search algorithms and rule evaluation measures in data mining, Fuzzy
Sets and Systems, Vol. 141, pp. 59-88 (2004)



Different Models of Multiobjective GFSs

- MODEL 1: Multiobjective Rule Selection
Two-Stage Approach

1. Heuristic Rule Extraction

A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

2.  Multiobjective Genetic Fuzzy Rule Selection

A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization).

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures 1n data mining,” Fuzzy Sets and Systems, Vol. 141,

pp. 59-88 (2004).




Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Fuzzy Rules for n-dimensional Problems

I[fx,1s4,and ... and x, 1s 4,
then Class C with CF

A : Antecedent fuzzy set

l

Class C: Consequent class
CF . Rule weight (Certainty factor)



Different Models of Multiobjective GFSs

Antecedent Fuzzy Sets (Multiple Partitions)

l.OA\ /I I.OT\
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0.0
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A
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0.0 1.0
st X mst T ML XL

0.0 0.0 >

1.0 0.0

1.0

0.0
Usually we do not know an appropriate fuzzy partition for each input

variable.



Different Models of Multiobjective GFSs

- MODEL 1: Multiobjective Rule Selection

Possible Fuzzy Rules

Total number of possible fuzzy rules

><] >
D] XX . x
@ @ (14+1)x - x(14+1)=(15)

Don 't care Don 't care

n




Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Examined Fuzzy Rules

They only examine short fuzzy rules with only a
few antecedent conditions.

If x; 1s small and x4 1S large
then Class 1 with 0.58



Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Consequent Class

The consequent class of each fuzzy rule 1s determined by compatible
training patterns (1.e., the dominant class in the corresponding fuzzy
subspace).

@ (Class 1
o (Class 2

If x, 1s small and x, 1s large
d X, then Class 1 with 1.0




Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Rule Weight (Certainty Factor)

The rule weight CF of each fuzzy rule 1s calculated from compatible

training patterns. o Class 1 ®© (Class 1
o Class 2 © Class 2

\/

% CF=1.0

A (Maximum)




Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Heuristic Rule Extraction

They extract a pre-specified number of the best fuzzy rules with
respect to a pre-specified heuristic rule evaluation criterion.

N If - - - then Class 1
Class 1 If - - - then Class 1

Numerical Class 2 X If - - - then Class 2
data If - - - then Class 2

Class 3 _ |- - - then Class 3
If - - - then Class 3




Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Heuristic Rule Extraction

Possible fuzzy rules: (15)" rules

Restriction on the rule length
1 Only short fuzzy rules

Rule evaluation criterion:
The best rules for each class




Different Models of Multiobjective GFSs

- MODEL 1: Multiobjective Rule Selection
Two-Stage Approach

1. Heuristic Rule Extraction

A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

2.  Multiobjective Genetic Fuzzy Rule Selection

A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization).

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures 1n data mining,” Fuzzy Sets and Systems, Vol. 141,

pp. 59-88 (2004).




Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Implementation of Multiobjective approach

Coding: § = S18, Sy
N: Total number of candidate rules

s~10, 1}: Inclusion or exclusion of the j-th rule

Objectives: f1(S), f»(S), f3(5)
/£,(S) : Number of correctly classified patterns by §

£(S) : Number of selected rules in S

/£5(S) : Total number of antecedent conditions in S



Different Models of Multiobjective GFSs

~ MODEL 1: Multiobjective Rule Selection

Comparison of Four Approaches

(1) Two-objective approach
Maximize f,(S) and minimize f,(S)

(2) Weighted sum of the two objectives
Max1mlzq4;1 f1(S) —W, fz(S)

(3) Three-objective approach
Maximize f,(S) and minimize f£,(S), f5(S)

(4) Weighted sum of the three objectives
Maxim:
aximize w - f(S)=w, - £,(S)—w; - £5(S)
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Data Sets
Data set Attributes Patterns Classes Length
Breast W 9 683~ 2 3
Diabetes 8 768 2 3
Glass 9 214 6 3
Heart C 13 297+ 5 3
Iris 4 150 3 3
Sonar 60 208 2 2
Wine 13 178 3 3
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Experimental Results (Cleveland Heart)

O Three-objective rule selection O Three-objective rule selection
® Two-objective rule selection ® Two-objective rule selection
:\o\ ................... S A - A
\; 408 - & 50r O -
= |
% 38 - % ‘ QE) 49 | -
Q i i B
27 @ I o 3 .. ]
E 34t J 2 9808000 ° ®
g [ | ; 4/008O O Oe ...—
S 32t @8 - P o OO
O i T S
s 30F 8®® - = 400 6000 ]
o) i ‘e, 1 2 O
o - .
SR el Yo
6 8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22
Number of fuzzy rules Number of fuzzy rules
(a) Error rates on training data (b) Error rates on test data

We can observe the overfitting due to the increase in the number of fuzzy rules.
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Experimental Results (Sonar)
O Three-objective rule selection O Three-objective rule selection

® Two-objective rule selection ® Two-objective rule selection

22 -
20 __O —-
18 F - 26 7

16
24+

O«

Error rate on training patterns (%)
R O 4
Error rate on test patterns (%)

O®

14 F O
12+ 8 8 -
o} ®
- . . . . D . 201 . . . . . ® -
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of fuzzy rules Number of fuzzy rules
(a) Error rates on training data (b) Error rates on test data

The generalization ability is increased by increasing the number of fuzzy rules (i.e.,
the overfitting is not observed).

22 .
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Experimental Results (Diabetes)

O Three-objective rule selection O Three-objective rule selection
® Two-objective rule selection ® Two-objective rule selection
S -
> 26f o - 28t -
5 1 : o
S 25+0 . 8 27F -
2 = 18 ©
= = L
-g 24 - 8 O - § 26 - ® Q o o i
bl
= T % - s |8 © 0
S 23t . 2 25t -
g7 0 | &
5 ® 2
2 22 e . o 24r O .
2 3 4 5 6 71 8 2 3 4 5 6 71 8
Number of fuzzy rules Number of fuzzy rules
(a) Error rates on training data (b) Error rates on test data

The effect of the increase in the number of fuzzy rules is not clear.
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Experimental Results (Diabetes)

A training O :test A :training O :test
28 v v ) 28 v ) T
27F - 27 F -

_ 6L O\(X)/O i P 26 F -

X ! ] St ]

8 25F - L 25F -

—

S 24} - S 2} -
23} - 3} *&&A i
22F - 22F -

0 1 2 3 4 0 1 2 3 4
Average rule length Average rule length
(a) Rule sets with two rules (b) Rule sets with four rules

We can observe the overfitting due to the increase in the rule length in the right
figure for rule sets with four fuzzy rules.
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Observation
(1) Experimental results showed that each test problem has a different
tradeoff structure.

(2) Knowledge on the tradeoff structure 1s useful in the design of fuzzy

rule-based classification systems.

Error Error

by
.........I

Training Data Training Data

Complexity Complexity
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SECOND TYPE: DATA BASE TUNING (+ RULE SELECT.) - REGRESSION

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic

algorithm for tuning and rule selection to obtain accurate and compact
linguistic fuzzy rule-based systems, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 15:5 (2007) 539-557

M.J. Gacto, R. Alcala, F. Herrera, Adaptation and Application of Multi-
Objective Evolutionary Algorithms for Rule Reduction and Parameter
Tuning of Fuzzy Rule-Based Systems. Soft Computing 13:5 (2009) 419-436
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R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm fo
tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based

systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
15:5(2007) 539-557,

Multi-objective EAs are powerful tools to generate GFSs but they

are based on getting a large, well distributed and spread off,
Pareto set of solutions

— The two criteria to optimize in GFSs are accuracy and
interpretability. The former is more important than the latter,
so many solutions in the Pareto set are not useful

— Solution: Inject knowledge through the MOEA run to bias the
algorithm to generate the desired Pareto front part
145
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Pareto front classification in an interpretability-accuracy GFSs:

n : solutions with bad
0 | | | performance rules. Removing them
I | I improves the accuracy, so no Pareto
— I | solutions are located here
[ | {*? . :
| T n : solutions with
x | | irrelevant rules. Removing them does
EE: I I not affect the accuracy and improves
Weo | |Complement the interpretability
+ Rules | |Rules | _
| Redundant | |Impn nt " : : - solutions
| Rules | | Rules with ne_lther bad nor irrelevant rules.
| | Removing them slightly decreases the
| | | accuracy
+ RULES - 0
— Desired pareto zone u : solutions with
== Optimal pareto frontier essential rules. Removing them

significantly decreases the accuraéy
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Accuracy-oriented modifications performed:

, keeping the individual with the highest accuracy
as the only one in the external population and
generating all the new individuals with the same
number of rules it has

— In each MOGA step,

, focusing the selection on the
higher accuracy individuals

147
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Obtained results for the medium voltage line problem:
Multi-objective genetic tuning + rule selection method:

B'Iethﬂd #R— I\"-_[SEh-G Tira t-test I\F'ISEtSt Tg ot t-test

WM G5 HT605 2841 + 57934 4733 +
WHM4T 65 18602 1211 + 22666 3386 +
Wh+5 10.8 41056 1322 + 59042 4931 +
WM+TS 11.9 14957 391 + 18073 3772 +
NSGAII 11.0 14455 965 + 18419 3054 +
NSGAIlsce 481 16321 1636 + 20423 3138 +
SPEA2 33 12272 1265 + L7538 3226 +
SPEAZ24cc 3.5 11081) 1186 * 14161 2191 *

5-fold cross validation x 6 runs = 30 runs per algorithm

T-student test with 95% confidence 148
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M.J. Gacto, R. Alcala, F. Herrera,

STUDY ON SEVERAL ALTERNATIVE APPROACHES AND IMPROVEMENTS:
ADAPTATION AND APPLICATION OF MOEAs

Adaptation and Application of Multi-Objective Evolutionary Algorithms for Rule Reduction and
Parameter Tuning of Fuzzy Rule-Based Systems, Soft Computing 13:5 (2009) 419-436,

To perform the study we have applied six different approaches
based on the two most known and successful MOEAs:

m Application of SPEA2 and NSGA-1I1
m Two versions of NSGA-II for finding knees,

NSGA-II, and NSGA-11,
m Two extensions for specific application,
SPEA2, and SPEA2,_ .,

Two objectives are considered:
MSE and Number of Rules

Proper operators have to be selected.

Method Description
WM Wang & Mendel algorithm
T Tuning of Parameters
S Rule Selection
TS Tuning & Selection
A pplication of standard MOEAs for general use
TS-SPEA2 Tuning & Selection by SPEA2
TS-NSGA-IT Tuning & Selection by NSGA-II

TS-NSGA-IT4 Tuning & Selection by NSGA-Tlap g1
TS-NSGA-IT;; Tuning & Selection by NSGA-IL, 564

Extended MOEAs for specific application
TS-SPEA2 4. Accuracy-Oriented SPEA?2
TS-SPEA2, .- Extension of SPEA2 4.~
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NSGA-II FOR FINDING KNEES

J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding Knees in Multi-objective
Optimization,” Proc. Parallel Problem Solving from Nature Conf. - PPSN VIII, LNCS 3242,
(Birmingham, UK, 2004) 722-731.

A variation of NSGAII in order to find knees in the Pareto
front by replacing the crowding measure by either an angle-
based measure or an utility-based measure

Angle Based g ! ; |

Two different | APProach K | g
approaches : - 1
PP Utility Based | - : —
Approach ; 1 :

01 2 3 4 5 8 T B 8 0 1 2 3 4 5 6 7 8

In our case, a knee could represent the best compromise
between accuracy and number of rules.
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A New Crossover Operator for the Rule Part

Objective: to improve the search with a more intelligent
operator replacing the HUX crossover in SPEA2,.

Once BLX is applied a normalized euclidean distance is
calculated between the centric point of the MFs used by each
rule of the offpring and each parent

The closer parent determines if this rule is selected or not for
this offpring

Whit this crossover operator, mutation can be particularly used
to remove rules
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Obtained results for the medium voltage line problem:

Method #R MSE,, Otra t MSE. Otet t
100,000 evaluations

WM 65.0 57605 2841 + 57934 4733 +
T 65.0 17020 1893 + 21027 4225 +
S 40.9 41158 1167 + 42988 4441 +
TS 41.3 13387 1153 + 17784 3344 +
TS-SPEA2 28.9 11630 1283 + 15387 3108 +
TS-NSGA-II 314 11826 1354 + 16047 4070 +
TS-NSGA-IT, 29.7 11798 1615 + 16156 4091 +
TS-NSGA-II 30.7 11954 1768 + 15879 4866 +
TS-SPEA2, . 32.3 10714 1392 = 14252 3181 =
TS-SPEA2, ., 29.8 10325 1121 * 13935 2759 *

5-fold cross validation x 6 runs = 30 runs per algorithm
T-student test with 95% confidence
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Comparison of the SPEA2acc? and classical GA
for for the medium voltage line problem:

SPEA2A.:¢2 (and WM+TS ) Evaluations

5000

ﬁ(ﬂ)qz% (0100000
" 15000 O 50000
25000 A 30000
E O <@ 20000
L 35000 @ 15000
45000 W 10000
+ 55000 A 750
& 5000

65000 T T T T
65 55 45 35 25 15 |©__3000

+ Rules

153
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THIRD TYPE: KNOLEDGE BASE LEARNING - REGRESSION

R. Alcalda, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-

Objective Evolutionary Approach to Concurrently Learn Rule and Data
Bases of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy

ANNN AN 4

Systems 17:5 (2009) 1106-1122, doi:10.1109/TFUZZ.2009.2023113
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R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases
of Linguistic Fuzzy Rule-Based Systems 17:5 (2009) 1106-1122, IEEE
Transactions on Fuzzy Systems, doi:10.1109/TFUZZ.2009.202311 3,

Rule bases and parameters of the membership functions of the
associated linguistic labels are learnt concurrently.

Accuracy and interpretability are measured in terms of
approximation error (MSE) and rule base complexity
(#Conditions), respectively.

To manage the size of the search space, the linguistic 2-tuple
representation model, which allows the symbolic translation of a
label by only considering one parameter, has been exploited
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a} Simbolic Translation of a label b} Lateral Displacement of a Memberghip function

This proposal decreases the tuning complexity, since the 3 parameters
per label of the classical tuning are reduced to only 1 translation
parameter ( )
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Coding Scheme and Operators

A double coding scheme (C = Cgg+ C,g)

| M
R R ‘Pl PF+I
A A A A
¢ N s N Y e ™
.1 [ | M MM
Jl'l . Jlf' JII.F-H - Jl'l . Jl,‘- J'F-I-l. HLI - HL?-I . Hf+|,l - H..IL‘-H,TJ.-_'_'
- Ao -

C pp (integer coding) C,,p, (real coding)

Crossover operator: one point + BLX-o crossovers (2 offsprings)

Mutation operators:

It adds y random rules to the RB, where y is
randomly chosen in [1, y,.., ]
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Operators and Selection Schemes

It randomly changes & elements of the RB
part. The number & is randomly generated in [1, 5., ]

It changes a gene value at

random in the DB part (P1, Pzl = ®selection(archive/population};
12 (rand{} < Pesses) ‘
[81, ®2] = CDOESCVEX (Pa Pl
Pugg = ©.01;
else
=1 = Faf
By = Far
Pupp = 1;
/4 and endif
= = = Leop 1=1,2
were applied using this it (xand(} < Pug)
= if (pand <Pigas)
representation and 5 = add rule();
else
crossover gy = nodlfy rule kase();
endif
endif
if (rand(} < Fmg!
8, = mutate DBE);
endif
endLoop
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Analysed Methods

Method Description Pop. size

SOGA 5 Rule Base learning with SOGA 64
NSGA-II 45 Rule Base learning with NSGA-II 64

PAES 45 Rule Base learning with PAES 64

SOGA,z (Rule Base + Data Base) learning with SOGA 64
NSGA-II,, (Rule Base + Data Base) learning with NSGA-II 64

PAES (Rule Base + Data Base) learning with PAES 64

Different population sizes were probed for these MOEAs showing
better results when the population used for parent selection has similar
sizes than those considered by single objective oriented algorithms.

300,000 evaluations to allow complete convergence in all the
algorithms
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Average Pareto Fronts and average solution by SOGA
(medium voltage lines problem)
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IS0 w | 20%p " - A total of 30 Runs
I_' R x Test t-student a = 0.05
L - 22500 ok
X 0 X
S AaE
* 0 O

womp Ty, W0 f "-':.g";"-l:m e o Most accurate
w o "Xy L T Op, H"'++|+|_ | = solution is selected
@ 1rs0) O +| REKx ¥ 17500} PO
= Yo o WW_H:“ = “Oagoq ,j"‘ from each Pareto

e Q0 - ey 00
! B Qo og I_h 15000 Yiuge, Average values are
- tel D00 oap - e, L, computed and
5 ¥ oa LA o ”
e, represented
:ua
WS e ar_ o9 oy 80 &5 7o | "N @ 40 45w B 80 @5 70 These solutions are
Complaxity Complaxity no more used

st ey OO0 -

’ N . L% Repeat to extract

5| vl “x the desired avarage

. * By xy, Pareto

mm} * % | +t ot Mo
| By, C o™ ol OO R
wla ;l;_ ol £y
W 17E | ++ R oxom W 17500 | e I +++ H
= 5 6 +_H"|'+—|-.|-..|._|_ = %2 55 o & o +* Only the first 20

wwof 9000 5 ) I SO - solutions are

* - r s
T = '\—'| U :I * e TR -
125} e L, o0 1250} Treee L. considered
+ & P ..
W3 & o 5 & 7 o m n| "Wy E e E S a BB W
sumber of Huljes sumbar of Hulns




Different Models of Multiobjective GFSs

- MODEL 3: Multiobjective Learning of DBand RB

Statistical Analysis

Statistical comparison among MOEAs

Using the Pareto most accurate solution Using the Pareto median solution Using the Pamto simplest solution
(FirsT) (MEDIA N} (LAST)
f'l-i‘thl}ﬂ # H.."C [':”-ﬂ g I-I. Efﬁl iTgag I—I. # H.."C [':“-ﬂ T I-I. ]":.:51 g ag t-l # HJ'C E"-n_ Tipn I.-t E!ﬁf Taps I.-t

NSGA-llgg | a4 17116 4283 + 19834 4096  + | 25/48 1BB53 4672 + 21533 5149 + | 1830 23649 5832 + 26660 6342 +
PAESpp el 15454 3882 + 17135 4234 + | 2W51 1637E 4112 + 1B472 4740 + | 2M3E 18352 4631 + 20238 5419 +
NSGA-llg e | 2967 13137 3378 + 15587 4806  + | 2346 15073 4126 + 17581 5853 + [ 1729 21629 12156 + 25716 14722 +
PAESk Mves 11044 2771 ¢ 12607 3106 ¢ [ 2550 12133 3380 * 13622 3353 v | 20/35 14297 4449 ¢ 15951 4405 ¢

Statistical comparison of the best MOEA with SOGA

:'I-’.lEﬂ'IIIId 7 R."': El-r.; Ttra t-l E:sl_ Ttat I-I.
SOGA g IWE3 24340 8450 + 2E633 11861 +
SOGAK B IWEE 16302 3136 < 19112 6273 o

PAES i g (FIRST) Mves 11044 2771 - 12607 3106 -
PAES pr pp (MEDLAN) | 25500 12133 3380 - 13s822 3353 .
PAES kg (LAsST) 235 14297 4440 =% 15951 405 -

REMINDER
5 Data partitions 80% - 20%

6 Runs per partition
F It is (-) with 91% confidence A total of 30 Runs

Test t-student a = 0.05
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Convergence
Evolution of SOGA and PAESs (FIRST) Pareto evolution of PAESks and SOGA evolution
30000 20000
| #*
28000L 1y —— PAESg(training) | - i
I — — — PAESkg (test)
2600011 11 SOGAks(training)| ¢ i
|
i |‘ SOGAs (test) | i
2000} | i |
5 aon 1\ ’ 5
- ' - {4
= i = ﬁ |
$000L [ _ % PAESkg (25000 evs,)
al S [0 PAESkg (50000 evs.) | |
16000 - . . O PAESks (100000 evs.)
L 'Eﬁ’} % PAESks (150000 evs.)| |
14000 SoaTh, T "ein S DN A | A\ PAESKs (200000 evs.)
I T e~ ] 120001 ", « PAESKg (300000 evs.)| |
1m L :::_: SDGAKB
'1 1 1 1 1 1 1'1 I 1 I 1 1 1
00005 50000 100000 150000 200000 250000 300000 ) 40 50 60 70 80 a0 100
Number of evaluations Complexity
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The models obtained by these new approaches
presented a better trade-off than those obtained by
only considering performance measures.

Between both multi-objective experimented, namely a
modified (2+2)PAES and the classical NSGA-II, the
modified (2+2)PAES has shown a better behavior than
NSGA-II.

Finally, the |linguistic 2-tuples representation
presented has shown a good positive synergy.
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Current and Future Research Directions

inMGFSs

1) Development of New MGFS Methods with Improved Algorithms
- Particular algorithms for multiobjective input selection
- Particular algorithms for multiobjective fuzzy partition learning

An example for learning granularities and selecting conditions can be found
in:

Exploiting the concept of virtual

M. Antonelli, P. Ducange, B. Lazzerini, and F. partitions with modified PAES
Marcelloni, “Learning concurrently partition

granularities and rule bases of Mamdani fuzzy systems A X " h I *
in a multi-objective evolutionary framework,” Int. J. e S N —— S —;
Approx. Reason., vol. 50, n. 7, pp. 1066—1080, 2009. ¢ G ¢

M. Antonelli, P. Ducange, B. Lazzerini, and F.
Marcelloni, “Multi-objective evolutionary learning of
granularity, membership function parameters and rules | |-

of Mamdani fuzzy systems,” Evolutionary Intelligence,
vol. 2, n. 1-2, pp. 21-37, 2009.

X; X3




Current and Future Research Directions

inMGFSs(2)

1) Development of New MGFS Methods with Improved Algorithms (2)

An example for learning granularities and for selecting variables can be found
in:

Exploiting the embedded learning
of the DB with improved SPEA?2

R. Alcala, M. J. Gacto, and F. Herrera, “A Fast and Cr=(LY....LN) Cy=(at .. .. a?)

Scalable Multi-Objective Genetic Fuzzy System for [

Linguistic Fuzzy Modeling in High-Dimensional [ Eeg j [Rule Learning

Regression Problems,” IEEE Transactions on Fuzzy oA L Adoo

System, doi: 10.1109/TFUZZ.2011.2131657, in press @]

(20]]). (DB+RB)
DB |- RB

2) Performance evaluation of MOGFSs
* Visualization of Pareto-Optimal Fuzzy Systems

 How to compare MGFSs Evaluation indexes in the EMO framework
- A statistical Analysis is needed evaluate the exploration and exploitation
- Use of non-parametric statistical tests capabilities of the MOEA. But we are also

interested in generalization capabilities of
the FRBSs



Current and Future Research Directions

inMGFSs(3)

2) Performance evaluation of MOGFSs
* How to compare MGFSs

A recent possibility to apply non-parametric statistical tests: 10

[++]

R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, and F. | Analyzing the averages on ; : ;
Marcelloni, “A Multi-objective evolutionary approach | three representative points by éd_ " & g
to concurrently learn rule and data bases of linguistic | non-parametric statistical tests

fuzzy rule-based systems,” IEEE Trans. Fuzzy. Syst., for bi-objective problems ] of B
vol. 17, n. 5, pp. 1106—1122, 2009. (FIRST, MEDIAN, LAST) 20 pues *°
x"]‘ : H x10° 2
An extension for the case of more than two " . %‘ag b
. . . ooy 085 g o0 & * J_? E'cq:

objectives: s , #ﬁgwg“““ AR g :
M. J. Gacto, R. Alcala, and F. Herrera, “Integration i :L - '%.‘ A
of an index to preserve the semantic interpretability in o = Ofai‘” ) SRS S S|

the multi-objective evolutionary rule selection and x10' : —

7 70
. . .. Q, =
tuning of linguistic fuzzy systems,” IEEE Trans. {BN T %o 60}
* '2—- o '-;_. o
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010. i “?%’%‘;@-._‘5 sop 8o
» * 0 QO B
Projecti bi-objective planes.Th tati : e Theet o b
rojections on bi-objective planes.Then, representative 1 Rl BRte B e
. . . . . ¥ % o
points can be obtained in the new non-dominated solutions 5
1 0.8 0.6 0.4 1 0.8 0.6 0.4



Current and Future Research Directions

3) Reliable Interpretability Measures (Formulations of the Interpretability)

- We need well established and accepted measures
- Use of new ones for C3 (semantic-RB) as cointension or number of fired rules

The use of relative measures for C4 (semantic-DB) could be promising. First
proposal in:

M. J. Gacto, R. Alcala, and F. Herrera, “Integration Measuring the differences to a given
of an index to preserve the semantic interpretability in linguistic partition (obtained from
the multi-objective evolutionary rule selection and experts or automatically by using
tuning of linguistic fuzzy systems,” IEEE Trans. absolute measures): GM3M index
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010. based on three metrics
<>
L » I TT ) ) 7 7 TT )
dlsplacemenl: g aspect area
/ AN SAS
& bbb ¢ e It L ¢ It a & .bb ¢ ¢ a & bbb ¢ o |
Parameters tuning Variation intervals Parameters tuning Parameters tuning

Some recent approaches are also using this kind of measures:

M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Learning knowledge bases of multi-
objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and
partition integrity, Soft Computing, DOI: 10.1007/s00500-010-0665-0, in press.




Current and Future Research Directions

inMGFSs(5)

4) Objective dimensionality

- New EMO algorithms
- Aggregation or selection of a reasonable set of significant measures

5) Scalability issues
- High Dimensinality (handling the length of the rules)
- Large scale problems (using a reduced subset of examples)

m Some approaches dealing with large scale problems:

* M.A. de Vega, J M Bardallo, F.A. Marquez, A. Peregrin, “Parallel distributed two-level
evolutionary multiobjective methodology for granularity learning and membership functions =\ Parallelization
tuning in linguistic fuzzy systems,” in Proc. of ISDA 2009, pp. 134—139.

Fitness
estimation

* M. Cococcioni, B. Lazzerini, F. Marcelloni, “On reducing computational overhead in multi-
objective genetic Takagi—Sugeno fuzzy systems,” Appl. Soft Computing 11:1 (2011), 675-688.

v

* M. Antonelli, P. Ducange, F. Marcelloni, “Exploiting a coevolutionary approach to
concurrently select training instances and learn rule bases of Mamdani fuzzy dystems,” in — :
Proc. of WCCI 2010, 1366—1372. Selection

Instance




Current and Future Research Directions

inMGFSs(6)

5) Scalability issues (2)

m Some approaches dealing with high dimensional problems:

Imposing a

* H. Ishibuchi, and T. Yamamoto, “Fuzzy rule selection by multi-objective genetic local search O T S

algorithms and rule evaluation measures in data mining,” Fuzzy Sets and Systems, vol. 141, lenght
pp- 59-88, 2004.

* M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni, “Multi-objective Evolutionary Condition

Generation of Mamdani Fuzzy Rule-Based Systems based on Rule and Condition Selection,” \ selection
in Proc. of GEFS 2011. by specific

approach

m An approach dealing with both high dimensional and large scale problems:

* R. Alcala, M. J. Gacto, F. Herrera, “A Fast and Scalable Multi-Objective Genetic Fuzzy
System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems,” IEEE
Trans. on Fuzzy Systems, doi: 10.1109/TFUZZ.2011.2131657, in press (2011).

\

Using a specific approach for variable selection and fitness
stimation by using a short subset of the examples




Current and Future Research Directions

inMGFSs(7)

6) Automatic selection of the most suitable solution

- Determining those solutions with the best generalization ability
- Only training data can be took into account

m A recent approach on this topic:

OQuter CV : [Test Data Training Data
Inner CV : [—_1Validation Data Training Data
* Ishibuchi H, Nakashima Y, Nojima Y, Double cross-validation Outer OV Lol Lol
for performance evaluation of multi-objective genetic fuzzy G B
systems. In GEF'S 2011, pp 31-38. Egr e - Inner CV Loop
i P
A | |
Using a dm.tble cross-validation w.ztl.t two cross-valtdat.wn .
loops. The inner loop uses the training data to determine 7 )
the complexity of the systems with the best validation W] sz - nner CV Loop
s . 5 7 R
measure, which is used to select the solutions used for the | |
outer loop- Outer CV  Esss] | FECEFEREEE R HEEE |
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