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Introduction to genetic fuzzy systems

 Brief Introduction

 Taxonomy of Genetic Fuzzy Systems

 Why do we use GAs?

 The birth, GFSs roadmap, current state and most, p,
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Introduction to genetic fuzzy systems
Brief IntroductionBrief Introduction

 The use of genetic/evolutionary algorithms (GAs) to design
fuzzy systems constitutes one of the branches of the Soft
Computing paradigm: genetic fuzzy systems (GFSs)

The most known approach is that of genetic fuzzy rule The most known approach is that of genetic fuzzy rule-
based systems, where some components of a fuzzy rule-
based system (FRBS) are derived (adapted or learnt) using

GAa GA

 Some other approaches include genetic fuzzy neural Some other approaches include genetic fuzzy neural
networks and genetic fuzzy clustering, among others
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Introduction to genetic fuzzy systems
Brief Introduction

Evolutionary algorithms and machine learning:

Brief Introduction

 Evolutionary algorithms were not specifically designed as
machine learning techniques, like other approaches like
neural networks

 However, it is well known that a learning task can beg
modelled as an optimization problem, and thus solved
through evolution

 Their powerful search in complex, ill-defined problem spaces
has permitted applying evolutionary algorithms successfully
to a huge variety of machine learning and knowledgeto a huge variety of machine learning and knowledge
discovery tasks

 Their flexibility and capability to incorporate existing

6

Their flexibility and capability to incorporate existing
knowledge are also very interesting characteristics for the
problem solving.



Introduction to genetic fuzzy systems
Brief Introduction

Genetic Fuzzy Rule-Based Systems:

Brief Introduction

Genetic Fuzzy Rule Based Systems:

DESIGN PROCESS

Genetic Algorithm Based
Learning Process

DESIGN PROCESS

Knowledge Base
Data Base + Rule Base

Fuzzy Rule- Output InterfaceInput Interface y
Based System

pp

Computation with Fuzzy Rule-Based Systems EnvironmentEnvironment
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Introduction to genetic fuzzy systems
Brief Introduction

Design of fuzzy rule-based systems:

Brief Introduction

 An FRBS (regardless it is a fuzzy model, a fuzzy logic
controller or a fuzzy classifier), is comprised by two main
components:
 The Knowledge Base (KB), storing the available problem

knowledge in the form of fuzzy rules
 The Inference System, applying a fuzzy reasoning method on

the inputs and the KB rules to give a system output

 Both must be designed to build an FRBS for a specific
application:
 The KB is obtained from expert knowledge or by machinep g y

learning methods
 The Inference System is set up by choosing the fuzzy operator

for each component (conjunction, implication, defuzzifier, etc.)
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for each component (conjunction, implication, defuzzifier, etc.)
Sometimes, the latter operators are also parametric and
can be tuned using automatic methods



Introduction to genetic fuzzy systems
Brief Introduction

M

Brief Introduction

R1: IF X1 is High AND X2 is Low 
THEN Y is Medium

R2: IF X1 is Low AND X2 is Low 
THEN Y is High

M
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…
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S M L
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Base

Data
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input Fuzzification DefuzzificationInference output

An Example of Fuzzy rule-based system
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Interface

Defuzzification
Interface

Inference
Mechanism

output
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An Example of Fuzzy rule based system



Introduction to genetic fuzzy systems
Brief IntroductionBrief Introduction

The KB design involves two subproblems, related to 
its two subcomponents:

– Definition of the Data Base (DB):
• Variable universes of discourse• Variable universes of discourse
• Scaling factors or functions
• Granularity (number of linguistic terms/labels) perGranularity (number of linguistic terms/labels) per 

variable
• Membership functions associated to the labels

– Derivation of the Rule Base (RB): fuzzy rule 
composition

10

composition



Introduction to genetic fuzzy systems
Brief IntroductionBrief Introduction

As said, there are two different ways to design theAs said, there are two different ways to design the 
KB:

– From human expert informationFrom human expert information

– By means of machine learning methods guided by the 
existing numerical information (fuzzy modeling andexisting numerical information (fuzzy modeling and 
classification) or by a model of the system being controlled
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Introduction to genetic fuzzy systems
Taxonomy of Genetic Fuzzy Systems

Genetic fuzzy systems

Taxonomy of Genetic Fuzzy Systems

Genetic fuzzy systems

G ti l i fGenetic tuning Genetic learning of
FRBS components

Genetic KB 
learning

Genetic tuning of 
KB parameters

Genetic adaptive
inference engine

Genetic learning
of KB components
and inference

Genetic adaptive
defuzzification

Genetic adaptive
inference system

and inference 
engine parameters

defuzzification 
methods

inference system

F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evolutionary

12

F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evolutionary 
Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5

Associated Website: http://sci2s.ugr.es/gfs/



Introduction to genetic fuzzy systems
Taxonomy of Genetic Fuzzy SystemsTaxonomy of Genetic Fuzzy Systems

Genetic KB
learningg

Genetic rule Simultaneous Genetic rule
selection
(A priori rule
extraction) 

Genetic DB 
learning

genetic learning of
KB components

learning
(A priori DB)

Genetic
learning
of linguistic

Genetic fuzzy rules
learning 
(Approximate

Genetic RB 
learning
for prediction

Genetic
descriptive
rules

Embedded
genetic

A prioiri
genetic

models 
RB and DB

Models, TS-rules ..)
for predictionrules 

extraction DB learningDB learning
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Introduction to genetic fuzzy systems
1 Genetic Tuning1. Genetic Tuning

Classically:
performed on a predefined DB definition– performed on a predefined DB definition

– tuning of the membership function shapes by a 
GAGA

VS S M VLL

– tuning of the inference parameters
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Introduction to genetic fuzzy systems
1 Genetic Tuning1. Genetic Tuning
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Introduction to genetic fuzzy systems
2 Genetic Rule Learning2. Genetic Rule Learning

A predefined Data Base definition is assumed
– The fuzzy rules (usually Mamdani-type) are y ( y yp )

derived by a GA

16



Introduction to genetic fuzzy systems
2 Genetic Rule Learning2. Genetic Rule Learning
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Introduction to genetic fuzzy systems
3 Genetic Rule Selection3. Genetic Rule Selection

– A predefined Rule Bases definition isA predefined Rule Bases definition is 
assumed

f i GA f– The fuzzy rules are selection by a GA for 
getting a compact rule base (more 
interpretable, more precise)
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Introduction to genetic fuzzy systems
3 Genetic Rule Selection3. Genetic Rule Selection
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Introduction to genetic fuzzy systems
3 Genetic Rule Selection3. Genetic Rule Selection
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Example of genetic rule selection
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Introduction to genetic fuzzy systems
4 Genetic DB Learning4. Genetic DB Learning

– Learning of the membership function shapes by a GA

21



Introduction to genetic fuzzy systems
4 Genetic DB Learning4. Genetic DB Learning
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Introduction to genetic fuzzy systems
5 Simultaneous Genetic Learning of KB Components5. Simultaneous Genetic Learning of KB Components

The simultaneous derivation properly addresses the strong 
dependency existing between the RB and the DB

VS S M VLL
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Introduction to genetic fuzzy systems
5 Simultaneous Genetic Learning of KB Components5. Simultaneous Genetic Learning of KB Components
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Introduction to genetic fuzzy systems
6. Genetic Learning of KB Components and Inference Engine

Parameters

Rule Base Connectives

ConjunctionDefuzWEIGTH

R 1 R 2 R N R 1 R 2 R N R 1 R 2 R N

{ES3,..,EL3} {ES3,..,EL3} {ES3,..,EL3} 1 2  1  … ……
… … …

CSCOR CSCCSDW

Example of the coding scheme for learning an RB and the inference 
connective parameters
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Introduction to genetic fuzzy systems
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Introduction to genetic fuzzy systems
Why do we use GAs?

Advantages of the Genetic Fuzzy Systems

Why do we use GAs?

 We can code different FS components in a chromosome:

 Identify relevant inputsy p

 Scaling factors
 Membership functions, shape functions, optimal shape of 

b hi  f t  l it  ( b  f l b l   membership funct., granularity (number of labels per 
variable)

 Fuzzy rules, Any inference parameter, .... 

We can define different mechanism for managing them 
(combining genetic operators, coevolution,...)
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Introduction to genetic fuzzy systems
Why do we use GAs?Why do we use GAs?

Advantages of the Genetic Fuzzy Systems

We can consider multiple objectives in the learning  We can consider multiple objectives in the learning 
model (interpretability, precision, ....)

Pareto
Solutions

cc
ur

ac
y

A
c
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Introduction to genetic fuzzy systems
The birth GFSs roadmap current status and most cited papers

 Thrift’s ICGA91 paper (Mamdani-type Rule Base Learning Pittsburgh approach)
The birth of GFSs: 1991

The birth, GFSs roadmap, current status and most cited papers

 Thrift s ICGA91 paper (Mamdani type Rule Base Learning. Pittsburgh approach)
 Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In: Proc. of 4th
International Conference on Genetic Algorithms (ICGA'91), pp 509-513

ó Valenzuela-Rendón’s PPSN-I paper (Scatter Mamdani-type KB Learning. Michigan
approach)

 Valenzuela-Rendon M (1991) The fuzzy classifier system: A classifier system for( ) y y y
continuously varying variables. In: Proc. of 4th International Conference on Genetic
Algorithms (ICGA'91), pp 346-353

 Pham and Karaboga’s Journal of Systems Engineering paper (Relational matrix- Pham and Karaboga s Journal of Systems Engineering paper (Relational matrix
based FRBS learning. Pittsburgh approach)

 Pham DT, Karaboga D (1991) Optimum design of fuzzy logic controllers using genetic
algorithms Journal of Systems Engineering 1:114 118)algorithms. Journal of Systems Engineering 1:114-118).

 Karr’s AI Expert paper (Mamdani-type Data Base Tuning)

Karr C (1991) Genetic algorithms for fuzzy controllers AI Expert 6(2):26 33 Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26-33.

Almost the whole basis of the area were established in the first year!



Introduction to genetic fuzzy systems
The birth GFSs roadmap current status and most cited papers

Thrift’s GFS:

The birth, GFSs roadmap, current status and most cited papers

P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl. 
Conf. on Genetic Algorithms (ICGA’91), San Diego, USA, 1991, pp. 509–513

Classical approach: Pittsburgh the decision table is encoded in a– Classical approach: Pittsburgh – the decision table is encoded in a 
rule consequent array

– The output variable linguistic terms are numbered from 1 to n and p g
comprise the array values. The value 0 represents the rule absence, 
thus making the GA able to learn the optimal number of rules

– The ordered structure allows the GA to use simple genetic operators
S M LX 1

X2 R1 R2 R3 1  2  3
S

M
R5R4 R6

Y  {B, M, A}MB

M

__

____

L
R7 R8 R9 1    0    2    0    2    0   2    0   3 

AM __



Introduction to genetic fuzzy systems
The birth GFSs roadmap current status and most cited papers

GFSs roadmap

The birth, GFSs roadmap, current status and most cited papers

1991-1996/7: INITIAL GFS SETTING: KB LEARNING:

GFSs roadmap

 Establishment of the three classical learning approaches in the GFS field: Michigan,
Pittsburgh, and IRL

 Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSKyp , , ,

 Generic applications: Classification, Modeling, and Control

1995-…: FUZZY SYSTEM TUNING:

 First: Membership function parameter tuning

 Later: other DB components adaptation: scaling factors, context adaptation (scaling
functions), linguistic hedges, …

Recently: interpretability consideration Recently: interpretability consideration



Introduction to genetic fuzzy systems
The birth GFSs roadmap current status and most cited papers

GFSs roadmap

The birth, GFSs roadmap, current status and most cited papers

1998-…: APPROACHING TO MATURITY?
NEW GFS LEARNING APPROACHES:

 New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search (memetic
algorithms), …

 Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt hybrids, … Hybrid learning approaches: a priori DB learning, GFNNs, Michigan Pitt hybrids, …

 Multiobjective evolutionary algorithms

 Interpretability-accuracy trade-off consideration Interpretability accuracy trade off consideration

 Course of dimensionality (handling large data sets and complex problems):
 Rule selection (1995-…)
 Feature selection at global level and fuzzy rule level
 Hierarchical fuzzy modeling

“Incremental” learning Incremental learning



Introduction to genetic fuzzy systems
Current state of the GFS area

Number of papers on GFSs published in JCR journals

Current state of the GFS area

Source: The Thomson Corporation ISI Web of Knowledge
Query: (TS = (("GA-" OR "GA based" OR evolutionary OR "genetic algorithm*" OR "genetic 

programming" OR "evolution strate*" OR "genetic learning" OR "particle swarm" OR "differential 

33

p g g g g p
evolutio*" OR "ant system*" OR "ant colony" OR "genetic optimi*" OR "estimation of distribution 
algorithm*") AND ("fuzzy rule*" OR "fuzzy system*" OR "fuzzy neural" OR "neuro-fuzzy" OR "fuzzy 
control*" OR "fuzzy logic cont*" OR "fuzzy class*" OR "fuzzy if" OR "fuzzy model*" OR "fuzzy 
association rule*" OR "fuzzy regression")) 
Date of analysis: July 6th, 2010                Number of papers: 3962
Number of citations: 18298          Average citations per paper: 4.62



Introduction to genetic fuzzy systems
Current state of the GFS area

Most cited papers on GFSs (classic approaches - papers until 2000)

Current state of the GFS area

1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy 
controllers using genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 302

2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems 
using genetic algorithms, IEEE TFS 3 (3) (1995) 260-270. Citations: 284

3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5) 
(2000) 509-522 . Citations: 215

4. Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for 
multidimensional pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 177p p , ( ) ( )

5. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999) 
109-119. Citations: 126

6. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy 
control, IEEE TSMC B 24 (1) (1994) 39-47. Citations: 125, ( ) ( )

7. Jin, YC (2000) Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability 
improvement. IEEE Transactions on Fuzzy Systems 8(2):212-221. Citations: 121

8. Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for
selecting linguistic rules for pattern classification problems. Fuzzy Sets and Systems 89(2):135-150selecting linguistic rules for pattern classification problems. Fuzzy Sets and Systems 89(2):135 150 
Citations: 116

9. Juang, C.F., Lin, J.Y., Lin, C.T., Genetic reinforcement learning through symbiotic evolution for fuzzy 
controller design, IEEE TSMC B 30 (2) (2000) 290-302. Citations: 109

10. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, IJAR 12 (3-4)

34

10. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy logic controllers by genetic algorithms, IJAR 12 (3 4) 
(1995) 299-315. Citations: 108



Introduction to genetic fuzzy systems
Some References

GENETIC FUZZY SYSTEMS
E l ti T i d L i f F

Some References

Evolutionary Tuning and Learning of Fuzzy 
Knowledge Bases.

O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena
World Scientific, July 2001, y

H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling 
with Linguistic Information Granules Advanced Approaches to

– F Herrera Genetic Fuzzy Systems: Taxonomy Current Research Trends and Prospects

with Linguistic Information Granules. Advanced Approaches to 
Linguistic Data Mining. Springer (2005)

F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. 
Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5, 

– F. Herrera, Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions, 
International Journal of Computational Intelligence Research 1 (1) (2005) 59-67p g ( ) ( )

– O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten Years of Genetic Fuzzy 
Systems: Current Framework and New Trends, FSS 141 (1) (2004) 5-31

F Hoffmann Evolutionary Algorithms for Fuzzy Control System Design Proceedings of the IEEE
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– F. Hoffmann, Evolutionary Algorithms for Fuzzy Control System Design, Proceedings of the IEEE 
89 (9) (2001) 1318-1333



Introduction to genetic fuzzy systems
GFSs WebsiteGFSs Website

http://sci2s ugr es/gfs/http://sci2s.ugr.es/gfs/

36

http://sci2s.ugr.es/gfs/biblio.php



GENETIC FUZZY SYSTEMS: APPLICATION TO 
A HVAC PROBLEMA HVAC PROBLEM

Heating Ventilating and Air Conditioning Systems: 
Problem

JOULE-THERMIE JOE-CT98-0090

Problem

JOULE THERMIE JOE CT98 0090
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Fuzzy Logic Controllers for Energy 
Efficiency Consumption in BuildingsEfficiency Consumption in Buildings

Heating Ventilating and Air Conditioning Systems: 
Problem

 Energy consumption in buildings is the 40% of the total and more 
than a half is for indoor climate conditions

 The use of specific technologies can save up to a 20% of the energy 
consumptionconsumption

 The use of appropriate automatic control strategies could result in 
energy savings ranging 15 85 %energy savings ranging 15-85 %

 Moreover, in current systems, several criteria are considered and 

38

optimized independently without a global strategy



Fuzzy Logic Controllers for Energy 
Efficiency Consumption in BuildingsEfficiency Consumption in Buildings

Generic Structure of an Office Building HVAC System

 It maintain a good thermal quality in summer and winter

39

 It dilutes and removes emissions from people, equipment and 
activities and supplies clean air



Fuzzy Logic Controllers for Energy 
Efficiency Consumption in BuildingsEfficiency Consumption in Buildings

Initial Data Base

17 V i bl17 Variables

40



Fuzzy Logic Controllers for Energy 
Efficiency Consumption in BuildingsEfficiency Consumption in Buildings

Initial Rule Base and  FLC Structure

172 
Rules

172 Rules
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Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings

R t ti f th T t C ll

Efficiency Consumption in Buildings

Representation of the Test Cells

 Two adjacent twin cells were available

42

 A calibrated and validated model of this site was 
developed to evaluate each FLC



Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings

 Goal: multi-criteria optimization of an expert FLC for an HVAC system: reduction of
the energy consumption but maintaining the required indoor comfort levels

Efficiency Consumption in Buildings

the energy consumption but maintaining the required indoor comfort levels

 INITIAL RESULTS INITIAL RESULTS

MODELS #R PMV>0.5
01

PMV<-0.5
02

C02

03

ENERGY
04 %

STABILITY
05 %

ON-OFF - 0,0 0 0 3206400 - 1136 -

FLC 172 0,0 0 0 2901686 9,50 1505 -32,48

43
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GFS Models for Fuzzy Control of HVAC Systems: 
Genetic TuningGenetic Tuning

Problem Restrictions

 The controller accuracy is assessed by means of simulations The controller accuracy is assessed by means of simulations 
which approximately take 3-4 minutes

 Efficient tuning methodologies:

Local adjustment of each tuned parameter Local adjustment of each tuned parameter

 Steady-State Genetic Algorithms: quick convergence

2000 evaluations  1 run takes approximately 4 days

 Considering a small population (31 individuals)

44



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic TuningGenetic Tuning

Improving the FLC Performance

The main objective was the reduction of the energy consumption
(10%), improving the stability of the controller, maintaining

the required indoor comfort levelsq

 Classic genetic tuning of the Data Base
 Local modification of the membership function definition

points

45a b c



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic TuningGenetic Tuning
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GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning + Rule Selection

New coding schemes: 2- and 3-tuples:
Genetic Lateral Tuning + Rule Selection

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, Improving Fuzzy Logic
Controllers Obtained by Experts: A Case Study in HVAC Systems. Applied
Intelligence doi:10 1007/s10489-007-0107-6 31:1 (2009) 10-35Intelligence, doi:10.1007/s10489 007 0107 6, 31:1 (2009) 10 35. 

– 2-tuples: label id. i and a displacement parameter i [-0.5,0.5]

47

– New rule structure:  
IF X1 IS (S1i, 1) AND … AND Xn IS (Sni, n) THEN Y IS (Syi, y)



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning + Rule Selection (2)Genetic Lateral Tuning + Rule Selection (2)

48

Example of genetic lateral tuning and rule selection



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule Selection

MODELS #R PMV>0.5
01                

PMV<-0.5
02

C02

03

ENERGY
04 %

ESTABILITY
05 %

Genetic Lateral Tuning and Rule Selection

ON-OFF - 0,0 0 0 3206400 - 1136 -
FLC 172 0,0 0 0 2901686 9,50 1505 -32,48

TUNING 172 0,0 0 0 2596875 19,01 1051 7,48
SELECTION 147 0,2 0 0 2867692 10,56 991 12,76
SEL + TUNING 109 0 1 0 0 2492462 22 27 989 12 94109 0,1 0 0 2492462 22,27 989 12,94

SEL + WEIGHTS 102 0,7 0 0 2731798 14,80 942 17,08

GL 2 172 0,9 0 0 2268689 29,25 1080 4,93
LL 1 172 0,9 0 0 2386033 25,59 896 21,13

GL - S 1 105 1,0 0 0 2218598 30,81 710 37,50
GL S 2 11 0 4 0 0 23 840 26 4 818 2 99GL - S 2 115 0,4 0 0 2358405 26,45 818 27,99
GL - S 3 118 0,8 0 0 2286976 28,68 872 23,24
LL – S 1 133 0 5 0 0 2311986 27 90 788 30 63

49

LL S 1 133 0,5 0 0 2311986 27,90 788 30,63 
LL – S 2 104 0,6 0 0 2388470 25,51 595 47,62
LL – S 3 93 0,5 0 0 2277807 28,96 1028 9,51



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule SelectionGenetic Lateral Tuning and Rule Selection

Tuned Data Base (GL-S1):

50



GFS Models for Fuzzy Control of HVAC Systems: 
Genetic Lateral Tuning and Rule SelectionGenetic Lateral Tuning and Rule Selection

Selected Rule Base (GL-S1):

51



GFS Models for Fuzzy Control of HVAC Systems
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Interpretability Issues in Fuzzy System Design
Complexity CriteriaComplexity Criteria

 Highly used criteria: Complexity criteria in the 
learning of FRBSs.g

54

Number of variables, labels, rules, conditions …



Interpretability Issues in Fuzzy System Design
Semantic CriteriaSemantic Criteria

 Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 

55



Interpretability Issues in Fuzzy System Design
Syntactic CriteriaSyntactic Criteria

 Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 
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Interpretability Issues in Fuzzy System Design
Strategies to Satisfy InterpretabilityStrategies to Satisfy Interpretability

 Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 
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Interpretability Issues in Fuzzy System Design
Still not Clear ConceptsStill not Clear Concepts

 Interpretability quality:

What is the most interpretable rule base?
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A Taxonomy on the Existent Interpretability 
Measures for Linguistic FRBSsMeasures for Linguistic FRBSs

Most works in C1 and C2 are applied to classification
problems. They are the classic measures.

Rule Base Level Fuzzy Partition Level

problems. They are the classic measures.

Complexity-
based

Interpretability

C1
Number of rules
Number of conditions

C2
Number of membership functions
Number of features

Interpretability

C3 C4

Semantic-based
Interpretability

Consistency of rules
Rules fired at the same time
Transparency of rule structure (rule weights, etc.)
Cointension

Absolute Measures:
Completeness or coverage,
normalization, distinguishability,

Cointension complementarity
Relative Measures

Th f k i C3 M t k i C4 i b l tThere are few works in C3          
Still an open problem

59Most works in C4 impose absolute measures or
restrictions. Relativity could be a new possibility.         

Still an open problem.



A Taxonomy on the Existent Interpretability 
Measures for Linguistic FRBSs (2)

 Interpretability of FRBSs is still an open problem since there is no 

Measures for Linguistic FRBSs (2)

single (or global) comprehensive measure to quantify the 
interpretability of linguistic models

 T t d l b l it ld b t id To get a good global measure it would be necessary to consider 
appropriate measures from all of the quadrants, in order to take into 
account the different interpretability properties required for these kinds 
of systems together.

M J Gacto R Alcalá F HerreraM.J. Gacto, R. Alcalá, F. Herrera

Interpretability of Linguistic Fuzzy Rule-Based Systems: An

Overview on Interpretability MeasuresOverview on Interpretability Measures

Information Sciences, doi: 10.1016/j.ins.2011.02.021, in press (2011)

A thematic website is being developed to maintain this study at:

60

A thematic website is being developed to maintain this study at:

http://sci2s.ugr.es/ (under construction)



Applicability of MOGFSs to the I-A problem

 The different measures from each quadrant could be optimized as 
different objectives within a multi-objective framework.

 They are contradictory to some degree. Not only accuracy is 
contradictory to interpretability. The different measures represent 
different properties and requirementsdifferent properties and requirements.

 Together with accuracy many interpretability objectives should be Together with accuracy, many interpretability objectives should be 
optimized at the same. Two different solutions:

 Development of new EMO algorithms for many objective problemsDevelopment of new EMO algorithms for many objective problems
(incoming for future)

 By grouping complexity measures and semantic measures into 
two respective indexes.

(it would represent the present)



Applicability of MOGFSs to the I-A problem (2)

 In fact, a revision on the application of MOGFSs indicates that most 
of the approaches have been applied to the Interpretability-accuracy 
trade-off problem.

6 papers17 papers31 papers
We will focuss

on this type.

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera.

9 papers 12 papers 10 papers 12 papers 5 papers

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. 
A review on the application of Multi-Objective Genetic Fuzzy Systems: current status and 
further directions, in submission, 2011 (Available soon).
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Multiobjective Optimizationj p
Two-Objective Maximization Problem:j
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Comparison between Two Solutions
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Comparison between Two Solutions
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Pareto-Optimal Solutions
A Pareto-optimal solution is a solution that

p
p

is not dominated by any other solutions.
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Pareto Front
The set of all Pareto-optimal solutions isp
called the Pareto front of the problem.
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EMO Algorithms
Evolutionary multiobjective optimization (EMO)

g
y j ( )

algorithms have been designed to search for
Pareto-optimal solutions in their single run.
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Comparison: Weighted Sum Approach

Maximize g(x) = w1 f1(x) + w2 f2(x)Maximize  g(x) = w1 f1(x) + w2 f2(x)

)(2 xf )(2f
Only a single solution is obtained
by the weighted sum approach.
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Comparison: EMO Approach

Maximize f1(x) f2(x)

p pp

Maximize   f1(x),  f2(x)

)(2 xf )(2f
Only a single solution is obtained
by the weighted sum approach.
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e Multiple solutions are obtained
by an EMO algorithm.
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Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.
Thi h t fi d P t ti l l ti i- This approach can not find any Pareto-optimal solutions in a 
non-convex region of the Pareto front in the objective space.
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Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.
Thi h t fi d P t ti l l ti i- This approach can not find any Pareto-optimal solutions in a 
non-convex region of the Pareto front in the objective space.
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EMO Approachpp
- EMO approach can find Pareto-optimal solutions even in a non-

convex region of the Pareto front in the objective spaceconvex region of the Pareto front in the objective space.
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Comparison of the Two Approachesp pp
Two-objective maximization problem 
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Experimental results of a single run of each approach



Search Direction in Each Approachpp
Two-objective maximization problem 
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Highly Cited EMO Papers
Two Dominant Algorithms: NSGA II and SPEATwo Dominant Algorithms: NSGA-II and SPEA
1. Deb K et al. (2002) A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE TEC. NSGA-II
2. Zitzler E, Thiele L (1999) Multiobjective evolutionary

algorithms: A comparative case study and the Strength
Pareto approach. IEEE TEC. SPEA (=> SPEA2 in TIK-Report)

3. Fonseca CM, Fleming PJ (1998) Multiobjective optimization and
multiple constraint handling with evolutionary algorithms (Part I):
A unified formulation, IEEE SMC Part A.u ed o u at o , S C a t

4. Zitzler E, Thiele L, Laumanns M (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE TEC.

5. Ishibuchi H, Murata T (1998) A multi-objective genetic local search
algorithm and its application to flowshop scheduling, IEEE SMC
P t CPart C.



Goal of EMO Algorithmsg
An EMO algorithm is designed to search for

ll P t ti l l ti- all Pareto-optimal solutions
- uniformly distributed Pareto optimal solutions
- a solution set which approximates the Pareto fronta solution set which approximates the Pareto front

in their single run.
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Pareto front

Ob i d l i
18000 19000 2000017000

Obtained solution



Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as 
NSGA II d SPEA2 h f t

2 2000th generation21000

NSGA-II and SPEA2 have some common features.
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Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as 
NSGA II d SPEA2 h f t

(1) Pareto Dominance
high fitness

NSGA-II and SPEA2 have some common features:

(1) Pareto Dominance
Converge to the Pareto front
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Basic Ideas in Recent EMO Algorithms

1 P t D i h i1. Pareto Dominance
2. Crowding
3 Elit St t sa

ck
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Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as 
NSGA II d SPEA2 h f t

high fitness(1) Pareto Dominance

NSGA-II and SPEA2 have some common features:
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Basic Ideas in EMO Algorithm Design

Example: Crowding Distance in NSGA-II
Distance between adjacent individuals

 f 2 C
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b a+b
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A
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b a b

M
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Infinitely
large value

0 Maximize  f1f1

Crowding distance of C  is  (a + b)



Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as 
NSGA II d SPEA2 h f t

Non-dominated(1) Pareto Dominance

NSGA-II and SPEA2 have some common features:
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(Elite solutions)
(1) Pareto Dominance
Converge to the Pareto front
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(2) Crowding

l fit

fitnessDiversity maintenance

(3) Elitist Strategy
Maximizelow fitness MaximizeMaximize

Non-dominated solutions are handled as elite solutions.



Basic Ideas in Recent EMO Algorithmsg

(1) Pareto Dominance (Convergence to the Pareto front)
(2) Crowding (Diversity Maintenance)
(3) Elite Strategy (Non-Dominated Solutions)
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Hot Issues in EMO Research
Utilization of Decision Maker’s Preference
- Preference is incorporated into EMO algorithms.
- Interactive EMO approaches seem to be promising.

H dli f M Obj ti b EMO Al ithHandling of Many Objectives by EMO Algorithms
- Pareto dominance-based algorithms do not work well.
- More selection pressure is needed.More selection pressure is needed.

Hybridization with Local Search
- Hybridization often improves the performance of EMO.y p p
- Balance between local and genetic search is important.

Design of New EMO Algorithmsg g
- Indicator-based EMO algorithms 
- Scalarizing function-based EMO algorithms

Use of other search methods such as PSO ACO and DE- Use of other search methods such as PSO, ACO and DE.



Hot Issue: Preference Incorporation
EMO Approach to Decision MakingEMO Approach to Decision Making
Step 1: Evolutionary multiobjective optimization

M d i t d l ti (C did t )==> Many non-dominated solutions (Candidates).
Step 2: Choice of a single solution by the decision maker.
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EMO Approach to Decision Making
Difficulty in Step 1: It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto frontdominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a
single solution form a large number of alternatives.

Step 1 Step 2



EMO Approach to Decision Making
Difficulty in Step 1: It is not always easy to find a set of non-
dominate solutions that covers the entire Pareto frontdominate solutions that covers the entire Pareto front.

Difficulty in Step 2: It is not always easy for the DM to choose a
single solution form a large number of alternatives.

One idea to tackle these two difficulties:
To search for a small number of non-dominate solutions.



Utilization of Preference Information
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Basic Idea: Concentration on the preferred region of the
Pareto front The decision maker is not always interested in

f1: Maximize

Pareto front. The decision maker is not always interested in
all the Pareto-front.



Utilization of Preference Information
21000

20000

e

19000

M
ax

im
iz

e

18000

f 2:
 M

Pareto front
Reference solution

18000 19000 20000 2100017000

f1: Maximize

Obtained solution
Reference solution

Difficulty: It is not easy to extract preference information
from the decision maker (DM) It may be much simpler to

f1: Maximize

from the decision maker (DM). It may be much simpler to
compare different solutions. ==> Interactive Approaches.



Extraction of Preference Information

Preference Extraction21000 Preference Extraction
(1) Relatively Easy Case
- Number of Objectives: Two20000

e - Pareto Front: Known
- The DM knows the problem19000
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(2) Very Difficult Case
- Number of Objectives: Many
- Pareto Front: Unknown
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Pareto front
Reference solution Pareto Front: Unknown

- The DM does not know the 
problem very well.18000 19000 20000 2100017000

f1: Maximize

Obtained solution
Reference solution

Example: Flight Tickets (Cost, # of Stops, Total Time)
Case 1: You are planning to buy a ticket to your home town

f1: Maximize

Case 1: You are planning to buy a ticket to your home town.
Case 2: You are planning to buy a ticket to Easter Island.



Another Hot Issue: 
Evolutionary Many Objective OptimizationEvolutionary Many-Objective Optimization
Why are many-objective problems difficult?
1. Many Objectives: Difficulty in Multiobjective Search

Selection pressure toward the Pareto front becomes very

y a e a y object e p ob e s d cu t

Selection pressure toward the Pareto front becomes very
weak since almost all solutions are non-dominated.

2 Many Solutions: Difficulty in Approximation2. Many Solutions: Difficulty in Approximation
A large number of non-dominated solutions are needed to
approximate the entire Pareto front.

3. Many Solutions with Many Objectives: Presentation
It is very difficult to present a large number of obtainedIt is very difficult to present a large number of obtained
solutions in the high-dimensional object space to the
decision maker in a visually understandable manner.



Difficulties in Many-Objective Optimization

Q. Why are many-objective problems hard for EMO ?Q. Why are many objective problems hard for EMO ?
A. Solutions with many objectives are usually non-dominated

with each other. This means very low selection pressurewith each other. This means very low selection pressure
toward the Pareto front in Pareto dominance-based EMO.

Five-Objective Maximization Example (Non-dominated Vectors)
f1 f1 f1

Five-Objective Maximization Example (Non-dominated Vectors)

f2f5 f2f5 f2f5

f3f4 f3f4 f3f4Looks good                              Not bad                              Looks poor



Difficulties in Many-Objective Optimization

Percentage of Non-Dominated Vectors
We randomly generate vectors in a k-dimensional space.

Percentage of Non Dominated Vectors
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Experimental Results of NSGA-IIp
Standard Implementation of NSGA-IIStandard Implementation of NSGA II
Generation Update: (100 + 100) ES

Current Population: 100 IndividualsCurrent Population: 100 Individuals
Offspring Population: 100 Individuals
Next Population: The best 100 individuals from the currentNext Population: The best 100 individuals from the current

population and the offspring population.

Fitness Evaluation: 1 t C it i P t D iFitness Evaluation: 1st Criterion: Pareto Dominance
2nd Criterion: Crowding Distance

Test Problems
k-objective 500-item knapsack problems (k-500 problem)j p p ( p )
k = 2, 4, 6, 8, 10



Number of Non-Dominated Solutions
(Among 200 solutions before the generation update in NSGA II)(Among 200 solutions before the generation update in NSGA-II)

on
s

200
2-500 4-500 6-500 8-500 10-500

d 
So

lu
tio

150

200

10-500:
10-objective

m
in

at
ed 150

100

10 objective 
500-item problem

N
on

-D
om

50

100

Next Generation:

m
be

r o
f N

0

50 Next Generation:
100 Individuals

Number of GenerationsN
um 1 10 100 1000 10000 100000

0

All individuals are non-dominated solutions after a few generationsAll individuals are non dominated solutions after a few generations
(10-500 problem) and after about 200 generations (2-500 problem).



Very Simple Measure of Convergence

The sum of the given objectives: g(x) =  f1(x) +  f2(x)g j g( ) f1( ) f2( )
ps
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Very Simple Measure of Diversityy p y
Range Measureg
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Experimental Results of NSGA-II
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Observation: Only the convergence was improved in the early 
generations. After that, only the diversity was improved.



Approximation of the Pareto Frontpp
Q:How many non-dominated solutions are needed to

i t th ti P t f t f th k bj tiapproximate the entire Pareto-front of the k-objective
problem? (k = 2, 3, 4, ...)

A H h k i l (It ti ll i ith k)A: Huge when k is large (It exponentially increases with k)
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Approximation with Finite Solutionspp
Two Strategies for Many-Objective Problems
(1) Sparse approximation of the entire Pareto front.
(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in theDense approximation of the entire Pareto front is impossible in the
case of many objectives.

20000 20000
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17000
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Obtained solution
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Approximation with Finite Solutionspp
Two Strategies for Many-Objective Problems
(1) Sparse approximation of the entire Pareto front.
(2) Dense approximation of only a part of the Pareto front.

Dense approximation of the entire Pareto front is impossible in theDense approximation of the entire Pareto front is impossible in the
case of many objectives.

(1) Sparse Approximation                   (2) Dense Approximation



Handling of Obtained Solutionsg
Difficulty: How to show a large number of non-dominated solutions.
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Another Hot Issue: Hybridization 
Multiobjective Memetic Algorithm (MOMA)Multiobjective Memetic Algorithm (MOMA)

Powerful Approach to Single-Objective Optimization: MAPowerful Approach to Single-Objective Optimization: MA

Evolutionary Local Memetic+Evolutionary
algorithm

Local
search

Memetic
algorithm+ =

Multiobjective Memetic Algorithm: MOMAMultiobjective Memetic Algorithm: MOMA

Multiobjective MultiobjectiveMultiobjective 
evolutionary

algorithm

Multiobjective
local search

Multiobjective
memetic 
algorithm

+ =
algorithm algorithm



Design of MA and MOMAg
One important implementation issue:

Specification of the balance between evolutionary
search and local search (or its dynamic adaptation).

Ishibuchi H, Yoshida T, Murata T (2003) Balance between
genetic search and local search in memetic algorithms for

lti bj ti t ti fl h h d li IEEE Tmultiobjective permutation flowshop scheduling. IEEE Trans.
on Evolutionary Computation.

Evolutionary Local searchy
search

Local search



New Trend in EMO Algorithm Design 
IBEA: Indicator-Based Evolutionary AlgorithmIBEA: Indicator-Based Evolutionary Algorithm
Basic Idea
To maximize a performance indicator of a solution set 
(not a solution): Hypervolume is often used. 
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New Trend in EMO Algorithm Design 
IBEA: Indicator-Based Evolutionary Algorithm

)(Maximize SI

IBEA: Indicator-Based Evolutionary Algorithm

(Maximization of an Indicator Function)

}{ where subject to
)( Maximize

 SNS
SI ( )

x x X

S : A set of solutions f 2S : A set of solutions
N: A pre-specified number

of required solutions m
iz

e 
f

of required solutions
X: A feasible region M

ax
im

M
Maximization of this area

Maximize f1



New Trend in EMO Algorithm Design 
MOEA/D: Use of Scalarizing FunctionsMOEA/D: Use of Scalarizing Functions 
MOEA/D: Multi-objective evolutionary algorithm based on 

Its Basic Idea (Decomposition): A multi-objective problem
decomposition by Zhang and Li  (IEEE TEC 2007)

is handled as a set of scalarizing function optimization
problems with different weight vectors.

Weight vector

(a) Two-objective case          (b) Three-objective case



New Trend in EMO Algorithm Design 
Hybrid Method: Use of Scalarizing FunctionsHybrid Method: Use of Scalarizing Functions 

InitializationInitialization

Parent selection

PPS Scalarizing fitness 
function

Genetic operation
PGU

1 P
p

Generation update

1PPS

NSGA-II fitness 
1PGU

End
evaluation mechanism

Probability for scalarizing fitness functions:
Parent selection: P Generation update: PParent selection: PPS Generation update: PGU

Ishibuchi et al. (PPSN 2006)



New Trend in EMO Algorithm Design 
Use of Other Meta-Heuristics (PSO ACO etc )Use of Other Meta-Heuristics (PSO, ACO, etc.)  
Highly Cited Papers
[1] Coello CAC, Pulido GT, Lechuga MS (2004) Handling Multiple

Objectives with Particle Swarm Optimization, IEEE TEC
[2] McMullen PR (2001) An Ant Colony Optimization Approach to

Addressing a JIT Sequencing Problem with Multiple
Objectives Artificial Intelligence in EngineeringObjectives, Artificial Intelligence in Engineering

[3] Ray T, Liew KM (2002) A Swarm Metaphor for Multiobjective
Design Optimization Engineering OptimizationDesign Optimization, Engineering Optimization

[4] Li XD (2003) A Non-Dominated Sorting Particle Swarm
Optimizer for Multiobjective Optimization GECCO 2003Optimizer for Multiobjective Optimization, GECCO 2003.

[5] Ho SL et al. (2005) A Particle Swarm Optimization-Based
Method for Multiobjective Design Optimizations, IEEE Trans.j g p ,
on Magnetics



For More Information
Webpage for EMO Papers: EMOOWebpage for EMO Papers: EMOO

http://www.lania.mx/~ccoello/EMOO/



For More Information
Webpage for EMO Algorithms and Problems: PISAWebpage for EMO Algorithms and Problems: PISA 

http://www.tik.ee.ethz.ch/sop/pisa/



Contents
1. Basics on Genetic Fuzzy Systems (GFS) 

- Introduction to Genetic Fuzzy System Research
- An Example on a Real Application

2. Interpretability-Accuracy Tradeoff of Fuzzy Systems: Two 
contradictory objectives

I t t bilit I i F S t D i- Interpretability Issues in Fuzzy System Design
- Applicability of MOGFSs to the I-A problem

3. Evolutionary Multiobjective Optimization (EMO) 
- Some Basic Concepts in Multiobjective Optimization
- Framework of Evolutionary Multiobjective OptimizationFramework of Evolutionary Multiobjective Optimization

4. Multiobjective Genetic Fuzzy Systems (MoGFS)
O i f M GFS R h ( t ti l )- Overview of MoGFS Research (some representative examples)

- New Research Directions in MoGFS



Main Motivations for MoGFSs
Overfitting and Poor InterpretabilityOverfitting and Poor Interpretability

Accuracy maximization OverfittingAccuracy maximization               Overfitting

or

Test dataE
rr

o

accuracy

Training data
accuracy

S*0 y
ComplexityS*0



Multiobjective Design of Fuzzy Systems

Many non-dominated fuzzy systems can be obtained along
r

the tradeoff surface by a single run of an EMO algorithm.

T t d tE
rr

or

Test data

Training data

ComplexityS*0



Main Motivations for MoGFSs
Deterioration in InterpretabilityDeterioration in Interpretability
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Current Trend in Fuzzy System Design 
Multiobjective Fuzzy System Design (Late 1990s - )Multiobjective Fuzzy System Design (Late 1990s - )
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Direction of Fuzzy System Research
Multiobjective Fuzzy System Design (Late 1990s )Multiobjective Fuzzy System Design (Late 1990s - )
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Multiobjective Design of Fuzzy Systems
e Use of EMO algorithms to search for a number 
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Multiobjective Genetic Fuzzy Systems
BibliographyBibliography

H. Ishibuchi, T. Nakashima, M. Hii. 
Classification and Modelling with LinguisticClassification and Modelling with    Linguistic 
Information Granules. Advanced Approaches 
to Linguistic Data Mining.                    
Springer-Verlag, 2004.

Ji Y h (Ed )Jin, Yaochu (Ed.) 
Multi-Objective Machine Learning
Springer-Verlag, 2006 

Literature (http://www.keel.es)
Multiobjective Genetic Algorithms and Rule Learning

http://sci2s.ugr.es/keel/specific.php?area=44

Multiobjective Genetic Algorithms and Rule Learning



Highly Cited MoGFS Papersg y p
[1] Ishibuchi et al. (1997) Single-objective and two-objective

ti l ith f l ti li i ti l f ttgenetic algorithms for selecting linguistic rules for pattern
classification problems. Fuzzy Sets & Systems.

[2] Ishibuchi et al (2001) Three-objective genetics-based machine[2] Ishibuchi et al. (2001) Three-objective genetics-based machine
learning for linguistic rule extraction. Information Sciences.

[3] Ishibuchi & Yamamoto (2004) Fuzzy rule selection by multi-[ ] ( ) y y
objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy Sets & Systems.

[4] Wang et al. (2005) Multi-objective hierarchical genetic algorithm
for interpretable fuzzy rule-based knowledge extraction. Fuzzy
Sets & Systems.y

[5] Johansen & Babuska (2003) Multiobjective identification of
Takagi-Sugeno fuzzy models. IEEE TFS.



Different Models of Multiobjective GFSs
Bibliography on Interpretability/AccuracyBibliography on Interpretability/Accuracy

• Most of them are based
on 2nd gen. MOEAs

• Usually no more than 3 
objectives

• Complexity at the
beginning; Semantic
aspects in the last years

• Most of them are 
Linguistic and Mamdani
type based approaches

• KB learning in the last
years (granularity as im-
portant factor)

• Most of them are 
improved versions of the
most known MOEAs
(particularly in the case of 
KB learning)

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the 
application of Multi-Objective Genetic Fuzzy Systems: current status and further directions, in submission, 2011.

g)



Different Models of Multiobjective GFSs
Bibliography on Interpretability/AccuracyBibliography on Interpretability/Accuracy

I h f ll i ill i dIn the following we will see in deep a 
representative example for each type:

o FIRST TYPE: RB Learning

S T DB T i + R l S l to SECOND TYPE: DB Tuning + Rule Select.

o THIRD TYPE: KB Learning

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the 
application of Multi-Objective Genetic Fuzzy Systems: current status and further directions, in submission, 2011.



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

FIRST TYPE RULE BASE LEARNING CLASSIFICATIONFIRST TYPE: RULE BASE LEARNING - CLASSIFICATION

H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic
local search algorithms and rule evaluation measures in data mining, Fuzzy
Sets and Systems, Vol. 141, pp. 59-88 (2004)



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

Two Stage Approach

MODEL 1: Multiobjective Rule Selection

1. Heuristic Rule Extraction

Two-Stage Approach

A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

2 Multiobjective Genetic Fuzzy Rule Selection2. Multiobjective Genetic Fuzzy Rule Selection
A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization)optimization).

H Ishibuchi and T Yamamoto “Fuzzy rule selection by multi-H. Ishibuchi and T. Yamamoto, Fuzzy rule selection by multi
objective genetic local search algorithms and rule evaluation
measures in data mining,” Fuzzy Sets and Systems, Vol. 141,

59 88 (2004)pp. 59-88 (2004).



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Fuzzy Rules for n-dimensional Problems

If x1 is A1 and … and xn is An

then Class C with CF

Ai : Antecedent fuzzy set
Class C : Consequent classClass C : Consequent class
CF : Rule weight (Certainty factor)



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Antecedent Fuzzy Sets (Multiple Partitions)
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Usually we do not know an appropriate fuzzy partition for each input
variable.



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Possible Fuzzy Rules
Total number of possible fuzzy rulesTotal number of possible fuzzy rules

x1 x

     n15114114 
… x1 xn

     

Don’t care Don’t careDon t care Don t care



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Examined Fuzzy Rules

They only examine short fuzzy rules with only a
few antecedent conditionsfew antecedent conditions.

If x1 is small and x48 is largeIf x1 is small and x48 is large
then Class 1 with 0.58



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

C t Cl

MODEL 1: Multiobjective Rule Selection

Consequent Class
The consequent class of each fuzzy rule is determined by compatible
training patterns (i e the dominant class in the corresponding fuzzytraining patterns (i.e., the dominant class in the corresponding fuzzy
subspace).

L Cl 1
x2L Class 1

Class 2M

If x1 is small and x2 is large

S

If x1 is small and x2 is large
then Class 1 with 1.0x10

S LM



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Rule Weight (Certainty Factor)
The rule weight CF of each fuzzy rule is calculated from compatibleThe rule weight CF of each fuzzy rule is calculated from compatible
training patterns.

Class 1
Cl 2

Class 1
Class 2L LClass 2 Class 2

M M
CF=1.0
(Maximum)

CF=0.37

S

S

S(Maximum)

S LM S LM



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

i i l i

MODEL 1: Multiobjective Rule Selection

Heuristic Rule Extraction

Th t t ifi d b f th b t f l ithThey extract a pre-specified number of the best fuzzy rules with
respect to a pre-specified heuristic rule evaluation criterion.

If th Cl 1
Class 1

If · · · then Class 1
If · · · then Class 1

Numerical
data Class 2 If · · · then Class 2

If th Cl 2data

Class 3

If · · · then Class 2

If · · · then Class 3Class 3 If    then Class 3
If · · · then Class 3



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Heuristic Rule Extraction
Possible fuzzy rules: (15)n rulesPossible fuzzy rules: (15) rules

Restriction on the rule length :
Only short fuzzy rulesy y

Rule evaluation criterion:Rule evaluation criterion:
The best rules for each class
300 fuzzy rules for each class300 fuzzy rules for each class



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

Two Stage Approach

MODEL 1: Multiobjective Rule Selection

1. Heuristic Rule Extraction

Two-Stage Approach

A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

2 Multiobjective Genetic Fuzzy Rule Selection2. Multiobjective Genetic Fuzzy Rule Selection
A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization)optimization).

H Ishibuchi and T Yamamoto “Fuzzy rule selection by multi-H. Ishibuchi and T. Yamamoto, Fuzzy rule selection by multi
objective genetic local search algorithms and rule evaluation
measures in data mining,” Fuzzy Sets and Systems, Vol. 141,

59 88 (2004)pp. 59-88 (2004).



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Implementation of Multiobjective approach

Coding:
N: Total number of candidate rules

NsssS  21

sj={0, 1}: Inclusion or exclusion of the j-th rule

Obj ti f (S) f (S) f (S)Objectives: f1(S), f2(S), f3(S)
f1(S) : Number of correctly classified patterns by S
f2(S) : Number of selected rules in S
f3(S) : Total number of antecedent conditions in S



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

(1) Two-objective approach
Comparison of Four Approaches

(1) Two objective approach

(2) Weighted sum of the two objectives

Maximize f1(S) and minimize f2(S)

(2) Weighted sum of the two objectives
Maximize )()( 2211 SfwSfw 

(3) Three-objective approach
Maximize f1(S) and minimize f2(S), f3(S)

(4) Weighted sum of the three objectives
MaximizeMaximize )()()( 332211 SfwSfwSfw 



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule SelectionMODEL 1: Multiobjective Rule Selection

Data Sets
D t t Att ib t P tt Cl L thData set Attributes Patterns Classes Length

Breast W 9 683* 2 3
Diabetes 8 768 2 3

Glass 9 214 6 3
Heart C 13 297* 5 3

Iris 4 150 3 3Iris 4 150 3 3
Sonar 60 208 2 2
Wine 13 178 3 3Wine 13 178 3 3



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

Experimental Results (Cleveland Heart)
MODEL 1: Multiobjective Rule Selection
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We can observe the overfitting due to the increase in the number of fuzzy rules. 

(a) Error rates on training data (b) Error rates on test data



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

Experimental Results (Sonar)
Three-objective rule selection Three-objective rule selection

MODEL 1: Multiobjective Rule Selection
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Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

Experimental Results (Diabetes)
Th bj i l l i

MODEL 1: Multiobjective Rule Selection
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Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

Experimental Results (Diabetes)

MODEL 1: Multiobjective Rule Selection
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We can observe the overfitting due to the increase in the rule length in the right 
figure for rule sets with four fuzzy rules. 

(a) Rule sets with two rules (b) Rule sets with four rules



Different Models of Multiobjective GFSs
MODEL 1: Multiobjective Rule Selection

Observation

MODEL 1: Multiobjective Rule Selection

Observation
(1) Experimental results showed that each test problem has a different

tradeoff structure.
(2) Knowledge on the tradeoff structure is useful in the design of fuzzy

rule-based classification systems.Error Error

Test Data Test Data

Training Data Training Data

Complexity

g
0 Complexity

g
0



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule SelectionMODEL 2: Multiobjective Tuning and Rule Selection

SECOND TYPE: DATA BASE TUNING (+ RULE SELECT.) - REGRESSION

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic
algorithm for tuning and rule selection to obtain accurate and compactalgorithm for tuning and rule selection to obtain accurate and compact
linguistic fuzzy rule-based systems, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 15:5 (2007) 539–557

M.J. Gacto, R. Alcalá, F. Herrera, Adaptation and Application of Multi-
Objective Evolutionary Algorithms for Rule Reduction and Parameter
Tuning of Fuzzy Rule-Based Systems. Soft Computing 13:5 (2009) 419-436



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

R Alcalá J Alcalá-Fdez M J Gacto F Herrera A multi-objective genetic algorithm for

MODEL 2: Multiobjective Tuning and Rule Selection

R. Alcalá, J. Alcalá Fdez, M.J. Gacto, F. Herrera, A multi objective genetic algorithm for 
tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based 
systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 
15:5 (2007) 539–557,

Multi-objective EAs are powerful tools to generate GFSs but they 
b d tti l ll di t ib t d d d ffare based on getting a large, well distributed and spread off, 

Pareto set of solutions

– The two criteria to optimize in GFSs are accuracy and 
interpretability. The former is more important than the latter, 
so many solutions in the Pareto set are not usefulso many solutions in the Pareto set are not useful

– Solution: Inject knowledge through the MOEA run to bias the 

145

j g g
algorithm to generate the desired Pareto front part



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

Pareto front classification in an interpretability-accuracy GFSs:
d l l h b d

MODEL 2: Multiobjective Tuning and Rule Selection

 Bad rules zone: solutions with bad 
performance rules. Removing them 
improves the accuracy, so no Pareto 

l ti   l t d hsolutions are located here

 Redundant rules zone: solutions with 
i l t l  R i  th  d  irrelevant rules. Removing them does 
not affect the accuracy and improves 
the interpretability

 Complementary rules zone: solutions 
with neither bad nor irrelevant rules. 
Removing them slightly decreases the Removing them slightly decreases the 
accuracy

Important rules zone: solutions with 

146

 Important rules zone: solutions with 
essential rules. Removing them 
significantly decreases the accuracy



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

A i t d difi ti f d

MODEL 2: Multiobjective Tuning and Rule Selection

Accuracy-oriented modifications performed:

i i i f– Restart the genetic population at the middle of the run 
time, keeping the individual with the highest accuracy 
as the only one in the external population andas the only one in the external population and 
generating all the new individuals with the same 
number of rules it has

– In each MOGA step, the number of chromosomes in the p,
external population considered for the binary 
tournament is decreased, focusing the selection on the 

147

higher accuracy individuals



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

Obtained results for the medium voltage line problem:

MODEL 2: Multiobjective Tuning and Rule Selection

g p
Multi-objective genetic tuning + rule selection method:

5 fold cross validation 6 runs 30 runs per algorithm

148

• 5-fold cross validation  6 runs = 30 runs per algorithm
• T-student test with 95% confidence



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule SelectionMODEL 2: Multiobjective Tuning and Rule Selection

STUDY ON SEVERAL ALTERNATIVE APPROACHES AND IMPROVEMENTS: 
ADAPTATION AND APPLICATION OF MOEAs

M.J. Gacto, R. Alcalá, F. Herrera,
Adaptation and Application of Multi-Objective Evolutionary Algorithms for Rule Reduction and
Parameter Tuning of Fuzzy Rule Based Systems Soft Computing 13:5 (2009) 419 436

ADAPTATION AND APPLICATION OF MOEAs

Parameter Tuning of Fuzzy Rule-Based Systems, Soft Computing 13:5 (2009) 419-436,

 To perform the study we have applied six different approaches
based on the two most known and successful MOEAs:based on the two most known and successful MOEAs:

 Application of SPEA2 and NSGA-II
 Two versions of NSGA-II for finding knees,

NSGA-IIA and NSGA-IIU
 Two extensions for specific application,

SPEA2Acc and SPEA2Acc2

 Two objectives are considered:
MSE and Number of Rules

 Proper operators have to be selected.



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

NSGA-II FOR FINDING KNEES
J B k K D b H Di lf d M O ld “Fi di K i M l i bj i

MODEL 2: Multiobjective Tuning and Rule Selection

J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding Knees in Multi-objective 
Optimization,” Proc. Parallel Problem Solving from Nature Conf. - PPSN VIII, LNCS 3242, 
(Birmingham, UK, 2004) 722–731.

 A variation of NSGAII in order to find knees in the Pareto 
front by replacing the crowding measure by either an angle-
based measure or an utility-based measureased easu e o a u y ased easu e

Angle Based 
A hApproach

Utility Based 

Two different 
approaches

Approach

 In our case, a knee could represent the best compromise 
between accuracy and number of rules.



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

Extension of SPEA2 (SPEA2 )

MODEL 2: Multiobjective Tuning and Rule Selection

Extension of SPEA2Acc (SPEA2Acc2)
A New Crossover Operator for the Rule Part 

 Objective: to improve the search with a more intelligent
operator replacing the HUX crossover in SPEA2ACC

 Once BLX is applied a normalized euclidean distance is
calculated between the centric point of the MFs used by each

l f h ff i d hrule of the offpring and each parent

 The closer parent determines if this rule is selected or not for
this offpring

 Whit this crossover operator, mutation can be particularly used Whit this crossover operator, mutation can be particularly used
to remove rules



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

Obtained results for the medium voltage line problem:

MODEL 2: Multiobjective Tuning and Rule Selection

MethodMethod #R#R MSEMSEtratra tratra tt MSEMSEtsttst tsttst tt

100,000 evaluations

WM 65.0 57605 2841 + 57934 4733 +

T 65.0 17020 1893 + 21027 4225 +

S 40.9 41158 1167 + 42988 4441 +

TS 41.3 13387 1153 + 17784 3344 +

TS-SPEA2 28.9 11630 1283 + 15387 3108 +

TS-NSGA-II 31.4 11826 1354 + 16047 4070 +TS NSGA II 31.4 11826 1354 + 16047 4070 +

TS-NSGA-IIA 29.7 11798 1615 + 16156 4091 +

TS-NSGA-IIU 30.7 11954 1768 + 15879 4866 +

TS SPEA2 32 3 10714 1392 14252 3181TS-SPEA2Acc 32.3 10714 1392 = 14252 3181 =

TS-SPEA2Acc2 29.8 10325 1121 * 13935 2759 *

• 5-fold cross validation  6 runs = 30 runs per algorithm
• T-student test with 95% confidence



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

C i  f th  SPEA2 2 d l i l GA 

MODEL 2: Multiobjective Tuning and Rule Selection

Comparison of the SPEA2acc2 and classical GA 
for  for the medium voltage line problem:

153



Different Models of Multiobjective GFSs
MODEL 2: Multiobjective Tuning and Rule Selection

Convergence and an example model

MODEL 2: Multiobjective Tuning and Rule Selection

Convergence and an example model



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RBMODEL 3: Multiobjective Learning of DB and RB

THIRD TYPE KNOLEDGE BASE LEARNING REGRESSIONTHIRD TYPE: KNOLEDGE BASE LEARNING - REGRESSION

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi
Objective Evolutionary Approach to Concurrently Learn Rule and Data
Bases of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy
S t 17 5 (2009) 1106 1122 d i 10 1109/TFUZZ 2009 2023113Systems 17:5 (2009) 1106-1122, doi:10.1109/TFUZZ.2009.2023113



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RB

R Al lá P D F H B L i i F M ll i A M lti

MODEL 3: Multiobjective Learning of DB and RB

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases 
of Linguistic Fuzzy Rule-Based Systems  17:5 (2009) 1106-1122, IEEE 
Transactions on Fuzzy Systems, doi:10.1109/TFUZZ.2009.2023113,y y , ,

Rule bases and parameters of the membership functions of the Rule bases and parameters of the membership functions of the
associated linguistic labels are learnt concurrently.

Accuracy and interpretability are measured in terms of Accuracy and interpretability are measured in terms of
approximation error (MSE) and rule base complexity
(#Conditions), respectively.

 To manage the size of the search space, the linguistic 2-tuple
representation model, which allows the symbolic translation of a
l b l b l id i t h b l it dlabel by only considering one parameter, has been exploited



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RBMODEL 3: Multiobjective Learning of DB and RB

ThisThis proposalproposal decreasesdecreases thethe tuningtuning complexity,complexity, sincesince thethe 33 parametersparameters
perper labellabel ofof thethe classicalclassical tuningtuning areare reducedreduced toto onlyonly 11 translationtranslationpp gg yy
parameterparameter ((thethe tuningtuning isis appliedapplied toto thethe levellevel ofof linguisticlinguistic partitionspartitions))



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RB

Coding Scheme and Operators

MODEL 3: Multiobjective Learning of DB and RB

g p

 A double coding scheme (C = CRB+ CDB)

 Crossover operator: one point + BLX- crossovers (2 offsprings)

 Mutation operators:

R le Adding It adds  andom les to the RB he e is Rule Adding: It adds  random rules to the RB, where  is 
randomly chosen in [1, max]



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RB

Operators and Selection Schemes

MODEL 3: Multiobjective Learning of DB and RB

 Modify RB: It randomly changes  elements of the RB 
part The number  is randomly generated in [1  ]part. The number  is randomly generated in [1, max]

 Modify DB: It changes a gene value at y g g
random in the DB part

PAES, NSGA-II and SOGA 
were applied using thiswere applied using this 
representation and 
crossover



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RB

Analysed Methods

MODEL 3: Multiobjective Learning of DB and RB

MethodMethod DescriptionDescription Pop. sizePop. size

SOGA Rule Base learning with SOGA 64SOGARB Rule Base learning with SOGA 64

NSGA-IIRB Rule Base learning with NSGA-II 64

PAESRB Rule Base learning with PAES 64

SOGA (R l B D t B ) l i ith SOGA 64SOGAKB (Rule Base + Data Base) learning with SOGA 64

NSGA-IIKB (Rule Base + Data Base) learning with NSGA-II 64

PAESKB (Rule Base + Data Base) learning with PAES 64

 Different population sizes were probed for these MOEAs showingp p p g
better results when the population used for parent selection has similar 
sizes than those considered by single objective oriented algorithms.

 300 000 evaluations to allow complete convergence in all the 300,000 evaluations to allow complete convergence in all the
algorithms



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RB
Average Pareto Fronts and average solution by SOGA 

(medium voltage lines problem)

MODEL 3: Multiobjective Learning of DB and RB

(medium voltage lines problem) 
5 Data partitions 80% - 20%
6 Runs per partition
A total of 30 Runs
Test t-student α = 0.05

1. Most accurate 
solution is selected 
from each Pareto

2. Average values are 
computed and 
represented

3 These solutions are3. These solutions are 
no more used

4. Repeat to extract 
the desired avarage 
ParetoPareto

Only the first 20 
solutions aresolutions are 
considered



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RB

Statistical Analysis

MODEL 3: Multiobjective Learning of DB and RB

Statistical comparison among MOEAs

Statistical comparison of the best MOEA with SOGA

REMINDERREMINDER
5 Data partitions 80% - 20%
6 Runs per partition
A total of 30 Runs
Test t-student α = 0.05



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RB

Convergence

MODEL 3: Multiobjective Learning of DB and RB



Different Models of Multiobjective GFSs
MODEL 3: Multiobjective Learning of DB and RBMODEL 3: Multiobjective Learning of DB and RB

 The models obtained by these new approaches
presented a better trade-off than those obtained bypresented a better trade off than those obtained by
only considering performance measures.

 Between both multi-objective experimented, namely a
modified (2+2)PAES and the classical NSGA-II, the
modified (2+2)PAES has shown a better behavior thanmodified (2+2)PAES has shown a better behavior than
NSGA-II.

 Finally, the linguistic 2-tuples representation
presented has shown a good positive synergy.



Webpage of EMOFRBSsp g

http://www.iet.unipi.it/m.cococcioni/emofrbss.html



Webpage of EMOFRBSs:
List of 116 MGFSs contributionsList of 116 MGFSs contributions

http://www.iet.unipi.it/m.cococcioni/emofrbss.html
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A vision on the currentA vision on the current
state-of-the-art

Available at http://sci2s.ugr.es/gfs/#six



Current and Future Research Directions
in MGFSsin MGFSs
1) Development of New MGFS Methods with Improved Algorithms) p p g
- Particular algorithms for multiobjective input selection
- Particular algorithms for multiobjective fuzzy partition learning
- .  .  .

An example for learning granularities and selecting conditions can be found 
in:

Exploiting the concept of virtual
M. Antonelli, P. Ducange, B. Lazzerini, and F. 
Marcelloni, “Learning concurrently partition
granularities and rule bases of Mamdani fuzzy systems 

Exploiting the concept of virtual 
partitions with modified PAES

g f f y y
in a multi-objective evolutionary framework,” Int. J. 
Approx. Reason., vol. 50, n. 7, pp. 1066–1080, 2009.

M. Antonelli, P. Ducange, B. Lazzerini, and F. g
Marcelloni, “Multi-objective evolutionary learning of 
granularity, membership function parameters and rules 
of Mamdani fuzzy systems,” Evolutionary Intelligence, 
vol 2 n 1 2 pp 21 37 2009vol. 2, n. 1-2, pp. 21–37, 2009.



Current and Future Research Directions
in MGFSs (2)in MGFSs (2)
1) Development of New MGFS Methods with Improved Algorithms (2)
An example for learning granularities and for selecting variables can be found 
in: Exploiting the embedded learning

of the DB with improved SPEA2
R. Alcala, M. J. Gacto, and F. Herrera, “A Fast and 
Scalable Multi-Objective Genetic Fuzzy System for
Linguistic Fuzzy Modeling in High-Dimensional

of the DB with improved SPEA2

Linguistic Fuzzy Modeling in High Dimensional 
Regression Problems,” IEEE Transactions on Fuzzy
System, doi: 10.1109/TFUZZ.2011.2131657, in press
(2011).

2) Performance evaluation of MOGFSs2) Performance evaluation of MOGFSs
• Visualization of Pareto-Optimal Fuzzy Systems
• How to compare MGFSs

- A statistical Analysis is needed
Evaluation indexes in the EMO framework
evaluate the exploration and exploitationA statistical Analysis is needed

- Use of non-parametric statistical tests
p p

capabilities of the MOEA. But we are also
interested in generalization capabilities of
the FRBSs



Current and Future Research Directions
in MGFSs (3)in MGFSs (3)
2) Performance evaluation of MOGFSs
• How to compare MGFSsHow to compare MGFSs
A recent possibility to apply non-parametric statistical tests:

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Analyzing the averages on, g , , ,
Marcelloni, “A Multi-objective evolutionary approach
to concurrently learn rule and data bases of linguistic
fuzzy rule-based systems,” IEEE Trans. Fuzzy. Syst., 

l 17 5 1106 1122 2009

y g g
three representative points by
non-parametric statistical tests
for bi-objective problems
(FIRST MEDIAN LAST)

An extension for the case of more than two
objectives:

vol. 17, n. 5, pp. 1106–1122, 2009. (FIRST, MEDIAN, LAST)

objectives:

M. J. Gacto, R. Alcala, and F. Herrera, “Integration 
of an index to preserve the semantic interpretability in 
th lti bj ti l ti l l ti dthe multi-objective evolutionary rule selection and 
tuning of linguistic fuzzy systems,” IEEE Trans. 
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010.

Projections on bi-objective planes.Then, representative
points can be obtained in the new non-dominated solutions



Current and Future Research Directions
in MGFSs (4)in MGFSs (4)
3) Reliable Interpretability Measures (Formulations of the Interpretability)
- We need well established and accepted measuresp
- Use of new ones for C3 (semantic-RB) as cointension or number of fired rules

The use of relative measures for C4 (semantic-DB) could be promising. First 
proposal in:proposal in:

Measuring the differences to a given
linguistic partition (obtained from
experts or automatically by using

M. J. Gacto, R. Alcala, and F. Herrera, “Integration 
of an index to preserve the semantic interpretability in 
the multi-objective evolutionary rule selection and p y y g

absolute measures): GM3M index
based on three metrics

the multi objective evolutionary rule selection and 
tuning of linguistic fuzzy systems,” IEEE Trans. 
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010.

displacement aspect area

Some recent approaches are also using this kind of measures:

M A t lli P D B L i i d F M ll i “L i k l d b f ltiM. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Learning knowledge bases of multi-
objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and 
partition integrity, Soft Computing, DOI: 10.1007/s00500-010-0665-0, in press.



Current and Future Research Directions
in MGFSs (5)in MGFSs (5)
4) Objective dimensionality
- New EMO algorithms- New EMO algorithms
- Aggregation or selection of a reasonable set of significant measures

5) Scalability issues5) Scalability issues
- High Dimensinality (handling the length of the rules)
- Large scale problems (using a reduced subset of examples)

Some approaches dealing with large scale problems:

• M.A. de Vega, J.M Bardallo, F.A. Marquez, A. Peregrin, “Parallel distributed two-levelg , , q , g ,
evolutionary multiobjective methodology for granularity learning and membership functions
tuning in linguistic fuzzy systems,” in Proc. of ISDA 2009, pp. 134–139.

• M. Cococcioni, B. Lazzerini, F. Marcelloni, “On reducing computational overhead in multi-
bj ti ti T k i S f t ” A l S ft C ti 11 1 (2011) 675 688

Parallelization

Fitness
i iobjective genetic Takagi–Sugeno fuzzy systems,” Appl. Soft Computing 11:1 (2011), 675-688.

• M. Antonelli, P. Ducange, F. Marcelloni, “Exploiting a coevolutionary approach to 
concurrently select training instances and learn rule bases of Mamdani fuzzy dystems,” in 
Proc. of WCCI 2010, 1366–1372.

estimation

Instance
Selectionf ,



Current and Future Research Directions
in MGFSs (6)
5) Scalability issues (2)

in MGFSs (6)

Some approaches dealing with high dimensional problems:

• H. Ishibuchi, and T. Yamamoto, “Fuzzy rule selection by multi-objective genetic local search 
l h d l l d d l

Imposing a 
maximum rule 

algorithms and rule evaluation measures in data mining,” Fuzzy Sets and Systems, vol. 141, 
pp. 59–88, 2004.

• M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni, “Multi-objective Evolutionary
Generation of Mamdani Fuzzy Rule-Based Systems based on Rule and Condition Selection,”

lenght

Condition
selectionGeneration of Mamdani Fuzzy Rule Based Systems based on Rule and Condition Selection,  

in Proc. of GEFS 2011.
selection
by specific
approach

An approach dealing with both high dimensional and large scale problems:

• R. Alcala, M. J. Gacto, F. Herrera, “A Fast and Scalable Multi-Objective Genetic Fuzzy 
System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems,” IEEE 
Trans. on Fuzzy Systems, doi: 10.1109/TFUZZ.2011.2131657, in press (2011).

Using a  specific approach for variable selection and fitness
stimation by using a short subset of the examples



Current and Future Research Directions
in MGFSs (7)
6) Automatic selection of the most suitable solution
- Determining those solutions with the best generalization ability

in MGFSs (7)
- Determining those solutions with the best generalization ability
- Only training data can be took into account

A recent approach on this topic:A recent approach on this topic:

• Ishibuchi H, Nakashima Y, Nojima Y, Double cross-validation 
for performance evaluation of multi-objective genetic fuzzy 
systems. In GEFS 2011, pp 31-38.

Using a double cross-validation with two cross-validation
loops. The inner loop uses the training data to determine 
the complexity of the systems with the best validation
measure which is used to select the solutions used for themeasure, which is used to select the solutions used for the
outer loop.
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