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a b s t r a c t 

The automatic detection of cold steel weapons handled by one or multiple persons in surveillance videos 

can help reducing crimes. However, the detection of these metallic objects in videos faces an important 

problem: their surface reflectance under medium to high illumination conditions blurs their shapes in 

the image and hence makes their detection impossible. The objective of this work is two-fold: (i) To de- 

velop an automatic cold steel weapon detection model for video surveillance using Convolutional Neural 

Networks(CNN) and (ii) strengthen its robustness to light conditions by proposing a brightness guided 

preprocessing procedure called DaCoLT (Darkening and Contrast at Learning and Test stages). The ob- 

tained detection model provides excellent results as cold steel weapon detector and as automatic alarm 

system in video surveillance. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

According to World Health Organization 

1 , every year more than

5,0 0 0 person die in violent crimes. Around 40% of these homi-

ides are committed with knives and sharp cold steel weapons. In

ideo surveillance, security agents have to visually detect the pres-

nce of weapons in the monitored scenes and make decisions in a

ery short time. One of the most effective solutions to this prob-

em is to equip surveillance cameras with an accurate automatic

old steel weapon detection alarm system. 

Most previous studies addressed weapon detection on X-ray,

illimetric, or RGB images using classical machine learning meth-

ds [5,7,26–28] . Currently, the most accurate object detection mod-

ls are based on deep learning techniques, particularly CNN-based

odels. The first work in addressing weapon detection in videos

sing CNNs was of Olmos et al. [16] . This work focused on pistols

nd was evaluated on videos of movies from the nineties. 

As far as we know, the present study is the first in develop-

ng a cold steel weapon detection model using deep learning and

ddressing the problem of the brightness produced by cold steel

urface reflectance in surveillance videos recorded in indoor sce-

arios. The detection of cold steel weapons in surveillance videos

n indoor scenes faces several challenges: 
∗ Corresponding author. 

E-mail addresses: albertocl@decsai.ugr.es (A. Castillo), siham@ugr.es (S. Tabik), 

perezhernandez@ugr.es (F. Pérez), herrera@decsai.ugr.es (F. Herrera). 
1 http://www.euro.who.int/ _ _ data/assets/pdf _ file/0012/121314/E94277.pdf . 
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• Cold steel weapons can be handled in different ways and a

large part of the weapon can be occluded. In addition, common

cold steel weapons such as knives are small and the distance

between the knife and the camera can be large which makes

the detection more challenging. 
• The process of designing a new dataset for successfully training

the detection model is manual and time consuming. 
• In general, cold steel weapon, such as knives, have reflecting

surface that under different light conditions can distorts and

blurs their shape in the frames. 
• Automatic cold steel weapon detection alarm requires the acti-

vation of the alarm in real time and needs an accurate location

of the weapon in the monitored scene. 

We focus on accurately detecting the most used types of cold

teel weapons in crimes: kitchen knife, machete, razor, dagger and

arved knives. We built a new dataset that allows the model to

uccessfully learn the distinctive features of cold steel weapons.

hen, we developed a cold steel detection model appropriate for

ndoor scenarios. We studied the brightness conditions that af-

ect the detection performance and propose a new brightness

uided preprocessing procedure that overcomes the problem of

igh brightness conditions. 

The main contributions of this work can be summarized as fol-

ows: 

• Build a new labeled cold steel detection database guided by the

classification process. 

https://doi.org/10.1016/j.neucom.2018.10.076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.10.076&domain=pdf
mailto:albertocl@decsai.ugr.es
mailto:siham@ugr.es
mailto:fperezhernandez@ugr.es
mailto:herrera@decsai.ugr.es
http://www.euro.who.int/__data/assets/pdf_file/0012/121314/E94277.pdf
https://doi.org/10.1016/j.neucom.2018.10.076
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cells. 
• Analyze the best combination of CNN-based classifiers and re-

gion selection techniques for the automatic cold steel weapons

detection in surveillance videos in indoor scenarios. 
• Propose a new brightness guided preprocessing procedure,

called Darkening and Contrast at Learning and Test (DaCoLT),

for overcoming the detrimental brightness conditions. This pro-

cedure consists of using a darkening data-augmentation tech-

nique at learning stage, and darkening plus improving con-

trast(with Contrast-Limited Adaptive Histogram Equalization

CLAHE algorithm [19] ) at inference stage. 
• Develop a real time cold steel weapon detection system for

surveillance videos. 

Our experimental study shows that the most accurate detection

model trained on our new database is R-FCN(ResNet101), provid-

ing F1 measure of 93%. The F1 obtained by the detection model

in the same scenarios (i.e., same objects and actions) under dif-

ferent brightness conditions worsened by up to 15%. By using Da-

CoLT procedure we reduced this difference from 15% to 3%. In addi-

tion, the proposed cold steel weapon detection model can be used

as automatic alarm system at real-time with an average activation

time rate of 0.41 seconds. 

This paper is organized as follows. Section 2 gives a brief

analysis of the most related research studies. Section 3 gives an

overview of the most influential selective search techniques and

CNN-based classification models. Section 4 describes the approach

we used to build our new detection database. Section 5 selects the

most suitable detector for video surveillance and analyzes its per-

formance in different brightness conditions. Section 5.3 describes

the proposed DaCoLT procedure and analyzes its impact on the de-

tection performance. Section 7 proves the suitability of the detec-

tor as automatic detection system using 19 scenes and AATpI met-

ric. Finally, the conclusions are summarized in Section 8 . 

2. Related works 

The problem of detecting a knife handled by a person in

surveillance videos is closely related to (i) small objects detection

in images and (ii) general objects detection using deep learning

models. 

The traditional area of weapon detection in images has of-

ten used classical supervised machine learning methods that re-

quire a high level of human supervision, i.e. Features from Accel-

erated Segment Test (FAST) [1] , Scale Invariant Feature Transform

(SIFT) [5] , Active Appearance Models (AAMs) [7] , Harris [26] . The

used data are mainly X-ray or millimetric images [27,28] for con-

cealed weapon and RGB for visible weapons [1,7,8] . The authors

of [7] focus on detecting the sharp point of concealed knives in

X-ray images by combining a time consuming search technique

with the AAMs. This approach reaches good accuracy but only on

noise free X-ray images and at a high computational cost. The au-

thors in [8] detects a knife in a RGB-images using the sliding win-

dow search approach combined with the classical SVM classifier.

All these methods provide good accuracies but suffer from several

limitations, they are invasive, need expensive metal-detector sys-

tems [5] such as the systems used in the airport access, cannot

detect multiple weapons [11,26] and are slow to be used in real

time detection systems [1] . 

The state-of-the-art object detection models are based on deep

Convolutional Neural Networks and showed promising results in

the two most prestigious detection challenges. The most accurate

detection model in the ILSVRC 2017 (Large Scale Visual Recogni-

tion Challenge) [20] reached a mean precision of around 73% 

2 on

a benchmark of 527,892 images arranged into 200 object classes,
2 http://image-net.org/challenges/LSVRC/2017/ . 
ith an average of 2,500 images per class. The most accurate de-

ection model on the 80 object detection benchmark in Common

bjects in Context (COCO) challenge [12] also reached a mean pre-

ision of around 73%. The highest performance in COCO, a preci-

ion of 60% and recall of 80% were obtained on large objects and

he lower performance, a precision of 30% and recall of 50% were

btained on small objects 3 . 

As far as we know, the first automatic handgun detection sys-

em based on Deep Learning was [16] . This work showed good ac-

uracies in movies (downloaded from YouTube) with better qual-

ty, i.e., better resolution, contrast and brightness than common

urveillance videos. The best results reported in this work was ob-

ained by Faster R-CNN [18] (VGGNet [21] ) detection model with a

ate of five frames per second(fps), which is a bit farther from be-

ng a near real time system. 

. Deep learning based detection models 

The state-of-the-art detection models reformulate the detection

ask into a classification task following two steps. First, they apply

 selective search technique to generate candidate regions from the

nput image then, analyze each candidate proposal with a CNN-

ased classification model. The combination of these two steps is

ritical to the detection performance. 

.1. Selective search techniques 

One of the main challenges in object detection is that a priori

he object of interest could be in any region in the input image.

he selective search techniques intend to find the regions where

he object is more likely to be located. One of the classical search

echniques is the sliding window, it generates millions candidate

indows, which makes this approach too slow (all these candidate

indows should be feeded to the classifier) and hence not suit-

ble for real time detection. One of the fastest search techniques is

he Region Proposal (RP) search algorithm, it produces much less

andidate-regions, in the order of thousands, based on the next

imple assumption: the areas from the input image that contain

 blobby shape are considered as potential proposals. 

The first detection model in introducing the RP search algo-

ithm was R-CNN [6] . Later, the RP search technique was con-

erted into a fully convolutional network, called Region Proposal

etwork (RPN) [15] , which allowed converting the two step detec-

ion process into one single step process called end-to-end detec-

ion model. The first end-to-end model in adopting RPN as search

pproach was Faster R-CNN [18] followed by R-FCN [3] . 

Faster R-CNN operates in two steps, it uses RPN to generates

round 100 regions of interest using several windows considering

ultiple default aspect ratios on the last feature map, then clas-

ifies these proposals with the next fully connected layers. R-FCN

an be considered as an improved implementation of Faster R-CNN,

t completely fuses the RPN and classifier with the aim of increas-

ng the re-utilization of the calculation and memory accesses to

hared data. 

The fastest technique for object detection was included first in

ou Look Only Once(YOLO) [17] then in Single Shot MultiBox De-

ector(SSD) [13] . This technique divides the input image into a reg-

lar grid then selects candidate-regions centred in the grid-cells.

he classification score of each candidate region is calculated us-

ng the scores obtained in the grid-cells to which it belongs. This

echnique is fast because it re-utilizes the classification of the grid
3 http://cocodataset.org/#detections-leaderboard . 

http://image-net.org/challenges/LSVRC/2017/
http://cocodataset.org/#detections-leaderboard
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Fig. 1. This building block is stacked several times to create ResNest50 and 

ResNet101, with 50 and 101 learnable layers respectively. Figure from [9] . 

Fig. 2. InceptionV2 building block. Figure from [24] . 
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.2. Convolutional network-based models 

Convolutional Neural Networks are a particular type of neural

etworks, they are built as a stack of convolutional layers, pool-

ng layers, and fully-connected layers. Convolutional and fully con-

ected layers are learnable layers, while the pooling layer is a re-

uction layer that helps increasing the abstraction level between

earnable layers. Recent CNNs-based classification models are in-

reasingly showing significant improvements in a variety of com-

uter vision tasks [14] , in object recognition [4,22] , object detec-

ion [16,30] and image segmentation [29] . 

In this subsection, we introduce the most influential CNN-based

lassification models used in our study: ResNet, Inception and

nception-ResNet-V2. 

ResNet Deep residual Network [9] (ResNet), proposed by Mi-

rosoft, won the localization and detection tasks in the ILSVRC-

015 challenge and the segmentation and detection tasks in COCO-

015 challenge [12] . In this work, we consider two residual net-

ork architectures, ResNet50 and ResNet101 composed of 50 and

01 learnable layers respectively. Both, ResNet50 and ResNet101,

re based on the building block shown in Fig. 1 . Very deep con-

olutional networks are more accurate but harder to train. ResNet

s based on repeating a building block made of three convolutions,

 1x1 followed by a 3x3 and a 1x1, and a connection joining the

nput of the first convolution to the output of the last convolution.

he connection resolve the training by fusing filtered features with

riginal features (residual learning), as illustrated in Fig. 1 . 

InceptionV2 GoogLeNet [24] won the ILSVRC-2014 detection 

hallenge. It is based on the repetition of the building block

odule called Inception depicted in Fig. 2 . This module extracts

ifferent levels of features concatenated as output of module.

nception module embeds seven convolutions and one pooling

ayers divided into four feature channels introduced to increase
idth and depth. InceptionV2 network contains eight Inception

odules and two refactorized modules, which are a variation of

nception. 

Inception-ResNet-V2 The combination of the residual connec-

ions and Inception, i.e. Inception-ResNet scheme, have shown bet-

er performance in image recognition. In this work, we considered

he Inception-ResNet-V2 [23] architecture which currently repre-

ents the state-of-the-art in image classification. This architecture

se simplified Inception modules with residual connections, as

hown Fig. 3 . Inception-ResNet-V2 is based on variations of the

riginal Inception module, five Inception-A, ten Inception-B, and

ve Inception-C block ordered from the higher to the lower net-

ork levels. 

Training CNN-based classifiers The supervised learning process of

eep CNNs, such as ResNet, Inception V2 and Inception-ResNet V2,

s based on minimizing the average loss: 

(w ) = 

1 

N 

N ∑ 

i =1 

L ( f (w ; x i ) , y i ) + λR(w ) (1)

here x i and y i are the input images and the corresponding la-

el respectively. N is the number of training examples in every

teration, L is the loss function, f is the prediction of the net-

ork using the current weights w , and R is the weight decay with

he Lagrange multiplier λ. We use the Stochastic Gradient Descent

SGD) algorithm with back propagation to update the weights. SGD

omputes the output of the network for a set of samples, then,

omputes the output error and its derivatives with respect to the

eights to finally update the weights of the learnable layers as fol-

ows. 

 t+1 = μw t − α�J(w t ) (2) 

here μ is the momentum weight for the current weights w t and

is the learning rate. 

The network weights can be randomly initialized if the network

s trained from scratch or set to a pre-trained network weights if

ne-tuning the CNN-based model. In this work we have initial-

zed each network with the weights of the same architecture pre-

rained on COCO database and retrained the last learnable layer.

he selection of an appropriate combination of data-augmentation

echniques should be considered to further improve the learning of

he network [25] . 

. Procedure for building the cold steel detection database 

To build a database that allows the detection model to accu-

ately distinguish between knives and all the objects that could be

onfused with knives, we first start with an initial classification

ataset, Database-1, and extend it progressively with new object

lasses so that the number of True Positives (#TP), False Positives

#FP), True Negatives (#TN), and False Negatives (#FN) produced

y a simple classification model (VGG-16) are improved. This anal-

sis allows us to understand which objects are critical to the learn-

ng process and consider them as background when constructing

he final detection database. 

We developed the database in three steps as follows: 

• Database-1 includes 2 classes, the knife class contains images

of knives of diverse sizes and with diverse backgrounds. 
• Database-2 contains 28 classes and includes new object classes

that are often present as background in the knife class in

Database-1. 
• Database-3 includes object classes that can be handled similarly

to the knife, e.g., pen, smartphone, see four examples in Fig. 4 . 

The images used to build Database-1, -2 and -3 were down-

oaded from diverse websites. The characteristics of the three aux-

liary databases, Database-1, -2 and -3, are shown in Table 1 . 
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Fig. 3. Residual Inception modules used for Inception-ResNet-V2 architecture. Inception-A, Inception-B, and Inception-C blocks depicted from left to right. Figure from [23] . 

Fig. 4. Example images of four object classes from Database-3, (a) knife class, (b) pen class, (c) mobile phone class and (d) cigarette class. 

Table 1 

Databases information. 

Database- Classes Total img Img knives Other img Task 

1 2 1,654 598 1,056 Classification 

2 28 5,538 598 4,940 Classification 

3 100 10,039 618 9,421 Classification 

4 1 1,250 1,250 – Detection 

Test-clas – 512 260 252 Classification 

Test-det – 388 378 10 Detection 
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affect the detection performance( Section 5.3 ) 
To evaluate the performance of the classification and detection

models on the proposed databases, we have built two test-sets,

Test-clas and Test-det. 

• Test-clas is used for evaluating the classification model, it con-

sists of 512 images, 260 images contain the knife class and 252

images contain other object classes. 
• Test-det is used for evaluating the detection models, it con-

tains 388 images, 378 contain at least one knife. Test-det in-

cludes frames taken by a surveillance IP camera (Hikvision DS-

2CD2420F-IW 1080p for video, frame-rate of 30fps, field of

view 95 o and MJPEG compression). 

We used Keras API 2.0.4 [2] for the experiments. The per-

formance, precision, recall, and F1, obtained by the classification

model when trained on Database-1, -2 and -3 is shown in Table 2 .

Where, 

P recision = 

# T P 

# T P + # F P 
Recall = 

# T P 

# T P + # F N 

F 1 scor e = 

P r ecision × Recall 

P r ecision + Recall 

The knife class performance has increased when extending the

dataset with more object classes. The best performance is obtained

when the model is trained on Database-3, but it cannot be directly
sed for training the detection model as the detector requires a

ifferent annotating strategy. 

As final step, we built the training set, Database-4, by tak-

ng into account all the object classes, from Database-1,-2 and -

, that improve the learning because either they are handled in

he same way as a knife or have similar features as a knife. Un-

ike in image classification, the annotation process for the detec-

ion requires indicating the object class using a bounding box. We

onsider two classes, the knife as the true class and the rest of ob-

ects as background. We included images of i) cold steel weapon

f diverse types, shapes, colors, sizes and made of different mate-

ials ii) knives located near and far from the camera, iii) knives oc-

luded partially by the hand, iv) objects that can be handled in the

ame way as knives and v) images captured in indoor and outdoor

cenarios. We obtained a total number of 1,250 images. Examples

rom Database-4 are shown is Fig. 5 . 

The images used to build this database were downloaded from

nternet, some frames were extracted from Youtube videos and

urveillance videos. In the rest of the paper we will use Database-4

or training the detection model. 

. Analysis of the deep learning approach for cold steel 

eapon detection 

A cold steel weapon detection system in video surveillance re-

uires a fast and robust detection model for real scenarios and un-

er various brightness conditions. In this section, we provide: 

• A description of the hardware, software setup and model

hyper-parameters used to carry out the experimental

study( Section 5.1 ). 
• The performance analysis of several modern detection models

to select a fast and accurate model suitable for real-time detec-

tion( Section 5.2 ) 
• How different brightness conditions present in real scenarios
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Table 2 

Results of the classification model in the knife class. 

Database- #TP #FN #TN #FP Precision(%) Recall(%) F1 score(%) 

1 181 79 174 78 69.88 69.62 69.75 

2 209 51 228 24 89.70 80.38 84.78 

3 213 47 228 24 89.87 81.92 85.71 

Fig. 5. Example images from Database-4. These images show a richer context. 

Table 3 

The hyperparameters used for tuning all detection models. 

Hyperparameter Value Description 

Grid anchor generator 

Scales [0.25, 0.5, 1.0, 2.0] List of scales for the anchors 

Aspect ratios [0.5, 1.0, 2.0] List of aspect ratios for the anchors 

Height-width stride 16, 16 Anchor stride in height-width dimension 

in pixels 

Height-width 256, 256 Anchor height-width in pixels 

Batch non max suppression 

Score threshold 0.0 Scalar threshold for removing low scoring 

boxes 

IOU threshold 0.6 Scalar threshold for removing boxes that 

have high IOU overlap with previously 

selected boxes 

Max detection per class 100 Maximum number of detections to retain 

per class 

Max total detections 100 Maximum number of detections to retain 

across all classes 

Score converter softmax Specify how to convert the detection scores 

Batch size 1 Required for RPN non parallel training 

Learning rate 0.0 0 03 Optimizer 

Momentum 0.9 Optimizer 

Num steps 18 epochs Number of steps to train the model 

Table 4 

The set of data-augmentation techniques used for training all the analyzed models. 

Data augmentation technique Parameter Value Description 

Random horizontal flip Probability 0.5 Random horizontal flip 

Random image scale Min ratio 0.9 Scale image by factor 

Max ratio 1.4 

Random RGB to gray Probability 0.1 Randomly convert entire image 

to gray scale 

Random crop image Overlap threshold 0.6 Minimum overlap threshold of 

cropped boxes 
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.1. Experimental setup 

The detection models were built and evaluated using Tensor-

ow Object Detection API [10] . The experiments were carried out

n a Intel Xeon E5-2630v4 CPU accelerated with NVIDIA Titan

p GPU. A summary of the used hyperparameters is provided in

able 3 . The set of data-augmentation techniques applied in the

raining stage are shown in Table 4 . 

.2. Selection of the best detection model 

We analyzed the performance of several combinations of the

tate-of-the-art classification models and region selection tech-
iques with the objective of finding the best detection model for

ideo surveillance. In particular, we analyzed these combinations: 

• SSD(InceptionV2) 
• R-FCN(ResNet101) 
• Faster R-CNN(Inception-ResNet-V2, ResNet50, ResNet101, and 

InceptionV2) 

All the detection models were initialized using the pre-trained

eights on COCO dataset made of more than 20 0,0 0 0 labeled

mages. We used fine-tuning by training the last fully connected

ayer of the network. The training process takes from three to four

ours. 

The performance of the detection models is measured in terms

f true positives, false positives, precision, recall, F1, and inference
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Table 5 

Comparative analysis of the state-of-the-art detection models. 

Detector Feature extractor #TP #FP Precision(%) Recall(%) F1(%) fps rate 

Faster R-CNN Inception-ResNet-V2 345 0 100 91.27 95.44 1.3 

Faster R-CNN ResNet101 332 8 97.65 89.73 93.52 4.8 

Faster R-CNN InceptionV2 329 3 99.1 87.04 92.64 12.8 

Faster R-CNN ResNet50 326 2 99.39 86.24 92.35 4.4 

R-FCN ResNet101 335 0 100 88.62 93.97 10 

SSD InceptionV2 245 0 100 64.81 78.65 20.4 
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time rate(frames per second). The training and testing were car-

ried out on Database-4 and test-det respectively. In general, Faster

R-CNN(Inception-ResNet-V2, ResNet101, InceptionV2, ResNet50), R-

FCN(ResNet101) and SSD(InceptionV2) achieve high performance as

it can be seen in Table 5 . This high performance can be explained

by the fact that transfer learning from COCO has been very benefi-

cial for the learning process as COCO includes the knife class made

up of around 8.500 images. 

In particular, the most accurate model is Faster R-

CNN(Inception-ResNet-V2) providing an F1 score of 95%. However,

it is not suitable for near-real time tasks as it has a rate of 1.3

fps. The fastest detector is SSD(InceptionV2), however it produces

the worst results. As we focus on video surveillance, the detection

should be accurate and fast at the same time. Therefore, we select

R-FCN(ResNet101) to build our cold steel weapons detector. Using

100 region proposals R-FCN(ResNet101) achieves a good precision,

100%, recall 88.62% and F1 93.97%, which is close to the best

model and provides reasonable inference time rates. 

In the rest of the paper, we will interchangeably use the words

inference and test and the words training and learning. 

The whole detection process using R-FCN(ResNet101) in a Full

HD resolution frame, of 1, 920 × 1, 080 pixels, takes 10 fps , which is

twice faster than the pistol detector proposed in [16] . This allows

the cold steel weapon detection to be performed in real-time in

surveillance videos. 

5.3. Analysis of the brightness impact on the detection performance 

Under high brightness conditions, the camera sensors try to

compensate these situations, but add noise or eliminate useful

fine-grain details in the image, which affect the detection perfor-

mance. In general, our target objects are small metallic knives that

can easily disappear due to the reflection of the light in their sur-

faces. Next, we analyze the impact of the brightness conditions on

the R-FCN(ResNet101) detection model performance. 

We used twelve test videos recorded with an IP security cam-

era, Samsung SNH-V6410PN of resolution 1,080p, frame-rate 30fps

and field of view 96.1 °. The test videos are divided into four groups

of different brightness conditions, high, medium, low and artifi-

cial brightness. For a fair comparison, all the videos show the

same person repeating the same actions at the same distance from

the camera. All the videos were recorded using the same camera

setup in the same indoor scene. The test videos include three com-

mon knives with different sizes, small, medium, and large. Small,

medium and large refer to the proportion of the non-occluded part

of the knife with respect to the occluded part by the hand. See ex-

amples in Fig. 6 . The test videos can be found through this github

repository 4 . 

We consider a knife as ground truth when it is recognizable by

the human eye. The results in terms of the total number of Ground

Truth Positives #GT_P, #TP, #FP, precision, recall, and F1 in each

test video are shown in Table 6 . We consider a detection as TP if
4 https://github.com/alcasla/Automatic-Cold-Steel-Detection-Alarm. 

 

 

he overlapping between the area of the handled knife in the frame

nd the predicted bounding box is larger than 70%. 

As it can be observed from the Table 6 , the performance of the

etection model is unstable in a changing brightness scenario. The

orst performance is obtained in high brightness conditions, and

he best performance with artificial brightness. From the lower to

he higher brightness conditions, the average recall decreased from

0.02% to 56.66%, and the average F1 from 87.59% to 71.91%. 

Fig. 7 shows an example of the detection results of very similar

cenes, i.e., same pose and context, different brightness levels and

ontrast, but different detection results. 

. Brightness guided preprocessing: DaCoLT procedure 

As shown in the previous section, the performance of the de-

ection in surveillance scenarios is highly affected by the bright-

ess variability. The quality of the detection model depends on the

uality of the video frames. To reduce the effect of the reflectance

f cold steel weapons in the frames, we developed a preprocess-

ng method, called DaCoLT, that (1) improves the visual features

shape, texture, contrast) of cold steel weapons and (2) makes the

etection model more robust to light conditions variability. DaCoLT

rocedure consists of two stages: 

• Training the detection model on a selected range of brightness

conditions using data-augmentation 

• Achieving the ideal brightness condition by adjusting the dark-

ening of the frames and improving their visual quality using a

preprocessing approach before analyzing them with the detec-

tion model. 

This section gives a complete analysis and assessment of

aCoLT. First, a description of DaCoLT procedure is provided

n Section 6.1 . The analysis of Darkening and Contrast at Test

ime(DaCoT) approach, which is concerned with improving the ro-

ustness of the model during test time, is given in Section 6.2 and

nally the analysis of the complete DaCoLT (Darkening and Con-

rast at Learning and Test time) procedure is given in Section 6.3 . 

.1. DaCoLT procedure 

We propose a brightness guided preprocessing approach called

aCoLT to improve the robustness of the model to brightness vari-

bility at both, learning and test stages. The DaCoLT procedure can

e divided into two stages, Learning and Test as described below: 

• During the learning stage, the model is trained on a spe-

cific range of brightness/darkness conditions using a darkening

based data-augmentation technique. This process is as follows: 

1. We first analyze and determine the effect of different

brightness degrees present in the monitored environment. 

2. We select the frames with the worst brightness conditions

and process them by applying different darkening factors

then improve their contrast. This analysis will help us to

find the darkening factor that produces the best perfor-

mance. 
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Fig. 6. Results of the detection in four different brightness conditions. 

Table 6 

Detection performance obtained on videos recorded in different brightness conditions. 

Brightness Knife size #frames #GT_P #TP #FP Precision Recall F1 

Large 121 112 78 0 100% 69.64% 82.1% 

High Medium 107 90 44 0 100% 48.89% 65.67% 

Small 137 103 53 0 100% 51.46% 67.95% 

Average 100% 56.66% 71.91% 

Large 109 98 85 0 100% 86.73% 92.89% 

Medium Medium 116 98 73 0 100% 74.49% 85.38% 

Small 138 110 64 0 100% 58.18% 73.56% 

Average 100% 73.13% 83.94% 

Large 126 114 104 1 99.05% 92.04% 95.41% 

Low Medium 114 100 70 0 100% 70% 82.35% 

Small 138 101 74 0 100% 73.27% 84.57% 

Average 99.68% 78.44% 87.44% 

Large 119 110 95 0 100% 86.36% 92.68% 

Artificial Medium 113 99 75 3 96.15% 78.13% 86.21% 

Small 96 90 65 4 94.2% 75.58% 83.87% 

Average 96.78% 80.02% 87.59% 

Fig. 7. An example of the detection results in two similar situations with different 

brightness conditions. 
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3. Finally, during the training, we apply a darkening data-

augmentation technique using a darkening factor in the in-

terval between 0% and ideal darkening factor. 
• During the test stage, the highly bright frames are darkened by

a specific factor, and their contrast is improved. This prepro-

cessing stage is called DaCoT, and proceeds as follow: 

1. We first check the brightness level of each frame. If the

brightness level is medium to high we darken the frame by

multiplying its pixels with the corresponding darkening fac-

tor. This factor is calculated based on the difference between

the ideal and the current brightness level of the frame. 
2. Afterwards, we increase the contrast of the obtained frame

via CLAHE algorithm. 

3. The frame is then fed to the detection model. 

The DaCoLT procedure is illustrated in Fig. 8 . 

.2. Analysis of darkening and contrast at test stage 

To solve the instability of the detection model in variable

rightness conditions, we first analyze the Darkening and Contrast

t test time (DaCoT), which simulates the brightness condition that

roduces the best performance, i.e., low brightness and high con-

rast. 

The evaluation of the proposed approach under high brightness

onditions when considering different darkening factors is pro-

ided in Table 7 . 

The performance of the detection model has improved when

sing a darkening factor of 30%. In average, with a darkening fac-

or of 30% the recall and F1 have improved by 6.53% and 5.07%

espectively in comparison with the obtained performance under

he original high brightness condition. 

The proposed preprocessing, darkening and CLAHE, takes

round 29 ± 3 ms per frame on the CPU, which does not slow-

own the overall detection process as this preprocessing task is
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Table 7 

Results on video frames recorded originally in high brightness conditions (i.e., worst case) when 

applying DaCoT. 

Darkening Knife #frames #GT_P #TP #FP Precision Recall F1 

factor size 

Original Large 121 112 78 0 100% 69.64% 82.11% 

High Medium 107 90 44 0 100% 48.89% 65.67% 

Brightness Small 137 103 53 0 100% 51.46% 67.95% 

Average 100% 56.66% 71.91% 

Large 121 112 81 0 100% 72.32% 83.94% 

10% Medium 107 90 52 0 100% 57.78% 73.24% 

Small 137 103 57 1 98.28% 55.34% 71.25% 

Average 99.43% 61.81% 76.14% 

Large 121 112 83 0 100% 74.11% 85.13% 

20% Medium 107 90 55 0 100% 61.11% 75.86% 

Small 137 103 53 0 100% 51.46% 67.95% 

Average 100% 62.23% 76.31% 

Large 121 112 85 0 100% 75.89% 86.29% 

30% Medium 107 90 56 0 100% 62.22% 76.71% 

Small 137 103 53 0 100% 51.46% 67.95% 

Average 100% 63.19% 76.98% 

Large 121 112 80 0 100% 71.43% 83.33% 

40% Medium 107 90 52 0 100% 57.78% 62.6% 

Small 137 103 51 0 100% 49.51% 66.23% 

Average 100% 59.57% 70.72% 

Large 121 112 78 0 100% 69.64% 82.11% 

50% Medium 107 90 41 0 100% 45.56% 65.67% 

Small 137 103 50 0 100% 48.54% 65.36% 

Average 100% 54.58% 71.04% 

Fig. 8. An illustration of DaCoLT procedure applied at both, learning and test time. 
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performed in parallel with the detection task on the GPU. That is,

the preprocessing thread is executed on the CPU and the detection

thread is executed on the GPU. 

This experiment allowed us to determine the range of bright-

ness in which the detection model is unstable. We will use this

information to define the darkening factor interval that improves

the detection in high brightness conditions. 

6.3. Analysis of darkening and contrast at learning and test stages 

From the previous analysis, we found that DaCoT improves the

performance of the detection model under high brightness condi-

tions. In this section, we analyze using DaCoLT by applying differ-

ent darkening levels not only at the test stage but also during the

learning stage of the detection model. The used darkening data-

augmentation technique consists of darkening individual training

samples by randomly selecting a darkening factor in [0%, 30%]. 
Table 8 shows the impact of applying DaCoLT on the detec-

ion performance in the worst brightness conditions. The first part

hows the results of the detection model on videos filmed orig-

nally under high brightness conditions and using different knife

izes, large, medium and small. The second part shows the effect of

pplying the proposed brightness guided preprocessing approach

t the test stage, DaCoT. The third one shows the effect of the pro-

osed preprocessing DaCoLT procedure in both, learning and test

tages. 

From this table, we can see that the darkening data-

ugmentation step included in DaCoLT improves the learning of

he detection model under high brightness conditions. The aver-

ge recall and F1 have respectively improved by 9.46% and 7.17%

n comparison with the performance considering only ideal bright-

ess conditions preprocessing at inference time. Particularly, the

ecall and F1 have improved in the harder cases by 8.89% and

.41% respectively for the medium knife, and 20.38% and 15.66%

espectively for the small knife. 

Applying the brightness preprocessing during both, inference

nd learning steps on videos filmed under high brightness condi-

ions improves the recall by 15.99% and F1 by 12.24% in compari-

on with the original high brightness conditions. 

As final study, we show in Table 9 the results when applying

aCoLT procedure on videos filmed under different brightness con-

itions. 

As it can be observed, DaCoLT improves the detection specially

n the worst conditions (i.e., highest brightness) in surveillance

ideos. In other words, DaCoLT allows achieving similar accuracies

n the videos independently on their brightness level. 

. DaCoLT based alarm detection system 

The cold steel detection model is essential for building a cold

teel detection alarm system. The more robust is the detection

odel, the more robust is the alarm system. DaCoLT improves the

isual features of knives in the frames, and hence increases the

obustness and capacity of the model to detect knives correctly un-

er variant light conditions. In this section, we show the suitability

f the brightness guided procedure for cold steel knife detection
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Table 8 

Results of applying DaCoT and DaCoLT on videos filmed originally under high brightness conditions and using 

different knif e sizes, lar ge, medium and small. 

Knife size #frames #GT_P #TP #FP Precision Recall F1 

Original Large 121 112 78 0 100% 69.64% 82.11% 

High Medium 107 90 44 0 100% 48.89% 65.67% 

Brightness Small 137 103 53 0 100% 51.46% 67.95% 

Average 100% 56.66% 71.91% 

Guided brightness Large 121 112 85 0 100% 75.89% 86.29% 

DaCoT Medium 107 90 56 0 100% 62.22% 76.71% 

(Test time) Small 137 103 53 0 100% 51.46% 67.95% 

Average 100% 63.19% 76.98% 

Guided brightness Large 121 112 84 0 100% 75% 85.71% 

DaCoLT Medium 107 90 64 0 100% 71.11% 83.12% 

(Learning + Test) Small 137 103 74 0 100% 71.84% 83.61% 

Average 100% 72.65% 84.15% 

Table 9 

The effect of applying DaCoLT procedure on videos filmed originally under different brightness conditions. 

Brightness Knife size #Frames #GT_P #TP #FP Precision Recall F1 Original F1 

Large 121 112 84 0 100% 75% 85.71% 82.1% 

High Medium 107 90 64 0 100% 71.11% 83.12% 65.67% 

Small 137 103 74 0 100% 71.84% 83.61% 67.95% 

Average 100% 72.65% 84.15% 71.91% 

Large 109 98 84 0 100% 85.71% 92.31% 92.89% 

Medium Medium 116 98 78 0 100% 79.59% 88.64% 85.38% 

Small 138 110 75 0 100% 68.18% 81.08% 73.56% 

Average 100% 77.83% 87.34% 83.94% 

Large 126 114 103 0 100% 90.35% 94.93% 95.41% 

Low Medium 114 100 74 0 100% 74% 85.06% 82.35% 

Small 138 101 72 0 100% 71.29% 83.24% 84.57% 

Average 100% 78.55% 87.74% 87.44% 

Large 119 110 95 0 100% 86.36% 92.68% 92.68% 

Artificial Medium 113 99 73 1 98.65% 74.49% 84.88% 86.21% 

Small 96 90 63 1 98.44% 70.79% 82.36% 83.87% 

Average 99.03% 77.21% 86.64% 87.59% 

Fig. 9. Alarm detection system diagram. Sample of sequence detection with alarm activation. The white box in the frames represents a true positive. 

a  

I

 

w  

o  

a  

s  

c

 

a  

t  

a  

c

 

v  

i  
larm system using the metric AATpI (Alarm Activation time per

nterval) [16] . 

In an automatic detection system the alarm must be activated

hen the system is completely confident about the presence of

ne or more weapons in the scene. AATpI measures the time the

utomatic detection alarm system takes to detect at least k succes-

ive frames of true positives. In the next analysis, we used k = 5

onsecutive frames to activate the alarm. 
Fig. 9 illustrates the behavior of the alarm system using an ex-

mple. The sequence of frames are analyzed frame by frame, when

he system detects one isolated true positive it does not trigger any

larm. However, when the system detects five true positives in five

onsecutive frames, from frame 4 to frame 8, it triggers the alarm. 

For the experimental analysis, we selected 19 scenes from di-

erse surveillance videos with the next requirements. Each scene

s made up of at least 5 frames, recorded in a fixed scenario, i.e., in
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Fig. 10. Examples of blurry and noisy areas (indicated by red boxes) due in part to 

sudden movements in two frames extracted from a surveillance video. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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the same place, and the knife is visible for a human viewer. These

scenes can be found in a public repository 5 . 

The model successfully detects knives in 19 scenes with an av-

erage time interval AAT pI = 0 . 41 s, which is good enough for an

alarm system. The highest delay, 330 ms, was produced in a scene

that shows noise and blur in the frames due to sudden motion of

the knife, see illustration in Fig. 10 . 

In summary, the proposed model has shown good performance

and demonstrated to be perfectly suitable to be integrated into au-

tomatic cold steel weapon detection alarm systems. 

8. Conclusions and future works 

This work presents an automatic cold steel weapon detection

model for video surveillance based on a new brightness guided

preprocessing procedure, called DaCoLT, that further improves the

quality of the detection. The obtained detection model shows a

high potential even in low quality videos and provides satisfactory

results as an automatic alarm system. Among 19 scenes, it success-

fully activates the alarm after five successi ve true positi ves in a av-

erage time of 0.41 seconds. This cold steel alarm system can be

used in several applications, e.g., i) real time detection of cold steel

weapon in video surveillance and ii) parental control of videos or

images with violent contents. 

As future work, we will address the challenging task of detect-

ing weapons in outdoor scenarios, where moving objects can be

present in the background and where adverse weather conditions

can increase the difficulty of the detection. 
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