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a b s t r a c t 

Object detection models have known important improvements in the recent years. The state-of-the art detectors 

are end-to-end Convolutional Neural Network based models that reach good mean average precisions, around 

73%, on benchmarks of high quality images. However, these models still produce a large number of false positives 

in low quality videos such as, surveillance videos. This paper proposes a novel image fusion approach to make the 

detection model focus on the area of interest where the action is more likely to happen in the scene. We propose 

building a low cost symmetric dual camera system to compute the disparity map and exploit this information 

to improve the selection of candidate regions from the input frames. From our results, the proposed approach 

not only reduces the number of false positives but also improves the overall performance of the detection model 

which make it appropriate for object detection in surveillance videos. 
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. Introduction 

The early detection of potentially violent situations is of paramount

mportance for citizens security. One way to predict these situations is by

etecting the presence of dangerous objects such as handguns in surveil-

ance videos. Current surveillance and control systems still require the

upervision and intervention of humans. One innovative solution to this

roblem is to equip surveillance or control cameras with an accurate

utomatic handgun detection alert system. 

Detecting handguns in monitored indoor areas such as, jewelries and

anks, is a complex task because surveillance videos often have low

uality, some areas of the frames maybe distorted and blurry, which

akes their identification difficult even for the human eye. On the other

and, a smart surveillance system designed for violence prevention must

roduce an alarm in near-real time and only when it is completely confi-

ent about the presence of a handgun in the scene. In real world surveil-

ance scenarios, the alarms invoked by false positives must be reduced

o the minimum. 

The state-of-the art object detection models, based on Convolutional

eural Networks (CNNs), are showing promising results on the 200 ob-

ects benchmark in the ILSVRC (Large Scale Visual Recognition Chal-

enge) competitions [17] . For instance, the most accurate detection

odel in ILSVRC-2017 reached a mean accuracy of around 73%, which

s impressive even for a high quality images benchmark. 

Achieving good accuracies with the state-of-the art detection models

n surveillance videos is still an open issue. As far as we know, the first
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nd unique related work in this context, presented in [14] , showed good

ccuracies on monocular Youtube videos of movies from the nineties but

roduced an important number of false positives. Most false positives

re objects from the background produced by the fact that the selection

earch methods used in the state-of-the art detection models assume that

ll the areas of the input image are candidate regions [6,22] . 

This work proposes a novel binocular image fusion approach for re-

ucing the number of false positives in the detection of handguns in

urveillance videos. In particular, we calculate the disparity map based

n a symmetric binocular vision approach and use this information to

reselect the areas of interest where the action is more likely to happen

n the scenario. As far as we know, this work is the first in employing

ymmetric binocular vision and disparity maps to reduce the number of

alse positives in object detection in videos. We focus on RGB surveil-

ance videos recorded in indoor public places such as, jewelries or banks,

here commonly actions such as robberies may occur under artificial

ight. 

The main contributions of this work are: 

• Build a simple binocular system based on two symmetric IP

surveillance cameras to compute the depth of pixels in the scene.
• Propose a novel binocular image fusion approach for reducing

the number of false positives in the detection of handguns with

deep learning models. 
• Present the first work in addressing the detection of handguns in

the field of video surveillance. 
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This paper is organized as follows. Section 2 gives a brief analysis

f the most related works to our work. Section 3 reviews the stat-of-the

rt CNNs and transfer-learning. Section 4 described the image fusion

pproach proposed in this work. Section 5 provides and analyzes the

btained results and finally Section 6 conclusions. 

. Related works 

Using the disparity information for improving handguns detection in

urveillance videos is related in part to two research areas. The first area

ses symmetric or asymmetric dual cameras to improve the quality of

he image or perform a three-dimensional reconstruction of the scene.

he second area focuses on improving the detection of a large number

f common objects in images using CNNs based models. 

.1. Binocular vision based on asymmetric or symmetric dual cameras 

Binocular vision based on asymmetric or symmetric dual cameras

rovides important information than cannot be obtained by monocular

ameras. Asymmetric dual camera systems, where each camera has a

ifferent field of view and resolution, are often used to enhance the res-

lution [9] , digital zooming [13,23] or overall quality of the image [7] .

hile, symmetric dual camera systems allow calculating the disparity

nd depth information to improve the recognition or localization of ob-

ects. For example, the authors in [24] proposed an ensemble of pedes-

rian detection model as follows. They first run their detector on the

eft and right images individually, join the obtained bounding boxes in

ne single image and re-run the detector on the third joined image. The

esult of the detection is calculated as the score fusion of the three detec-

ions. The authors in [8] proposed generating a 3D model to calculate

he exact 3D position of the lesion in image-guided operations, in neu-

osurgery. 

Our work is different from these works in that we propose using

he disparity information obtained from a symmetric dual camera to

mprove the set of region proposals with the objective of reducing the

umber of false positives in hand-gun detection in surveillance videos.

he proposed symmetric binocular vision approach is similar to the hu-

an binocular vision system, it has the capacity of detecting the back-

round based on the perceived dimensional data, which make it much

ore appropriate than the monocular pixel intensity methods. 

.2. Detection models using CNNs 

The most accurate detection models reformulate the problem of ob-

ect detection into a combination of a search selection technique with

 CNN classification model. The selection method generates candidate-

egions from the input image, commonly called region proposals, then a

NN-based classifier is run on each one of these regions. Currently, the

ost influential detection model is Faster R-CNN which is an evolution

f its predecessors R-CNN and Fast R-CNN as follows: 

• R-CNN [3] was the first detection models that included a CNN-

based classifier. It uses an external box generator to produce sev-

eral crops from the image, on the order of 2000 boxes called

region proposals. It then runs VGG-based classifier on each one

of these region proposals. Afterwards, the output of the CNN is

feeded to two predictors: i) a SVM classifier that predicts the class

of each region and ii) a linear regressor that predicts the bound-

ing box of the detected class. R-CNN provides good performance

on the well know PASCAL-VOC however it is too slow due to the

high redundant computation since the CNN is applied on 2000

crops. 
• Fast R-CNN [2] improves the speed of R-CNN by reorganizing the

calculation as follows. It first extracts the features of the entire in-

put image before generating the region proposals. It replaces the

SVM classifier with a softmax layer so that the CNN is extended to
272 
directly calculate the prediction of the object-class. The remain-

ing bottleneck in Fast R-CNN was the selective search technique

for generating the region proposals. 
• Faster R-CNN [16] , its main difference with respect to Fast R-

CNN was converting the selective search algorithm into a faster

network called Region Proposal Network (RPN). This change im-

proved both, accuracy and speed. Faster R-CNN can be seen as

a meta-architecture that combines a RPN with a feature extrac-

tor, e.g., VGG-16. Although recent meta-architectures such as R-

FCN [1] and SSD [12] achieve better speeds, Faster R-CNN still

provide the best accuracy [6] . 

The first work that proposed detecting handgun detection in videos

sing CNN-based models was [14] . The model reached good accuracies

ut only on monocular Youtube videos using Faster R-CNN. The eval-

ation of the detection results provided in [14] did not consider real

orld surveillance videos. The present work proposes improving this

odel for real surveillance videos. 

. CNN-based detection models 

The state-of-the art models address the detection problem by re-

ormulating it into a classification problem, where the CNN-classifier

s evaluated over a set of candidate regions extracted from the in-

ut image. In this work, we considered the most accurate detection

eta-architecture, Faster R-CNN based on four feature extractors, VGG-

6 [19] , ResNet [4] , Inception-ResNet-v2 [20] and NAS [25] . We also

onsider transfer-learning to improve the learning of the evaluated

NNs models. 

.1. CNNs classification models 

VGGNet was the first runner-up in ILSVRC 2014 [19] . It was used to

how that the depth of the network is critical to the performance. The

argest VGGNet architecture, VGG-16, involves 144 million parameters

rom 16 convolutional layers with very small receptive fields 3 ×3, five

ax-pooling layers of size 2 ×2, three fully-connected layers, and a lin-

ar layer with Softmax activation in the output. This model also uses

ropout regularization in the fully-connected layer and applies ReLU

ctivation to all the convolutional layers. 

ResNet won the first place on the ILSVRC 2015 and is currently

he most accurate and deepest CNN architecture [4] . It has 152 lay-

rs and 25.5 million parameters. Its main characteristic with respect

o the previous deep CNNs, e.g., GoogLeNet [21] , is that ResNet

reates multiple paths through the network within each residual

odule. 

Deep CNNs, such as VGG and ResNet, are generally trained based

n the prediction loss minimization. Let x and y be the input images

nd corresponding output class labels, the objective of the training is to

teratively minimize the average loss defined as 

 ( 𝑤 ) = 

1 
𝑁 

𝑁 ∑

𝑖 =1 
𝐿 ( 𝑓 ( 𝑤 ; 𝑥 𝑖 ) , 𝑦 𝑖 ) + 𝜆𝑅 ( 𝑤 ) (1)

This loss function measures how different is the output of the final

ayer from the ground truth. N is the number of data instances (mini-

atch) in every iteration, L is the loss function, f is the predicted output

f the network depending on the current weights w , and R is the weight

ecay with the Lagrange multiplier 𝜆. It is worth mentioning that in

he case of GoogLeNet, the losses of the two auxiliary classifiers are

eighted by 0.3 and added to the total loss of each training iteration.

he Stochastic Gradient Descent (SGD) is commonly used to update the

eights. 

 𝑡 +1 = 𝜇𝑤 𝑡 − 𝛼Δ𝐽 ( 𝑤 𝑡 ) (2)

here 𝜇 is the momentum weight for the current weights w t and 𝛼 is the

earning rate. 
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Fig. 1. Examples of false positives detected in the 

background, (a) a handbag in a showcase, (b) the 

mechanical stairs, (c) a screen and a laptop under a 

table and (d) an open case under a table. 
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The network weights, w t , can be randomly initialized if the network

s trained from scratch. However, this is suitable only when a large la-

eled training-set is available, which is expensive in practice. Several

revious studies have shown that transfer-learning [18] can help over-

oming this limitation. 

.2. Transfer learning and fine-tuning 

Transfer learning consists of re-utilizing the knowledge learnt from

ne problem to another related one [15] . In practice, it is applied by

nitializing the weights of the network, w t in Eq. (2) , with the pre-trained

eights. 

Re-training or fine-tuning the entire network (i.e., updating all the

eights) is only used when the new dataset is large enough, otherwise,

he model could suffer overfitting especially among the first layers of

he network. Since these layers extract low-level features, e.g., edges

nd color, they do not change significantly and can be utilized for sev-

ral visual recognition tasks. The last learnable layers of the CNN are

radually adjusted to the particularities of the problem to extract high

evel features of the new database. 

We analyzed four networks, VGG-16, Inception-Resnet v2, NAS and

esNet. We initialized the weights of VGG-16 with the pre-trained

eights of the same architectures on ImageNet dataset (around 1.28

illion images over 1000 generic object classes) [10] and initialized

nception-Resnet v2, NAS and ResNet using the pre-trained weights on

OCO dataset [11] (around 328k images over 91 objects types). 

The fine-tuning process applied in this work is as follows: 

1. We remove the last pooling layer and the fully connected layers

from the CNN classifier. 

2. We add the RoI pooling layer, the Region Proposal Network and

the fully connected layers that will calculate the final prediction.

3. Afterwards, we initialize the CNN using the pre-trained weights

and the rest of the weights with random numbers. 

4. Finally, we fine-tune the weights of all the network during 50,000

epochs and update the learning rate progressively. This process

allows the network to tune the predictions of the classification

and the detection of the boxes to the particularities of the hand-
gun detection problem. t  

273 
. The proposed image fusion approach 

We reformulate the problem of handgun detection into a two class

etection problem, where the positive class is pistol. In the previous

tudy [14] , the authors addressed the problem of handgun detection by

pplying the detection to a stream of images obtained directly from the

ideo. While this method proved to be efficient for real time detection,

he results still show some issues in specific situations. 

The most frequent false positives were located in the background as

llustrated by the examples provided in Fig. 1 . As we can observe from

hese images the detector considers as pistol, with a high probability,

bjects in the background that contain common features with the pis-

ol. For example, the objects of dark metallic colors with a silhouette of a

istol shown in Fig. 1 (b) and (d) are identified as pistol by the detector.

his is due to the fact that the region proposals generators used in the

tate-of-the art detection model assume that all the regions of the input

mage are potential candidates of pistol. However, in real-world scenar-

os, the pistol can be located only in a limited area of the frame. The

ackground of the scene could contain several objects that could pro-

uce a high number of false positives and make the search algorithm

ot focus on the area of interest. 

We propose reducing the number of false positives by using the dis-

arity information in six steps as depicted in Fig. 2 : 

1. The frames are obtained from two symmetric commercial surveil-

lance IP cameras. 

2. The disparity map is calculated based on the binocular frames

obtained from the cameras. 

3. The background objects are eliminated. 

4. A pre-selection of the areas of interest is performed. 

5. The obtained mask is applied to one of the original frames. 

6. Finally, the detection process is applied. 

In the following sections we analyze each of these steps. 

.1. Frames acquisition from the symmetric dual camera: system setup 

In general, dual camera systems need an external switch to synchro-

ize the time at which the frames are captured. However, our purpose in

his work is to build a system based only on consumer cameras without
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Fig. 2. Flowchart of our approach. During the 

test/evaluation stage, first, (1) the frames are 

obtained from a symmetric dual camera sys- 

tem, (2) the disparity map is calculated, (3) the 

background objects are eliminated, (4) the pre- 

selection of the areas of interest is performed, 

(5) the obtained mask is applied to the frame 

and finally, (6) the detection process is per- 

formed. 
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witch. We used the next setup, the central axes of the field of vision of

he cameras are set in parallel and the distance between the centers of

he two camera lens is set to 9 cm. The dual camera system was cali-

rated using the image of a chessboard of 2.4 cm ×2.4 cm squares. 

.2. Disparity map calculation 

To calculate the disparity map, we evaluated two algorithms, the

lock Matching (BM) Algorithm and its variation, the Semi-Global Block

atching (SGBM) Algorithm [5] . 

In general, these algorithms calculate the distance between an area

f pixels in the image taken by the left camera and its corresponding

rea of pixels in the image taken by the right camera. The closer an

bject is from the camera, the larger the distance between the object

nd its protection. If the object is farther from the cameras, the distance

etween the object and its projection will be smaller or null for very far

bjects. 

The BM and SGBM algorithms use this information to estimate the

istance between the camera and the objects in the scene. The result of

his estimation is represented in the form of a disparity map as illustrated

n Fig. 3 (c) and (d). 

By analyzing both algorithms on our surveillance videos, we found

hat the BM algorithm is too sensitive to changes in the environment

e.g., light, camera angle) and scenario conditions (e.g., distance be-

ween the objects in the scene). Reducing the size of the used blocks

o improve the stability of BM produces discontinuous and imprecise

isparity maps as shown in Fig. 3 (c) and (d). Whereas, the SGBM algo-

ithm shows a higher stability, more continuous and precise disparity

etection than BM, and provides the necessary dimensional informa-
274 
ion to differentiate the objects in the background, as it can be seen in

ig. 3 (d). 

.3. Elimination of background objects 

After calculating the disparity map, we chose a limit distance to elim-

nate the objects situated behind that distance. The selection of the limit

istance in the scene depends on the dimensions of the considered sce-

ario, e.g., a room, and on the area where the action occurs. The distance

s calculated from the dual camera system. 

.4. Pre-selection of the areas of interest 

The binocular disparity map allows distinguishing farther and closer

bjects from the camera and consequently the objects can be eliminated

ased on their distance. However, in practice, the produced disparity

ap has imperfections produced by the effects of the lights in the scene

nd by the low quality of the original images, which makes the elimi-

ation process difficult. 

The resulting disparity map contains a certain level of noise and

hows discontinuities in several borders, as it can be seen in Fig. 2 (4).

o clean and improve the segments, we apply a series of morphological

inary operations as follows: 

• Step1: To preserve the small details in the disparity map, we first

apply a uniform dilatation, in both x and y axes, to the white

areas in the image. 
• Step 2: Iteratively, we apply an erosion process followed by a di-

latation process to the obtained image. The dilatation operation
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Fig. 3. The disparity map calculated by BM 

algorithm (c) and SGBM algorithm (d) based 

on the information obtained from the binocu- 

lar left (a) and right (b) image. 
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transforms the lines that are part of a same object into a larger

white area. While, the erosion process erases the areas of the im-

age that did not formed a large white region. 

This step is applied to different shapes to ensure the elimination

of small objects, different kinds of noise and imperfections. At the

end of this process, we obtain a mask that indicates the areas of

interest. 

.5. Mask application and detection process 

The obtained mask from the previous step is applied to the original

mage as follows. The parts of the original image that correspond to the

hite areas of the mask are maintained. While the parts of the original

mage that correspond to the black areas of the mask are blurred. After-

ards, we apply the detector on the entire image although the detector

ill focus only on the area of interest. 

It is worth noting that we have also analyzed eliminating the back-

round objects completely from the original image. We found that com-

lectly eliminating the background maintains the focus of the detector

n the area of interest; however, the high contrast between the erased

ackground and the image led the detector to misinterpret the shown

rea as a big object. To overcome this issue, we used the blurring method

o produce a lower contrast between the area of interest and background

nd consequently prevent from misinterpretations and preserve the ca-

ability of the search algorithm to focus only on the areas of interest. 

We evaluated four detection models, Faster R-CNN based on VGG-

6 with transfer learning from ImageNet and Faster R-CNN based on

esNet, Inception ResNet V2 and NAS with transfer learning from

OCO. 

. Experiments and results 

The impact of the proposed image fusion approach on the handgun

etection model is analyzed in this section. First, we describe the two

ymmetric cameras systems used in the analysis. Second, we select the

est performing detection model by evaluating Faster R-CNN with four

eature extractors, VGG-16 with transfer-learning from ImageNet, In-

eption ResNet v2, NAS and ResNet with transfer-learning from COCO.

hen, we analyze and compare the impact of our image fusion approach
275 
n the performance of the selected detection model using nine surveil-

ance videos. Finally, we analyze several false positives that were elim-

nated by applying the proposed image fusion approach. 

.1. Experimental setup 

For training the analyzed detection models, we used a dataset that

ontains 3000 handgun images. This training dataset was built by

he authors of this manuscript and it is available through this link

ttp://sci2s.ugr.es/weapons-detection . For testing the impact of the

roposed apporach on the performance of the detection, we built nine

iverse and challenging test videos using two different systems. 

We built two symmetric camera systems using two different com-

ercial cameras as follows: 

• System 1: based on a symmetric dual HD IP cameras setup,

LOGITECH c525, of resolution 1280 ×720, maximum frame-rate

30 fps, angular field of view 69° and video Compression Format,

H.264 and Motion JPEG. 
• System 2: based on a symmetric dual Full HD IP cameras setup,

SAMSUNG SNH-V6410PN, of resolution 1920 ×1080, maximum

frame-rate 30 fps, angular field of view 96.1° and video Compres-

sion Format, H.264 and Motion JPEG. 

Notice that the commercial camera used in system 2 has better prop-

rties, resolution and field of view than the one used in system 1. To

ynchronize the acquisition of images in each system without switch,

e limited the maximum frame rate of both cameras to 1 fps. 

We recorded nine surveillance videos of a person handling one or two

uns in different environments. The first four videos, vid1, vid2, vid3

nd vid4, were recorded using system 1, in a challenging house scenarios

ith multiple and diverse objects in the background. In particular, vid1

nd vid4 include a 2d printed image of a gun to test the capability of

he system to distinguish between real and fake 2D representation of a

un. vid4 were recorded in a larger space to study the effect of larger

istances between the cameras and the object of interest. 

The last five videos, vid5, vid6, vid7, vid8 and vid9, were recorded

sing system 2 in two different scenarios. vid5, vid6 and vid7 were

ecorded in an office with simple background and with a low proba-

ility for producing a high number of concurrent false positives. While,

http://sci2s.ugr.es/weapons-detection
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Table 1 

The performance of the handgun detection model using Faster R-CNN with VGG-16 (with transfer-learning from 

ImageNet), ResNet, Inception Resnet v2 and NAS (with transfer-learning from COCO) on vid6. 

Fusion # images TP FP TN FN Accuracy Recall Precision F1 

VGG-16 + without 124 76 8 28 19 79.39% 80.00% 90.48% 84.92% 

ImageNet with 124 76 6 28 19 80.62% 80.00% 92.68% 85.88% 

ResNet + without 124 74 161 0 21 28.91% 77.89% 31.49% 44.85% 

COCO with 124 70 29 25 25 63.76% 73.68% 70.71% 72.16% 

Inception ResNet + without 124 78 17 29 17 75.89 82.10% 82.10% 82.10% 

COCO with 124 79 14 29 16 78.26% 83.15% 84.94% 84.04% 

NAS + without 124 65 34 26 30 58.71% 68.42% 65.66% 67.01% 

COCO with 124 63 26 25 32 60.27% 66.31% 70.78% 68.48% 

v  

t  

v  

p  

o

 

t  

W  

m  

s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

p  

p  

t

𝐴

𝑝

𝑟

a

𝐹

 

d  

h  

b  

a  

r  

i  

t  

c  

p  

N  

t  

n  

a

5

 

o  

u  

i  

t  

N

 

N  

a  

r  

a  

+  

r  

R  

R  

C  

p  

o  

g  

d  

h  

C  

g  

g  

c  
id8 and vid9, were recorded in a more realistic surveillance scenario,

he entrance of a building with several persons going in and out. The

ideos from vid1 to vid7 are used for an individual examination of the

roposed approach while vid8 and vid9, are used for a global evaluation

f the proposed approach. 

It is worth to mention that the high reflectance of natural sun light in

he second scenario produces some loss of information in some frames.

hich makes the calculation of the disparity map difficult. To experi-

entally evaluate the effectiveness of the proposed fusion technique, we

elected the scenes that contain frames with lower reflectance effects. 

• vid1: recorded in a house environment with diverse objects in

the background, a mirror and several pieces of furniture, under

artificial light. The person moves a gun and compares it with a

fake 2D gun representation. 
• vid2: recorded in the same house environment as vid1. The per-

son holds two guns, a pistol and a revolver, and moves them from

left to right then put the revolver in his pocket. 
• vid3: recorded in the same house environment. The person moves

the pistol while rotating it and partially occluding different of its

parts. 
• vid4: recorded in a different house environment. This video was

recorded in a larger space to study the effect of larger distances

between the cameras and the object of interest. The person holds

a handgun and a printed image of a gun in different poses. This

video is used to test the ability of the system to detect a subject

that starts close from the camera and walks away until he is 10

meters from the camera. 
• vid5: recorded in an office with simple background. The person

is moving from closer to further from the camera and pointing

with one pistol to different angles in the room. 
• vid6: recorded in an office with simple background. The person

is moving from left to right and around pointing with the pistol

in different angles in the room. 
• vid7: recorded in an office with simple background. The person is

moving in all directions, first, pointing to all directions with one

pistol using one hand and then pointing with two pistols, one in

each hand. 
• vid8: recorded in the entrance of a building with more complex

background. The person is moving from left to right and around

pointing with the pistol to different directions. 
• vid9: recorded in the entrance of a building with more complex

background. The person is moving from left to right and around

pointing with two pistols, one pistol in each hand, to different

directions. 

For the evaluation and comparisons, we used four metrics, accuracy,

recision (also called positive predictive value, i.e., how many detected

istols are true), recall (also known as sensitivity, i.e., how many actual

istols were detected), and F1 measure , which evaluates the balance be-

ween precision and recall . Where 

𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇 𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑇 𝑜𝑡𝑎𝑙 𝑖𝑚𝑎𝑔𝑒𝑠 
, 
n  

276 
𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹 𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
, 

𝑒𝑐𝑎𝑙𝑙 = 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹 𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
, 

nd 

 1 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 

Where, True Positives (TP) refers to the number of pistols correctly

etected in the frames of the input video. For example, if a given frame

as two visible pistols, the detection model must produce two bounding

oxes that will be considered as two TP only if each bounding-box has

n overlapping with the pistol area larger than 70%. False Positives (FP)

efer to the number of bounding boxes produced by the detection model

n which there is no pistol or a tiny part of the pistol. If a pistol is de-

ected more than once, the number of redundant bounding boxes will be

onsidered as FP, since we have already applied the Non-maximum sup-

ression method to unify redundant detection of the same object. True

egatives (TN) refers to the total number of frames where there is nei-

her visible pistols nor false positives. False negatives (FN) refers to the

umber of visible pistols that are not detected by the object detection

lgorithm. 

.2. Transfer learning from imagenet and COCO datasets 

Before evaluating the impact of the proposed image fusion approach

n the test videos, we first analyzed the performance of Faster R-CNN

sing four feature extractors, VGG-16 and ResNet, with and without

mage fusion on vid6. The only pre-trained weights available to us were,

he VGG-16 weights pre-trained on ImageNet and Inception Resnet v2,

AS, ResNet weights pre-trained on COCO. 

The performance of Faster R-CNN with VGG-16, Inception Resnet v2,

AS, and ResNet with transfer-learning from ImageNet and COCO with

nd without fusion on vid6 are shown in Table 1 . In general, the accu-

acy, precision, recall and F1 _ measure of Faster R-CNN(VGG-16 + Im-

geNet) are much higher than the obtained with Faster R-CNN(ResNet

 COCO and NAS + COCO) with and without fusion and higher accu-

acy, precision and F1 than the obtained with Faster R-CNN(Inception

esNet v2 + COCO). The produced number false positives by Faster

-CNN(VGG-16 + ImageNet) are substantially lower than Faster R-

NN(COCO based models) with and without fusion. This can be ex-

lained by the fact that the pre-training acquired from the larger number

f classes in ImageNet improves drastically the learning from our hand-

un dataset available through this link ( http://sci2s.ugr.es/weapons-

etection ). Another factor that could be of importance to compre-

end why Faster R-CNN(VGG-16 + ImageNet) outperforms Faster R-

NN(COCO based models) is the presence of the revolver class in Ima-

eNet dataset. This class has a certain level of similarity with our hand-

un class. COCO does not include any similar object. The low NAS results

ould be explained by the fact that the training images of our dataset are

ot all of 1200 ×1200 pixel or larger as in the original NAS requirement,

http://sci2s.ugr.es/weapons-detection
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Table 2 

Performance of the handgun detection model using a monocular video (i.e., obtained from one camera) 

labeled in the table as without and using the proposed binocular fusion technique (i.e., obtained from a 

symmetric dual camera) labeled in the table as with on nine test videos. 

Fusion # images TP FP TN FN Accuracy Recall Precision F1 

vid1 without 123 36 231 6 62 12,54% 36,73% 13,48% 19,73% 

with 123 27 112 16 71 19,03% 27,55% 19,42% 22,78% 

vid2 without 124 106 373 0 71 19.27% 59.89% 22.13% 32.32% 

with 124 99 104 5 78 36,36% 55,93% 48,77% 52,11% 

vid3 without 124 105 333 0 33 22,29% 76,09% 23,97% 36,46% 

with 124 104 112 0 34 41,60% 75,36% 48,15% 58,76% 

vid4 without 125 60 53 23 25 51,55% 70,59% 53,10% 60,61% 

with 125 60 46 32 25 56,44% 70,59% 56,60% 62,83% 

vid5 without 110 80 19 25 4 82,03% 95,24% 80,81% 87,43% 

with 110 80 18 25 4 82,68% 95,24% 81,63% 87,91% 

vid6 without 124 76 8 28 20 79,39% 80,00% 90,48% 84,92% 

with 124 76 6 28 20 80,62% 80,00% 92,68% 85,88% 

vid7 without 260 262 35 21 41 78,83% 86,47% 88,22% 87,33% 

with 260 262 25 21 41 81,09% 86,47% 91,29% 88,81% 

vid8 without 193 110 189 4 3 37,25% 97,34% 36,78% 53,39% 

with 193 101 12 84 12 88,51% 89,83% 89,38% 89,38% 

vid9 without 372 346 144 55 29 69,86% 92,26% 70,61% 80,00% 

with 372 331 15 99 44 87,93% 88,26% 95,66% 91,81% 

Fig. 4. An illustration of the situation where the pistol 

is placed out of the area of interest. The result of the 

detection with (a) and without (b) fusion. 
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hich could create the need for much longer training periods in compar-

son with the rest. In addition, the prediction process of NAS is slower,

hich makes it inappropriate for the problem studied in this work. 

In addition, the performance of Faster R-CNN(VGG-16 + ImageNet)

nd Faster R-CNN(COCO based models) improved when using our image

usion technique. In fact, in the case of ResNet, the benefits of using

ur image fusion technique is more important due to a high percentage

f recurrent false positives in the background. In all the experiments

rovided in next sub-sections, we used Faster R-CNN based on VGG-16

ith transfer learning from ImageNet. 

.3. Impact of the proposed image fusion on the detection 

Table 2 shows the number of TP, FP, TN, FN, accuracy, recall, pre-

ision and F1 measure with and without applying the proposed im-

ge fusion technique on nine test videos, from vid1 to vid9. In gen-

ral, the detection with fusion reaches better accuracy, precision and

1 measure, on all the analyzed videos. In average, the accuracy has

mproved by 13, 47%, the precision by 16% and F1 by 10.89%. The

umber of false positives is reduced when applying fusion for all the

est videos and this improvement increases when the number of input

rames increases. In average, the number of false positives is reduced

y 49.47%. 

In particular, the improvements obtained with fusion on videos,

id5, vid6 and vid7 are modest due to the simplicity of the background

n the office scenario. While the improvements obtained in vid1, vid2,

id3, vid8 and vid9 are more important due to the complex background

n the scenario. The results of the most realistic video surveillance sce-

ario, vid8 and vid9, are important. 
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The fusion approach substantially reduces the number of false pos-

tives in all videos and scenarios as it eliminates an important number

f persistent false positives in some areas of the background. 

On the other hand, applying fusion increased the number of false

egatives especially in vid8 and vid9 due mainly to the imperfections

n the disparity map calculation or when the pistol is located outside

he area of interest. These imperfections can be addressed by using a

ore accurate disparity map algorithm. When the person moves out

f the detection area behind the limit distance the system is unable to

etect the pistol as it is illustrated in Fig. 4 (a) and (b). The analysis of

he detection of the non-fused images showed that when the handgun

s detected too far from the camera, the detection becomes intermittent

nd low quality as it can be seen in Fig. 4 (a). This situation could lead

he detector to more false detections in real live environments, so the

imit distance in the fused images must be kept in a range that provides

onfident detections. 

The videos of the detection results with and without fu-

ion on the nine test videos are available through this link

 http://sci2s.ugr.es/weapons-detection ). 

.4. Analysis of some examples 

This subsection shows and analyzes the impact of the proposed fu-

ion technique on the number of false positives using several examples.

.4.1. Reducing false positives 

Figs. 5 show a comparison of the detection results on several frames

ith, (b), (d), (f), (h) and without fusion, (a), (c), (e), (g). In general, one

an observe from these examples that the used image fusion technique

mproves the overall detection results by generating a better candidate-

egions, which helps the model to focus on the true area of interest. In

http://sci2s.ugr.es/weapons-detection
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Fig. 5. Examples of the detection results with 

the proposed binocular image fusion, (b), (d), 

(f), (h) and without image fusion, (a), (c), (e), 

(g). 
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articular, as it can be seen in Figs. 5 (a)–(f) the proposed fusion tech-

ique successfully eliminates all the false positives located in the elimi-

ated background. 

An ideal detection system must be able to differentiate between

n image of a gun and a real gun. As it can be seen in Figs. 5 (g)–

h), the proposed fusion technique can help the neural network to

ifferentiate between a 2d printed gun and a real gun. In addi-

ion, from Figs. 6 (a) and (b), one can observe that the proposed im-

ge fusion technique is able not only to eliminate the false posi-

ives located in the eliminated background but it also reduces the

alse positives located in the part of the background that was not
278 
lurred in the input frame due to its closeness to the area of

nterest. 

.4.2. False negatives 

As it can be observed in Figs. 7(a)-(d) applying the proposed fusion

echnique and consequently producing more focused pre-selected ar-

as of interest sometimes can eliminate false negatives produced by the

andgun detection algorithm. Overall the proposed image fusion tech-

ique also improves the confidence of the detection model by increasing

he probabilities of the detected true positives as it can be seen from

hese figures. 
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Fig. 6. Examples of the detection results with, (b), (d), 

(f), and without the proposed binocular image fusion 

technique, (a), (c), (e). 

Fig. 7. Examples of the detection results with, (b), (d) 

and without, (a), (c) image fusion. 
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In summary, our results show that use of symmetric cameras helps re-

ucing the number of false positives thanks to the similarities it presents

ith the human vision and the way we perceive the deepness of the

nvironment. Our approach can be easily extended to general object

etection since modern smartphones are increasingly including dual
ameras. u  
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. Conclusions 

This work presented a new image fusion technique that improves the

esults of handgun detection in surveillance videos. We built a symmet-

ic dual camera system to obtain the three-dimensional information and

sed this information to remove the background from the scene. We then
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pply a series of filters to obtain the map of the main area of interest.

e blur, in the input frames, the areas that do not belong to the area of

nterest. This strategy substantially helps the model to focus on the real

rea of interest where the probability of finding a handgun is higher.

his approach reduced considerably the number of false positives and

mproves the reliability of the detection in security field. 

As future work, we will evaluate the use of different dual cameras

etup. We will also evaluate different combinations of infrared images,

isible light images and the motion information to pre-select the areas

f interest. 
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