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Abstract—In this paper, evolutionary fuzzy systems are dis- membership functions and selecting suitable fuzzification and
cussed in which the membership function shapes and types and defuzzification methods.

the fuzzy rule set including the number of rules inside it are The design of a fuzzy system can be formulated as a

evolved using a genetic (evolutionary) algorithm. In addition, h bl in high-di . | h h ooint
the genetic parameters (operators) of the evolutionary algorithm search problem in high-dimensional space where each poin

are adapted via a fuzzy system. Benefits of the methodology arefepresents a rule set, membership functions, and the corre-
illustrated in the process of classifying the iris data set. Possible sponding system’s behavior. Given some performance criteria,

extensions of the methods are summarized. the performance of the system forms a hypersurface in the
Index Terms—Fuzzy expert systems, genetic algorithm, mem- Space. Developing the optimal fuzzy system design is equiv-
bership. alent to finding the optimal location of this hypersurface. The
hypersurface has the following characteristics.
|. INTRODUCTION « The hypersurface igfinitely large since the number of

possible fuzzy sets for each variable is unbounded.
* The hypersurface imondifferentiablesince changes in
A. Background the number of fuzzy sets are discrete and can have a

UZZY systems are being used successfully in an in- discontinuous effect on the fuzzy system’s performance.

creasing number of application areas; they use linguistic® The hypersurface isomplexandnoisysince the mapping
rules to describe systems. These rule-based systems are moreffom a fuzzy rule set to its performance is indirect and
suitable for complex system problems where it is very difficult, ~dependent on the evaluation method used.
if not impossible, to describe the system mathematically.* The hypersurface isnultimodal since different fuzzy
One of the most important considerations in designing any rule sets and/or membership functions may have similar
fuzzy system is the generation of the fuzzy rules as well Performance.
as the membership functions for each fuzzy set. In most® The hypersurface isleceptivesince similar fuzzy rule
existing applications, the fuzzy rules are generated by experts Sets and membership functions may have quite different
in the area, especially for control problems with only a few Performances.
inputs. With an increasing number of variables, the possibléiese characteristics seem to make evolutionary algorithms
number of rules for the system increases exponentially, whishch as genetic algorithms (GA'’s) better candidates for search-
makes it difficult for experts to define a complete rule set fang the hypersurface than conventional methods such as hill-
good system performance. An automated way to design fuzdimbing search methods.
systems might be preferable.

There are many ways to attack this problem. A straightfop. Previous Approaches

ward approach is to use clustering algorithms (like the C-MeANS; A oo commonly used evolutionary algorithms that pro-
clustering algorithm, fuzzy c-means clustering algorithm, etc, .
e o .~ Vide a way to search poorly understood, irregular spaces. One
[2]) or similar methods to partition the pattern space intQ . . . .
. . of the key issues in the evolutionary design of fuzzy systems
many subspaces with or without overlaps among them, then

map the center of each cluster into a rule according to tHgmg GA.S s their genotype representation; that is, what is
definitions of fuzzy variables [1], [24]. One disadvanta gncoded into the chromosomes.
y ' ' 9€ Thrift [23] and Hwang and Thompson [11] encode all

of this approach IS that t_he extracted W'es are mdepend%l% rules into the chromosome while fixing the membership
of the membership functions so there is no guarantee tktla

. . - nctions. Usin veral critical poin represen h mem-
the fuzzy system obtained will have sufficiently good pe unctions. Using several critical points to represent each me

r- ; . : : :
formance, especially for a complex system problem with %ershlp function while using all the possible rules, Karr [15]

large number of input variables. In many cases, however tﬁnd Karr and Gentry [16] use GA's to evolve these critical
9 P ' y ' ' gints; that is, to adjust the membership functions. Since in

tem’ rforman an improv further tunin tlll) : .
system'’s performance can be improved by furthe 9 aefuzzy system the membership functions and rule set are
codependent, they should be designed or evolved at the same
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functions and all the rules into the chromosome, but haveisacoded into the chromosome, the length of the chromosome
different way to encode the triangular membership functionis. very large when the number of input dimensions and/or
They restrict adjacent membership functions to fully overlapf different partitions is large. Other ways to tackle the
and also constrain one membership function to have its cent@nlinear distribution problem should be sought. A natural
resting at the lower boundaries of the input range. By usiragnd better way is to employ nonlinear functions in addition to
this coding, onlyn — 1 membership function centers need tdinear functions as membership functions. Natural choices are
be encoded, where is the maximum number of partitions forGaussian functionssigmoid functionsetc. Through inclusion
a given dimension. The above-mentioned methods encodeddlllinear and nonlinear functions, the type of membership
possible rules into the chromosome. There are some drawbaltkection for each fuzzy set will not be predetermined, but
by doing so [3]: first, the computational efficiency associatddstead be evolved during the design process.
with fuzzy logic is lost using a high number of rules and GA behavior is determined by the exploitation and explo-
second, the robustness decreases with increasing the nunnaton relationships kept throughout the run [8]. Given fixed
of rules. This is especially true when the dimension of theettings for parameters such as crossover and mutation rates
inputs and the number of fuzzy sets for each input variabilerough the run, the GA may have its exploitation/exploration
become great since the number of possible rules exponentiaifiationship (EER) disproportioned and produce a lack of
increases with the these numbers. diversity in the population [8]. Accordingly, GA parameter
In most applications, not all possible rules need to be usesttings should be adapted through the run. Since the interac-
only a portion of the rules are needed. So only this portidion between GA parameter settings and GA performance is
of rules should be encoded into the chromosome and evolvedmplex and unknown, finding algorithms to achieve optimal
By doing so, the length of the chromosome will be reduceatlaptive parameter settings is very difficult, if not impossible.
greatly and, therefore, will be suitable for larger problemdhis suggests the use of fuzzy systems for adapting GA
Karr [14] considers a very special case where the numberpHrameters. The main idea is to use a fuzzy system whose
rules is provided by an expert, together with many completeputs are any combination of GA performance measures or
rules forming the rule set and the antecedents for the remainimgrent control parameters and whose outputs are GA control
ones so only the consequent parts of the latter type need topagameters [8]. Lee and Takagi [17] propose an automatic
evolved and, therefore, need to be encoded in the chromosotearning technique to design fuzzy rules for tuning GA’s. Due
This is not the case for many applications. Most of the tim& the heavy computation requirement, they first apply this
it will be difficult, if not impossible, to knowa priori exactly technique to design a fuzzy system to tune a GA for solving
how many rules are required to be included in the rule sélte simple DeJong F1 function, then apply the obtained fuzzy
only a maximal number can be guessed or estimated. system to tune the GA to solve other different and more
It is better to encode the number of rules to be included gomplex problems. This technique is very similar to the meta
the rule set together with rules and/or membership functio®sA of Grefenstette [7]. This implies that the robustness of the
into the chromosome to be evolved. There are several waystained fuzzy rules strongly depends on the problems to be
to do this. Lee and Takagi [18], [19] proposed encodingplved and the performance measures used by the technique.
membership functions and fitness functions in chromosomés we know from the literature, there exist a lot of adaptive
Shimojimaet al. [22] and Inoueet al.[12] defined membership GA’s to tackle the lack of diversity problem and a certain body
functions for each rule and encoded effectiveness informatiohexpertise, experience, and knowledge on GA’s has become
for each rule and membership function. Shimojiataal. used available as a result of empirical studies conducted over a
fitness functions that encouraged minimizing the number néimber of years [9]. This human expertise and knowledge is
rules; Inoueet al. used a method they called “forgetting.” very useful and should be the first choice for designing a fuzzy
Due to the highly complex and nonlinear characteristic slystem to tune a GA to reach a suitable EER for avoiding
the problem space, uniform distribution of the fuzzy sets emature convergence and improving GA behavior.
usually not optimal. The performance of a fuzzy classification
system based on fuzzy if-then rules depends on the chofee
of a fuzzy partition. If a fuzzy partition is too coarse, the In this paper, a GA-based method to evolve a fuzzy expert
performance may be low. If a fuzzy partition is too finesystem is discussed. It not only can evolve the rule set
many fuzzy if-then rules cannot be generated because of {meluding the optimal number of rules inside the rule set),
lack of training patterns in the corresponding fuzzy subspacésne the membership functions, and evolve the membership
For a problem, some parts of pattern space might requftenction types, but also scales well and is, therefore, useful for
fine partition, while other parts require only coarse partitioarge complex problems. In addition, a fuzzy expert system is
Therefore, the choice of an appropriate fuzzy partition w@esigned from our experience and knowledge and is used to
important and difficult. To cope with this difficulty, Ishibuchi,adapt the genetic parameters of the GA.
Nozaki et al. [13] introduce the concept of distributed fuzzy The paper is organized as follows. Section Il describes
if—then rules. They encode all fuzzy if-then rules corrg¢he GA. Section Il describes the fuzzy expert system. In
sponding to several different fuzzy partitions into a tri-valu&ection IV, details are given on how to design the fuzzy
string {—1,0,1} and apply GA’s to remove the unnecessargystem using a GA. In Sections II-1V, the implementations
rules from fuzzy if-then rules corresponding to the differemtescribed are related to the simulation example of Section V.
fuzzy partitions. Since each possible rule for each subspd&eample results are given in Section V, which demonstrate

Current Approach
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that the method discussed in this paper is effective andAfter fithess calculation, the next step is reproduction.
efficient. Reproduction comprises forming a new population, usually
with the same total number of chromosomes, by selecting
Il. GENETIC ALGORITHMS from members of the current population using a stochastic
GA’s are search algorithms that reflect irpamitive way process that is weighted by each of their fitness values. The
some of the processes of natural evolution including crossoviigher the fitness, the more likely it is that the chromosome
mutation, and survival of the fittest. They are analogowyll be selected for the new generation. One commonly used
to neural networks' status as primitive approximations t&ay is a “roulette wheel” procedure that assigns a portion of
biological neural processing. GA’s provide powerful search roulette wheel to each population member where the size of
mechanisms that can be used in optimization or classificatitii¢ portion is proportional to the fitness value. This procedure
app"cations_ While stochastic in nature, GA’s perform § often combined with thelitist StrategyWhiCh ensures that
highly effective search of the problem hyperspace, efficienﬂge chromosome with the highest fitness is always copied into
directing the search to promising regions. GA paradignid€ next generation.
are effective in a wide variety of applications; they are not The next operation is called crossover. To many evolu-
designed to solve only a narrow class of problems. GAlPnary computation practitioners, crossover is what distin-
work with a populationof points rather than a single point.9uishes a GA from other evolutionary computation paradigms.
Each “point” is a vector in hyperspace representing onrossover is the process of exchanging portions of the strings

potential (or candidate) solution to the optimization problen®! tWo “parent” chromosomes. An overall probability is
A population is, thus, just an ensemble or set of hyperspa%%s'gn_ed to the crossover process, which is the probability
vectors. Each vector is calledchromosomén the population, that given two parents, the crossover process will occur.
The number of elements in each vector (chromosome) depeddiS Probability is often in the range of 0.65-0.80. The final
on the number of parameters in the optimization problefiPeration in the typical GA procedure is mutation. Mutation
and the way to represent the problem. How to represent Frnsists of changmg an element’s value at .random, often wlth
problem as a string of elements is one of the critical factors ﬂhconstant probability for each element in the population.

successfully applying a GA (or other evolutionary algorithmz € _pro_bability of mutation can vary widely accor_di_ng to the
to a problem. pplication and the preference of the person exercising the GA.

GA paradigms do not require information that is auxiliarHowever, values of between 0.001 and 0.01 are not unusual

or related to the problem such as function derivatives, whi gr mutation probability.

S . . In the example simulation in this paper, the “roulette
many hill-climbin arch paradigms, for example, require . . "
y g se paradigms, for e ple, req wheel” procedure with theelitist strategy[6] is used for

the calculation of derivatives in order to successfully explore ! ; :
y eXp production, where the portions of the roulette wheel assigned

the local maximum or minimum. So GA's can be applie{jg opulation members are proportional to #stdftedfitness
to wider areas, especially those difficult for traditional hill- bop prop

A . : . . values [4]. The original fitness values are lineadkifted
climbing methods. A typical series of operations carried out - : . i
hen implementing a GA paradiam is: with the minimal fithess mapping to 0.1. The crossover op
w _' . .p ) N9 .p . 1gm 1: erator used is two-point crossover with a default crossover

1) initialize the population; _ ~ probability of 0.75 [6]. The mutation operator used in this
2) calculate fitness for each chromosome in population; paner depends on our chromosome representation and will be
3) reproduce selected chromosomes to form a new poRYplained later. Note that in our evolutionary fuzzy system

lation; described in Section 1V, fuzzy rules can be used to adapt
4) perform crossover and mutation on the population; ¢rossover probability and mutation rate.
5) loop to step 2) until some condition is met.
Initialization of the population is commonly done by seeding
the population with random values. The fithess value is propor-
tional to the performance measurement of the function being lll. Fuzzy EXPERT SYSTEMS
optimized. The calculation of fithess values is conceptually Fuzzy logic provides a general concept for description
simple. It can, however, be quite complex to implement in #hd measurement. Most fuzzy logic systems encode human
way that optimizes the efficiency of the GA’s search of thesasoning into a program to make decisions or control a
problem space. It is this fitness that guides the search of #&tem. Fuzzy logic comprises fuzzy sets, which are a way
problem space. of representing nonstatistical uncertainty and approximate rea-
It is not unusual for most (if not all) of the fitness valuesoning, which includes the operations used to make inferences
after, say, a few dozen to a few hundred generations, to ipefuzzy logic. Unlike traditional Aristotelian two-valued logic,
quite high. In cases where the fitness value can range fronnGuzzy logic, fuzzy set membership occurs by degree over the
to 1, for example, most or all of the fitness values may be Or@nge [0,1], which is represented by a membership function. It
or higher. This lowers the differential between fitnesses thigtthis function that is the fuzzy set. The function can be linear
provides the impetus for effective reproduction, i.e., ensuring nonlinear. Commonly used al&ft_triangle, right_triangle,
that higher fitness values have a significantly higher probabilityiangle, Gaussian andsigmoidfunctions, as shown in Fig. 1.
of reproduction. One way around this problem is to shift thBefinitions of these membership functions as used in this paper
fitness values in some manner. are as follows.
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Fig. 1. Six commonly used membership functions.
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Fig. 2. Membership functions of variable temperature.

where eachy; is the consequent (output) variable whose value
is inferred, eache; is an input variable (an antecedent), and
eachS; andT; is a fuzzy set represented by a membership
function. For simplicity, only Mamdani-type fuzzy rules are

considered in this paper. A fuzzy system is defined if and
only if its rule set and its membership functions associated
with its fuzzy sets are defined. An example definition of a
fuzzy system as used in this paper is given in List I.

The number “5” in the first line specifies the number of
rules listed in the rule set. The next line contains the number
of input fuzzy variables (4) followed by the number of output
fuzzy variables (1). Next, the fuzzy sets for all input and output
variables are defined. In accordance with the second line, we
define four input and one output fuzzy variables. The next
line, inputone 5 0.4 1.0defines the first fuzzy input variable’s
name asnput.ong specifies the variable’s domain to have five
fuzzy sets and defines the variable’s dynamic range (domain)
to be 0.4-1.0. The dynamic range is generally related to the
variable’s minimum and maximum, respectively, in the data
set. In the next five lines, each line defines one of the fuzzy
sets for the variablanput.one Two main kinds of membership
functions are available: nonlinear and linear. The variable
inputoneis represented by the nonlinear fuzzy membership
functionsGaussian, Triangle, Triangle, TriangkndGaussian
with the first value in the same row beirgart point =
and the second beingndpoint z2, respectively. The other
three input variablesinputtwo, input.three, and inpufour,
are specified following the first input variable. Then comes
the output variable, which is named output in the List | and is
defined by five fuzzy membership functions over the domain

Other definitions are possible, of course, but the authdf1l- The next five lines define the five fuzzy rules included
have found these to be useful for a variety of problemt) the rule setas specified by the number “5” in the first line,
From the definitions, it can be seen that each membersHj§ meaning of which will be explained in the next section.
function is determined by two values—tiséart point z; and Al the fuzzy rules in a fuzzy expert system are (theoretically)

the end point zs.

fired in parallel. The fuzzy expert system works as follows.

Theoretically, each fuzzy variable can have many fuzzy setsl) Determine the fuzzy membership values activated by

with each having its own membership function, but commonly

the inputs.

used are three, five, seven, or nine fuzzy sets for each fuzzy) Determine which rules are fired in the rule set.

variable. Fig. 2 shows a fuzzy variabtemperaturehaving

five fuzzy sets with triangular membership functions.

3) Combine the membership values for each activated rule
using the AND operator.

The general form of a Mamdani-type fuzzy rule in a fuzzy 4) Trace rule activation membership values back through

expert system is
If z1is S1,andzs is Ss,. ..,z IS S,
theny, is1y,...,andy; is1y

the appropriate output fuzzy membership functions.

5) Utilize defuzzification to determine the value for each
output variable.

6) Make decision according to the output values.
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LIST |
AN EXAMPLE OF A Fuzzy EXPERT SYSTEM

5

4 1

input_one 5 0.4 1.0
Gaussian 0.4075 0.625
Triangle 0.61 0.70
Triangle 0.65 0.75
Triangle 0.72 0.85
Gaussian 0.745 0.925

input_two 5 0 0.6
Gaussian 0.015 0.285
Gaussian 0.105 0.295
Gaussian 0.15 0.32
Triangle 0.305 0.495
Triangle 0.24 0.5325

input_three 5 0 1
Gaussian 0.075 04
Triangle 0.175 0.52
Triangle 0.25 0.42
Triangle 0.35 0.625
rightTriangle 0475 0.9375

input_four 5 0 0.4
leftTriangle 0.04 0.22
Triangle 0.11 0.25
Triangle 0.15 0.28
Traingle 0.30 0.32
Gaussian 0.25 0.37

output 5 0 1
Triangle 0.075 045
Triangle 0375 048
Triangle 0.43 0.52
Triangle 0.50 0.55
Sigmoid 0.65 0.85

-2 -3 0 4 5

3 1 5 -3 1

1 -3 -2 -2 -3

-4 -1 1 3 1

-3 -1 3 -3 -3

Determination of the fuzzy membership values activated by thestributed parts, then the input pattern belongs to cla#fs
inputs is often called fuzzification. Each input may activatihe inferred output value is located inside thie part. This is
one or more fuzzy sets of that input variable according the approach taken for the iris data set classification system
the definitions of the fuzzy membership functions. Only thdescribed in this paper.

rules with at least one antecedent set activated are said to

be fired by the inputs. Th&ND operator is typically used IV. EVOLUTIONARY Fuzzy SYSTEMS

to combine the membership values for each fired rule to

generate the membership values for the fuzzy sets of output Representation

variables in theconsequenpart of the rule. Since there may When designing a fuzzy system using a GA, the first

be several rul_es fired in the rule se_ts, for some f“ZZY Setsiﬂfportant consideration is the representation strategy, that is
the output variables there may be different membership valqgaN to encode the fuzzy system into the chromosome. A fuzzy
obtained from different fired rules. There are many ways Qstem is specified only when the rule set and the membership
combine these values. One commonly used way is 10 YgRiction associated with each fuzzy set are specified. To
the OR operator, that is to take the maximum value as thgmpletely represent a fuzzy system, each chromosome must
membership value of that fuzzy set. Next, a defuzzificatigfhcode all the needed information about the rule set and the
method is used to produce a single scalar value for eaglembership functions as shown in List I. For the purpose
output variable. A common way to do the defuzzification igf discussion, assume that we have a fuzzy system like the
called theclipped center of gravityr centroid method. Then one shown in List | with four input variables and one output
according to the output values, some decisions can be madgdgiable, and that each variable has five fuzzy sets representing
solve the problem. For example, for theclass classification the linguistic descriptionsvery low, low, medium, highand
problem, the output variable range can be divided inevenly very high We can use the integers 1-5 to represent each of
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and the system can be represented as

51528354+ * 514515516517 * * - $76577578579580581 * * -

$22282235224 52255226

wheres; represents the number of rules varying between 1 and
30, s2, s3 represent the start point and end point for the first
fuzzy set of the first input variable and can vary between zero
and ten,s, represents the membership function type for the
first fuzzy set of the first input variable and can vary between
one and sixs; to s7g encode the remaining fuzzy membership
functions (start point, end point, type);; to sg; represent the
first fuzzy rule ands,22 t0 s22¢ represent the last possible rule.
these five terms, use the integer 0 to represent the absencgjftes; specifies how many possible rules are encoded in the
* to encode the term “not.”  chromosome, only the first; rules are used to form the rule

Fig. 3. Three uniformly distributed membership functions.

a term, and use a minus sign-

For example~1 means “not very low” while 1 means “very set, put it may be that not each of them is feasible. Each
low.” In this way, a fuzzy rule can be completely representegossible rule is therefore checked to see whether it represents
by eleven integers. For example, the ruléniput1 is not low, 4 feasible rule or not. A rule without a nonzero antecedent or
input.2 is not medium, and inpu# is high, then output is very consequent part is not a feasible rule and will not be included
high can be encoded as2—3045. (Note, only Mamdani-type j the rule set. For example, assume we have a rule encoded
rules are considered here for simplicity.) If the rule setincludgg 12320, This has no nonzero consequent part, so it will not
20 rules, then an integer string of length 100 can represent figjncluded in the rule set as a rule and the number of feasible
rule set completely. rules will be s; — 1. If all s; possible rules are infeasible

In this paper, a total of six types of functions (defined in th&his mostly happens at the beginning of the GA run), then
last section) are used as the membership function candidai chromosome contains no feasible rules, does not form a
each is represented by an integer from 1 to 6. A membershigaple fuzzy system, and is assigned a small (around 0.0001)

function in our example is completely determined by thregssitive random value as its fitness value.
values: thestart point z;, the end point x5, and the function

pre value. In order to have a homogengous chromosor@g,':imeSS Function

integers are chosen to represent #tartpoint z; and the ) ) ) )

endpoint 25 instead of real values. Assume for the variable ~1h€ next important consideration following the represen-
that its dynamic range i b] and that it has: fuzzy sets. If tation is th_e choice of the fitness fu.nctlon. The gen_otype
the fuzzy membership functions are uniformly distributed ovégPresentation encodes the problem into a string while the

the range with half-way overlap as shown in Fig. 3, then tfftness function measures the performance of the system. To
center pointz;(i = 1,---,n) of the ith membership function find a good fithess measurement for a system is quite important
is located at T for evolving practical systems using GA’s. Unlike traditional

_ gradient-based methods, GA’s can be used to evolve systems
c; = a+1*step t=1,---,n, where step=——. with any kind of fitness measurement functions including
‘ ntl those that are nondifferentiable, discontinuous, etc. Finding

We constrain thetart pointz; of theith membership function a good fitness measurement can make it easier for the GA to

to vary only betweem; 1 andc;, and theendpointz} of the evolve a useful system. How to define the fitness measurement
ith membership function can vary only betwegnandc; 1. function for a system to be evolved is problem dependent.

Assume an integes(s = 0,---,10) is used to repre_semi For prediction and estimation problems, a commonly used
andz;, thenz] andz; can be calculated from the integer function is a mean-square error or absolute difference error
using the following formula: related function
P _ step x (10 + ) |
T = 1% step T 9x10 +a E— _Z(Oi—ti)Q
N “4
. step * (10 + s) ) i=1
x5 =t *step + ———— +aq, t=1.-,n. N
2% 10 1
For an unknown fuzzy system, we generally have no idea E= N Z o — ]
=1

how many rules should be included in the rule set before the

system is designed. A maximum acceptable number cankere N is the number of training data, ang and¢; are
guessed and/or given, however. Within the maximum numbitie ith obtained and target outputs, respectively. Assume the
constraint, the number of fuzzy rules in the rule set should alseaximum error isE.,....; then one possible fitness function is
be evolved. Assume for our example system that the maximum
acceptable number is 30, then the total length (in integers) of
the chromosome representing the system is

= Emax - FE.

These kind of error functions reflect absolute error; that is, the
14+5%(5%(2+1))+5%30 =226 error is dependent only on the difference between the obtained
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output and target output. For example, for a target output of ten LIST Il
and obtained output of nine, and for a target output of two and DEFINITION OF THE Fuzzy SySTEM THAT ADAPTS GA PARAMETERS
obtained output of one, the same absolute error of one resultg

and each will have the same contribution to the error function.3 2
But nine is generally a better estimation of ten than one is ot ?eftTriangig (1)'8 07
two. Using the above error functions to calculate the fitness, Triangle 0.5 0.9
the obtained system will thus have better accuracy for large rightTriangle 0.7 1.0
target outputs than for small ones. To have the system hav&N feﬁTriang?e (2)0 .
similar accuracy for any target output, relative error functions Triangle 3 9
can be introduced. Examples of these functions are rightTriangle 6 12
VF 3 0.0 0.2
N 9 leftTriangle 0.0 0.12
1 0; —t; Triangle 0.1 0.14
E= N + rightTriangle  0.12 0.2
i=1 v MR 3 0.005 0.1
1o, —t: leftTriangle 0.005 0.015
= L Triangle 0.01  0.02
N t; rightTriangle 0.015 0.1
CR 3 0.4 0.9
For classification problems, the above error functions are lefiTriangle 0.48  0.65
Triangle 0.55 0.75

generally not good candidates. If cladsis misclassified as rightTriangle  0.65  0.83

classB, the same error results as whiiis misclassified as any 1 0 0 1 3
other class. Normally, for classification problems, the number? ; 8 ; ;
of misclassified classes and the number of correctly classifie@ 3 2 3 1
classes are used in the error function and fitness functions. Thi$ 1 0 1 3
approach is used in the problem addressed later in this paper. :32 0 § 2
Other requirements for the system can also be encoded into thg 3 3 1 3

fithess function. For example, if we prefer a fuzzy system with
a low number of rules, then the rule number can be encoded
as a factor of the fithess normally through summation.

Since the process to vary these two parameters to obtain
good performance is unknown, it is unclear how to vary
the parameters during the run. Normally, they are changed

From the encoding methods illustrated, we see that the chliaearly. From experience, we know when the fitness is high,
mosome representing the fuzzy expert system is integer basegl, at the end of the run, low crossover rate and high
instead of binary based. Each element in a chromosome hastation rate are often preferred. Also, when the best fitness
an integer range according to which component or paramejgrstuck at one value for a long time, the system is often
it is representing in the original fuzzy system. For example, stuck at a local minimum in a local neighborhood, so the
has a integer range from 1 to 30 to encode the number of ruiggtem should probably concentrate on exploiting rather than
inside the rule sets7; has a integer range from5 to 5 t0  exploring; that is, the crossover rate should be decreased and
encode the selected fuzzy set; etc. The mutation operator ug@@tation rate should be increased. A similar situation exists
is thus a little different than that used in a binary encodingpr the variance of the fitnesses of the population. When
Each time an element is chosen to be mutated, it is increasggliance is low, mutation should be emphasized, while when
or decreased by one randomly inside its range. The mutatiggyiance is high, crossover should be stressed. According to
rate used is fixed at 0.01 if it is not adapted during the GA rughis kind of knowledge, we develop a fuzzy system to adjust

the crossover and mutation rates with best fithess (BF), number
D. Adaptive Genetic Algorithm of generations for unchanged best fitness (UN), and variance of

Crossover and mutation are two critical operators. Althoudfineésses (VF) as the input variables, and mutation rate (MR)
they are potentially disruptive, they facilitate an efficien@d crossover rate (CR) as output variables. For simplicity,
search and guide the search into new regions. Crossof@fn variable has three fuzzy seksw, medium,and high.
facilitates exploration, while mutation facilitates exploitatior] "€ definition of the fuzzy system that adapts GA parameters
of the space. The probabilities of crossover and mutation dfediven in List II. _ _
often held constant for the entire run of a GA, although this Eight fuzzy rules are used to adjust the mutation and
approach will not produce optimal results in many cases. The{pssover rates. For c_Iearness, the linguistic descriptions of
can be varied during the run, often starting out by running tieese eight rules are listed below.

GA with a relatively higher value for crossover and lower * If BF is low, then MR islow and CR ishigh.

value for mutation, then tapering off the crossover value ande If BF is mediumand UN islow, then MR islow and CR
increasing the mutation rate toward the end of the run, ending is high.

with values of, say, one half and twice the initial values, ¢ If BF is mediumand UN ismedium then MR ismedium
respectively. and CR ismedium

C. Mutation Operator
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e If UN is high and VF ismedium then MR ishigh, and 1

. 1 .
CR is low. 0
« If BF is high and UN islow, then MR islow and CR ST 0.5y
is high. 0 0
* If BF is highand UN ismedium then MR ismediumand 0 sepal%fngth ! 0 Sepq(l)\';idth !
CR is medium 1 : 1 —
e If UN is high and VF islow, then MR ishigh and CR 05t s |
is low.
. I I . 0 0
II; lI.JOI;Iv|s high and VF ishigh, then MR islow and CR 0 03 ) 0 05 )
: petalLength petal Width
Other rules and definitions of membership functions are possi- ! \
ble, of course. These were selected based upon the experience 0.5 |
of the authors for the example described in the next section. 0
They have also proven useful for other problems. 0 0.5 1
Olltlet
V. SIMULATION AND DISCUSSION Fig. 4. Membership functions obtained for iris data.

The implementation of the evolutionary fuzzy system is
written in C++ and compiled using the Borland+&+ 4.5 Simulations were done to design a fuzzy classification
compiler. An example system has been evolved for the classf¥stem using the methods discussed previously for the iris
cation of the well-known iris data set, which consists of featuféata set. Three fuzzy sets were associated with each input
measurements for iris flowers measured by Anderson av@iable. In one of the runs, a fuzzy system with four rules
popularized by Fisher [5]. It consists of 150 four-dimensiond¥as evolved, which yields only three misclassifications. This
vectors representing 50 plants of each of three spdgies IS a good result compared with results obtained by most other

setosa, iris versicolorand iris virginica classification methods. The four rules are as follows with the
membership functions as shown in Fig. 4.
@ = (X1, Ti1, Ti3, Tia), ¢t =1,---,150 1) If sepal length is high and sepal width is not low and
petal length is high and petal width is low then output
wherez;, is the sepal lengthz;, is the sepal widthg;s is the is high

petal length, and:; is the petal width [S]. All of the attribute 2 |f sepal width is not medium and petal length is not high
values have been normalized into real numbers in the range  ang petal width is high then output is not high

[0,1]. The problem is to discriminate the species according3
to the feature vectors. Thus, this is a three-class classification
problem. For this problem, the fithess chosen is the percent
correct.

If sepal length is not medium and sepal width is high and
petal length is not medium and petal width is medium
then output is medium

Assuming each variable has three fuzzy sets associated witd) | Sepal length is not high and petal length is low then
triangular membership functions uniformly distributed over ~ ©UtPut is low
[0,1], we originally used learning vector quantization (LVQ)Since the classification system has been developed using fuzzy
[4] to extract fuzzy rules from the data set. First, LVQ was usd#les, we can explain each classification and understand the
to cluster the iris data into 16 subclasses. Using the centerd@gtionship between the inputs (the four features of an iris
the 16 subclasses and the definitions of the fuzzy sets, 16 rdlewer) and the output (the iris flower's specie). This is an
were formed. Since there were three occurrences of the sdfigortant advantage to evolving a fuzzy rule system.
rule for two out of the 16 rules, all but one was eliminated Note the output representation. There is a single output
due to the fuzzy operators used in this paper. Also there wayh three fuzzy sets. The centroid method of defuzzification
three rules which were merged into one rule by using zei® used. The classifications are arbitrarily assigned to outputs
to represent the absence of a term. A fuzzy system with tg@ro, one, and two (low, medium, and high) in the order they
rules resulted. This system gave 17 errors out of 150 patteBgpear in the data set. Although good results were obtained,
classified. it was noted that most of the time errors were due to class 1

Next, we adjusted the membership functions’ shapes mdreing misclassified as class 2, or vice versa. It is possible that
ually. By trial-and-error, the best system we evolved gave Even better results could have been obtained by reordering the
errors. This is still not acceptable for this data set comparddta so that classes 1 and 2 were not adjacent (results could
with most other classification methods. Finally, more efforiglso have been worse; reordering was not tried). It should,
were made to adjust the membership functions’ shapes dhdrefore, be noted that when using this output representation,
types manually. We finally got the best system we thoughtdering of output classes may be significant.
we could obtain using this approach. This system gave severSince several operations were involved in evolving the final
errors out of 150 patterns classified. This result is acceptallstem, we attempted to (at least approximately) isolate the
for some purposes, but we were not satisfied with it, and wevperations by looking at the effect of each by itself. The goal
thus motivated to evolve the fuzzy system using a GA.  was to ensure that each was indeed contributing to improved
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TABLE |
THE Fuzzy RuLE SET wAS EvoLvED USING FIXED MEMBERSHIP FUNCTIONS, AND WITH FIXED
CROSSOVER AND MUTATION RATES (No Fuzzy SySTEM TO ADAPT CROSSOVER AND MUTATION)

Errors Generation Average
9 18 16 | 18 13 18 21 115 9 10 22 16

8 23 16 |20 13 20 24 |17 9 10 22 174

7 23 16130 22 28 24 128 27 112 25 23.5

6 23 23 176 186 | 44 6l 183 83 |18 25 62.2

S 47 28 | 81 236 |73 78 | 181 |/ 18 255 110.8

4 215 | 60 | 428 [ 527 | 137 |84 [492 |/ 18 481 2714

3 s / / / / 076 |/ / ! 676"

"/ means that the system could not find the solution within 1000 generations
* the average of wtal generations for only those found within 1000 generations

TABLE I
THE Fuzzy RULE SET WAS EvOLVED USING FIXED MEMBERSHIPFUNCTIONS WITH A FUzzy EXPERT SYSTEM ADDED TO ADAPT THE CROSSOVER ANDMUTATION RATES
Errors Generations Average
9 13 4 6 2 8 18 20 21 13 19 12.4
8 24 7 11 2 9 33 27 25 21 22 18.1
7 140 7 15 13 9 33 30 48 53 27 36.5
0 163 8 22 16 20 54 30 97 53 34 50.3
5 176 118 66 41 63 54 30 117 59 34 75.8
4 692 118 241 205 92 62 51 194 237 623 | 2515
3 J 544 / 665 167 732 / 350 |/ 491.6"

T/ means that the system could not find the solution within 1000 generations
" the average of total generations for only those found within 1000 generations

TABLE I
THE Fuzzy EXPERT SYSTEM INCLUDING MEMBERSHIP FUNCTIONS WAS EvVOLVED, BUT WITHOUT Fuzzy
RuULES TO ADAPT THE CROSSOVER AND MUTATION RATES (CROSSOVER ANDMUTATION HELD CONSTANT)

Errors Generations Average
9 24 10 73 17 21 50 94 6 15 24 34
82 16 73 17 21 50 94 6 17 24 40
82 16 74 36 35 62 100 1t 6 22 47 48.2

82 19 90 51 41 65 102 |6 89 47 59.2

158 |21 96 109 |41 77 676 | 31 89 61 1359
158 143 100 | 155 143 91 678 | 589 204 |63 218.4
162 | 186 [ 310 [462 | 111 | 129 | 702 [ 978 | 289 | 140 | 346.9

[FSN S AR KR BN Ho'e)

system performance. The emphasis of the simulations is witation rates were held constant during the run (no fuzzy
convergence speed rather than generalization. All 150 patterakes were used to adapt crossover and mutation). The results
were, therefore, used for system training. A division intare shown in Table I.
training and test sets would be required to examine theNext, the fuzzy rule set was evolved with fixed membership
system’s ability to generalize. (The question of generalizatidunctions, but the fuzzy system (shown in List Il) was used to
is addressed in Shi and Eberhart [21].) adapt the crossover and mutation rates of the GA. The results
In all experiments, the number of generations needed doe given in Table Il.
reach a specified number of errors (out of 150) within 1000 Next, the fuzzy rule set and membership functions were
generations was determined for each of ten runs. These nwawelved, but crossover and mutation rates were held constant
bers appear in Tables I-IV. The right-most column of eaaturing each run (no fuzzy expert system was used to adapt
table is the average number of generations needed to achithee crossover and mutation rates). The results are given in
the error level listed in the left-most column. If more tharTable IlI.
1000 generations were required, the average is for only thos€Comparing Table | with Tables II-1V, we can see that the
found within 1000 generations. system with fixed membership functions and without a fuzzy
First, a fuzzy expert system was evolved, but the memystem to adapt crossover and mutation rates requires the most
bership functions were fixed (linear triangular functions witlyenerations on average and only one of the ten runs was
uniform distribution over the range) and the crossover armsdiccessful in evolving a system with the best performance



118 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 7, NO. 2, APRIL 1999

TABLE IV
THE ENTIRE SYSTEM WAS EVOLVED INCLUDING MEMBERSHIP FUNCTIONS WITH A Fuzzy EXPERT SYSTEM TO ADAPT THE CROSSOVER ANDMUTATION RATES

Errors Generations Average

9 10 9 12 26 14 11 5 29 15 8 13.9

8 10 11 20 | 45 14 11 5 29 15 23 18.9

7 18 11 26 | 53 14 22 5 30 15 30 22.3

0 26 13 26 93 24 29 10 30 15 35 30.1

5 86 3 30 119 30 |43 87 45 17 59 59.9

4 105 2064 30 126 38 | 47 105 47 199 98 105.9

3 129 272 50 154 50 119 113 109 310 122 143.2

(three errors) within 1000 generations. Furthermore, it faisppears that the method described could be useful for a wide
in one out of ten runs to evolve a system with four or fiveange of classification and diagnostic problems.
misclassifications.

Comparing Tables Il and IV, we can see that for relatively
higher numbers of errors, they take similar numbers of gen-
erations to get the same performance. In order to get betted he authors would like to thank the anonymous referees
performance, however, the system with fixed membersH@’ encouragement and helpful comments. Portions of this
functions requires many more generations and half of the rup@Per were adapted fro@omputational Intelligence PC Tools
fail to evolve a system with the best performance within 10d@0oston, MA: APP, 1996, chs. 5, 6).
generations.
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