
Application of a Simple Binary Genetic Algorithm to a
Noiseless Testbed Benchmark

Miguel Nicolau
INRIA Saclay - Île-de-France

LRI - Université Paris Sud
Paris, France

miguel.nicolau@lri.fr

ABSTRACT
One of the earliest evolutionary computation algorithms,
the genetic algorithm, is applied to the noise-free BBOB
2009 testbed. It is adapted to the continuous domain by
increasing the number of bits encoding each variable, un-
til a desired resolution is possible to achieve. Good results
and scaling are obtained for separable functions, but poor
performance is achieved on the other functions, particularly
ill-conditioned functions. Overall running times remain fast
throughout.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: OptimizationGlobal Opti-
mization, Unconstrained Optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization, Evolutionary com-
putation, Genetic algorithms

1. INTRODUCTION
One of the earliest and simplest evolutionary algorithms

ever designed is the genetic algorithm [9, 3]. It is a stochas-
tic, population-based algorithm, in which binary strings are
modified through the use of genetic operators, and a fitness
score dictates the worthiness of an individual.

Genetic algorithms (GAs), in their simplest form (as pre-
sented here), have been applied to a multitude of problem
domains [10]. However, their continued application has high-
lighted one of their major drawbacks: the inability to scale
up, as the problem dimension increases [12]. In answer to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-505-5/09/07 ...$5.00.

this problem, a new breed of genetic algorithms, the so-
called Messy-GAs [5] have been developed. These GAs are
certainly better suited for higher order problems; however,
they are quite complex and hard to deploy. As a result,
the simplicity of developing and applying a simple GA to a
variety of problems remains one of its biggest strengths.

The current paper therefore adapts the original, simple bi-
nary GA to a continuous domain problem, and reports on its
performance. Although not achieving stellar performance,
particularly in comparison with more recent and performing
algorithms, the results obtained are nevertheless remarkable,
particularly in separable functions.

2. THE ALGORITHM
The typical cycle of a genetic algorithm is as follows:

1. Create a population of individuals, each representing
a fully contained potential solution to the problem;

2. Apply each of the potential solutions to the problem,
thus associating a fitness score to each of them;

3. Apply a selection operator (usually fitness-based), to
choose two individuals;

4. Apply a crossover operator (with probability Pc, ex-
changing genetic material between the two parents,
and thus creating a new pair of individuals (offspring);

5. Slightly mutate the binary encoding of each offspring
with probability Pm;

6. Evaluate the solutions encoded by each of the new off-
spring individuals;

7. Repeat steps 3-6 until a full offspring population is
created;

8. Replace the parent population based on the offspring
population and on a chosen replacement strategy.

The actual code used is based on the freely available Illi-
GAL sga code [11], which was modified and adjusted prior
to application to the BBO-Benchmark suite.

2.1 Encoding
Being based on binary strings, GAs are typically applied

to binary problem domains. It is not uncommon to see them
applied to discrete integer domains, but their application to
continuous domains (as in the BBOB suite of functions [7])
is not widespread.

2473

The choice for this implementation was to encode each
variable as a n-bit sequence, which is then scaled, such that
it represents a floating point value in the range [−5, 5]D ,
where D denotes the dimension of the problem. The choice
of n depends on the resolution required; as success on a
particular function is defined as having a distance to the
optimum smaller than 10−8 [7], n must be set such that

2n ≈ 10−8

This wields a choice of n ≥ 30.
Another matter is the choice of encoding. A typical binary

encoding has the disadvantage of introducing local optima to
the fitness landscape. For example, a value of 01111111 for
an 8-bit encoded variable is extremely close to an optimum of
10000000, but it is also at the maximum hamming-distance
of that optimum value, making it very hard to reach (any
single binary change to 01111111 will reduce its fitness).

A potential solution to this problem is to use alternative
encodings, such as Gray-encoding [10], where a small change
to a binary string corresponds to a small change to its dec-
imal equivalent. This however takes away one of the major
advantages of using a binary encoding, which is the uniform
probability that a single bit-flip makes either a large or small
change to a value (depending on which bit is flipped). A
gray-encoded variable is much more dependent on its initial
starting value.

The final choice therefore relied on using a standard bi-
nary encoding, but with a higher value of n = 32. While
this slightly increases the search space, it also introduces re-
dundancy on the encoding, making it less likely to encounter
representation-generated local optima.

2.2 Selection
There are several selection techniques available to the GA

practitioner [4]. One of the most commonly used is the
fitness-based roulette-wheel, in which an individual’s chance
of being selected is proportional to its fitness. It is however
a highly elitist method, and has been shown to lead to pre-
mature convergence [1].

For harder problem domains, such as the ones on the
BBO-Benchmark suite, the tournament selection scheme is
more appropriate, and has been used in this work. Its actual
implementation is the original one from the sga code [11]:

1. Start with a selection pool containing all individuals;

2. Select t individuals from the selection pool (t being the
tournament size);

3. From these, pick the one that has the best fitness;

4. Remove all t individuals from the selection pool;

5. When the selection pool becomes empty, reset it to
contain all individuals again.

This implementation has the advantage of ensuring that
each individual gets at least one chance of participating in
a selection tournament.

2.3 Replacement
Typically, there are two replacement strategies in GAs,

generational and steady-state. Generational replacement
simply replaces the current population with the offspring
population, whereas steady-state replacement ensures that

only the best individuals get through to the next generation.
Given the nature of the BBO-Benchmark function suites,
a generational replacement scheme seemed more adequate,
and was thus used in the current work.

2.4 Genetic Operators
There are two main genetic operators in GAs, crossover

and mutation. Crossover consists in exchanging genetic ma-
terial between two individuals, whereas mutation is an op-
erator that slightly alters the genetic code of a single indi-
vidual.

In the current work, a 2-point crossover was implemented
and used. This consists in selecting two individuals, choos-
ing two random points in each (corresponding points in each
individual), and exchanging the genetic material that lies be-
tween the two points. As the boundaries of each variable are
known (every set of n bits corresponds to a variable), the
choice of crossover points was limited to variable boundaries.

The mutation operator used was a simple bit-flipping mu-
tation: each bit in the whole genetic sequence of an individ-
ual is flipped with a probability Pm.

2.5 Parameters
The same parameters and settings were used for all func-

tions, such that the crafting effort [6] computes to CrE = 0.

2.5.1 Population size and number of generations
The maximum number of function evaluations per func-

tion was set to Fmax = 105 ∗ D, where D is the dimension
of the problem, so the population size P and number of
generations G must be set such that:

P × G ≈ 105 ∗ D

Choosing the population size in a GA has largely been an
experimental parameter. A few population-sizing models
have been proposed, such as the Gambler’s Ruin Problem
model [8], but these are usually based on the distribution
of small binary building blocks in the original population,
which is infeasible given the current setup (n = 32).

After some (small) experimentation, the following formu-
lae were used:

P = ⌊
√

Fmax ∗ 5⌋

G = (Fmax/P) + (Fmax%P 6= 0)

where (Fmax%P 6= 0) returns 0 if Fmax is divisible by P ,
and 1 otherwise.

2.5.2 Crossover and mutation probabilities
The probability of crossover was set to 1.0. The mutation

probability is slightly harder to set; a high value favours
early exploration, whereas a low value is required to fine tune
good values found earlier. As the population size is quite
large, favouring early diversity, the mutation probability was
set to a low value (after a few experimental runs):

Pc = 1.0

Pm =
2.0

L

where L is the length of the binary strings (L = n ∗ D).

2474

2.5.3 Tournament size
The tournament size to use during selection is another

non-obvious parameter to set. A low value helps to keep
diversity in the population, but a higher value favours the
spreading of good allele throughout the population. Quick
experimentation with a subset of the target functions yielded
the following (experimental) value:

t =
P

500

3. RESULTS
Results from experiments according to [6] on the bench-

mark functions given in [2, 7] are presented in Figures 1 and
2 and in Table 1. The whole experiment (all dimensions, all
functions, all instances) took less than a day to execute.

The results obtained show that the GA performs quite
well on separable functions 1-4, both in terms of results and
scaling, and, although not solving it to the resolution re-
quired (10−8), scales fairly well for function 5. It seems that
the application of the crossover operator is quite useful for
this kind of functions.

Some functions are very hard for the GA; the Ellipsoid
(function 10) and Lunacek bi-Rastrigin (function 24) are
obvious examples. In any case, apart from the separable
functions, there is an obvious difficulty for the GA to scale-
up to the dimension of the problem.

4. CPU TIMING EXPERIMENT
For the timing experiment the GA was run with a max-

imum of 105 × D function evaluations and restarted until
30 seconds has passed (according to Figure 2 in [6]). The
experiments have been conducted with a Dual Core AMD
Opteron processor, running at 1.8GHz, under Linux, using a
C-implementation (gcc version 4.1.2). The time per function
evaluation was 2.9; 4.2; 6.7; 12; 24; 47 times 10−6 seconds
in dimensions 2; 3; 5; 10; 20; 40 respectively.

5. CONCLUSION
The application of the simple GA algorithm to a testbed

of noiseless continuous functions has been presented. The
results obtained show that its adaptation to continuous do-
mains is possible and easy to achieve. However, apart from
separable functions, where the exchange of genetic material
through the crossover operator boosts performance consid-
erably, the lack of scaling of the GA is obvious. It remains
however a simple to implement and quite fast approach. Fur-
ther tuning of parameters could potentially wield better re-
sults.

6. REFERENCES
[1] J. E. Baker. Reducing bias and inefficiency in the

selection algorithm. In J. J. Grefenstette, editor,
Proceedings of the Second International Conference on

Genetic Algorithms, Cambridge, MA, USA, July 1987,
pages 14–21. Lawrence Erlbaum Associates, 1987.

[2] S. Finck, N. Hansen, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Presentation of the noiseless functions. Technical
Report 2009/20, Research Center PPE, 2009.

[3] D. E. Goldberg. Genetic Algorithms in Search,

Optimization and Machine Learning. Addison Wesley,
1989.

[4] D. E. Goldberg and K. Deb. A comparative analysis of
selection schemes used in genetic algorithms. In
G. J. E. Rawlins, editor, Proceedings of the First

Workshop on Foundations of Genetic Algorithms.

Bloomington Campus, Indiana, USA, July 15-18 1990,
pages 69–93. Morgan Kaufmann, 1991.

[5] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results.
Complex Systems, 3(5):493–530, 1989.

[6] N. Hansen, A. Auger, S. Finck, and R. Ros.
Real-parameter black-box optimization benchmarking
2009: Experimental setup. Technical Report RR-6828,
INRIA, 2009.

[7] N. Hansen, S. Finck, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2009.

[8] G. R. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations.
Evolutionary Computation, 7(3):231–253, 1999.

[9] J. H. Holland. Adaptation in Natural and Artificial

Systems. University of Michigan Press, 1975.

[10] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, USA, 1996.

[11] R. E. Smith and D. E. Goldberg. Sga-c: A c-language
implementation of a simple genetic algorithm.
Technical Report 91002, Illinois Genetic Algorithms
Laboratory, Urbana, IL, USA, 1991.

[12] D. Thierens. Scalability problems of simple genetic
algorithms. Evolutionary Computation, 7(4):331–352,
1999.

2475

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

13

6

1 Sphere

 +1

 +0

 -1

 -2

 -3

 -5

 -8

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

13

2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

11

3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

14
9

4 Skew Rastrigin-Bueche separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

3

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

14
10

5

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

2

9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
11 Discus

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

6

12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

10

3

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

5

1

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

1

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

11

20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

10 12
8

3

21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

2 3

22 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
24 Lunacek bi-Rastrigin

 +1

 +0

 -1

 -2

 -3

 -5

 -8

Figure 1: Expected Running Time (ERT, •) to reach fopt + ∆f and median number of function evaluations of
successful trials (+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the exponent is given in the legend of f1

and f24) versus dimension in log-log presentation. The ERT(∆f) equals to #FEs(∆f) divided by the number
of successful trials, where a trial is successful if fopt + ∆f was surpassed during the trial. The #FEs(∆f) are
the total number of function evaluations while fopt +∆f was not surpassed during the trial from all respective
trials (successful and unsuccessful), and fopt denotes the optimal function value. Crosses (×) indicate the total
number of function evaluations #FEs(−∞). Numbers above ERT-symbols indicate the number of successful
trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and
quadratic scaling.

2476

f1 in 5-D, N=15, mFE=502112 f1 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 9.6e1 5.7e1 1.4e2 9.6e1 15 3.8e4 3.7e4 3.8e4 3.8e4

1 15 4.4e3 3.9e3 5.0e3 4.4e3 15 8.2e4 8.0e4 8.3e4 8.2e4

1e−1 15 1.4e4 1.4e4 1.5e4 1.4e4 15 1.4e5 1.3e5 1.4e5 1.4e5

1e−3 15 3.6e4 3.5e4 3.7e4 3.6e4 10 1.3e6 8.7e5 1.9e6 8.1e5

1e−5 15 6.6e4 6.4e4 6.7e4 6.6e4 1 2.9e7 1.4e7 >3e7 2.0e6

1e−8 13 2.0e5 1.5e5 2.6e5 1.8e5 0 74e–5 21e–6 11e–3 1.4e6

f2 in 5-D, N=15, mFE=502112 f2 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.8e4 2.7e4 2.9e4 2.8e4 10 1.2e6 8.1e5 1.8e6 9.3e5

1 15 4.0e4 3.9e4 4.1e4 4.0e4 7 2.6e6 1.7e6 4.4e6 1.0e6

1e−1 15 5.4e4 5.2e4 5.5e4 5.4e4 1 2.8e7 1.3e7 >3e7 2.0e6

1e−3 14 1.2e5 8.2e4 1.6e5 1.1e5 0 29e–1 11e–2 42e+0 1.4e6

1e−5 13 2.0e5 1.5e5 2.6e5 1.8e5

1e−8 13 2.7e5 2.2e5 3.2e5 2.4e5

f3 in 5-D, N=15, mFE=502112 f3 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.3e4 1.3e4 1.4e4 1.3e4 15 1.4e5 1.4e5 1.5e5 1.4e5

1 15 3.0e4 2.9e4 3.0e4 3.0e4 1 2.8e7 1.3e7 >3e7 2.0e6

1e−1 15 4.1e4 4.1e4 4.2e4 4.1e4 0 21e–1 10e–1 31e–1 1.3e6

1e−3 15 7.1e4 6.9e4 7.3e4 7.1e4

1e−5 13 1.8e5 1.3e5 2.5e5 1.7e5

1e−8 11 3.6e5 2.7e5 4.7e5 2.6e5

f4 in 5-D, N=15, mFE=502112 f4 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.5e4 1.4e4 1.6e4 1.5e4 14 3.1e5 1.7e5 4.7e5 3.0e5

1 15 3.2e4 3.1e4 3.3e4 3.2e4 1 2.9e7 1.4e7 >3e7 2.0e6

1e−1 15 4.4e4 4.2e4 4.5e4 4.4e4 0 34e–1 13e–1 74e–1 1.3e6

1e−3 15 7.5e4 7.2e4 7.8e4 7.5e4

1e−5 15 1.1e5 1.1e5 1.1e5 1.1e5

1e−8 9 5.2e5 3.8e5 7.6e5 3.0e5

f5 in 5-D, N=15, mFE=502112 f5 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.8e3 4.2e3 5.5e3 4.8e3 15 8.8e4 8.6e4 8.9e4 8.8e4

1 15 2.1e4 2.0e4 2.2e4 2.1e4 15 1.9e5 1.8e5 1.9e5 1.9e5

1e−1 15 4.0e4 3.8e4 4.1e4 4.0e4 15 3.1e5 3.0e5 3.1e5 3.1e5

1e−3 15 9.2e4 9.0e4 9.4e4 9.2e4 15 5.7e5 5.7e5 5.8e5 5.7e5

1e−5 15 1.7e5 1.6e5 1.7e5 1.7e5 15 9.0e5 8.9e5 9.1e5 9.0e5

1e−8 0 35e–9 22e–9 45e–9 4.5e5 0 11e–8 62e–9 12e–8 1.4e6

f6 in 5-D, N=15, mFE=502112 f6 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 7.6e3 6.2e3 9.0e3 7.6e3 7 2.5e6 1.8e6 4.0e6 1.3e6

1 15 3.2e4 2.9e4 3.5e4 3.2e4 0 11e+0 33e–1 22e+0 1.8e6

1e−1 14 1.1e5 7.3e4 1.5e5 1.0e5

1e−3 1 7.1e6 3.4e6 >7e6 5.0e5

1e−5 0 24e–3 25e–4 78e–3 4.5e5

1e−8

f7 in 5-D, N=15, mFE=502112 f7 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.2e3 8.1e2 1.6e3 1.2e3 15 1.0e5 9.9e4 1.1e5 1.0e5

1 15 1.1e4 1.0e4 1.2e4 1.1e4 0 32e–1 12e–1 61e–1 5.0e5

1e−1 14 6.7e4 3.1e4 1.1e5 6.5e4

1e−3 6 8.2e5 5.7e5 1.3e6 4.3e5

1e−5 6 8.2e5 5.9e5 1.3e6 4.3e5

1e−8 5 1.1e6 7.5e5 2.1e6 4.2e5

f8 in 5-D, N=15, mFE=502112 f8 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.4e4 1.2e4 1.5e4 1.4e4 0 17e+0 12e+0 22e+0 1.3e6

1 11 2.3e5 1.3e5 3.7e5 1.3e5

1e−1 0 78e–2 31e–2 12e–1 5.0e4

1e−3

1e−5

1e−8

f9 in 5-D, N=15, mFE=502112 f9 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.5e4 1.3e4 1.6e4 1.5e4 0 19e+0 17e+0 20e+0 1.4e6

1 1 7.1e6 3.3e6 >7e6 5.9e4

1e−1 0 17e–1 11e–1 29e–1 2.5e5

1e−3

1e−5

1e−8

f10 in 5-D, N=15, mFE=502112 f10 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 6 8.3e5 5.3e5 1.5e6 3.0e5 0 15e+3 75e+2 32e+3 1.6e6

1 0 15e+0 38e–1 77e+0 1.0e5

1e−1

1e−3

1e−5

1e−8

f11 in 5-D, N=15, mFE=502112 f11 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 14 4.8e4 1.2e4 9.0e4 4.7e4 1 2.9e7 1.4e7 >3e7 1.3e6

1 4 1.4e6 8.2e5 3.1e6 2.7e5 0 20e+0 16e+0 40e+0 2.0e6

1e−1 1 7.1e6 3.4e6 >7e6 5.0e5

1e−3 0 21e–1 68e–2 66e–1 7.9e4

1e−5

1e−8

f12 in 5-D, N=15, mFE=502112 f12 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 14 1.0e5 6.3e4 1.5e5 6.5e4 0 14e+2 45e+0 60e+2 1.4e6

1 7 6.6e5 4.2e5 1.1e6 2.6e5

1e−1 1 7.1e6 3.4e6 >7e6 5.0e5

1e−3 0 11e–1 15e–2 83e–1 4.5e5

1e−5

1e−8

f13 in 5-D, N=15, mFE=502112 f13 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.2e4 3.1e4 3.3e4 3.2e4 6 3.3e6 2.1e6 6.2e6 8.7e5

1 13 1.4e5 8.6e4 2.1e5 1.3e5 0 10e+0 59e–1 25e+0 1.4e6

1e−1 5 1.1e6 7.8e5 1.8e6 5.0e5

1e−3 0 20e–2 18e–3 10e–1 4.5e5

1e−5

1e−8

f14 in 5-D, N=15, mFE=502112 f14 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.1e1 1.4e1 2.8e1 2.1e1 15 2.1e4 1.9e4 2.2e4 2.1e4

1 15 3.7e3 3.1e3 4.3e3 3.7e3 15 7.6e4 7.4e4 7.9e4 7.6e4

1e−1 15 1.5e4 1.5e4 1.6e4 1.5e4 15 1.5e5 1.4e5 1.5e5 1.5e5

1e−3 15 4.9e4 4.6e4 5.1e4 4.9e4 0 72e–4 32e–4 17e–3 1.6e6

1e−5 0 13e–5 27e–6 49e–5 1.8e5

1e−8

f15 in 5-D, N=15, mFE=502112 f15 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.8e4 1.7e4 1.9e4 1.8e4 0 25e+0 21e+0 37e+0 1.6e6

1 6 8.4e5 5.8e5 1.4e6 3.7e5

1e−1 1 7.1e6 3.3e6 >7e6 5.0e5

1e−3 1 7.1e6 3.4e6 >7e6 5.0e5

1e−5 1 7.2e6 3.4e6 >7e6 5.0e5

1e−8 0 15e–1 99e–2 20e–1 3.5e5

f16 in 5-D, N=15, mFE=502112 f16 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.5e2 1.8e2 3.2e2 2.5e2 15 1.9e5 1.8e5 2.1e5 1.9e5

1 15 5.2e4 4.3e4 6.1e4 5.2e4 1 2.8e7 1.3e7 >3e7 2.0e6

1e−1 12 2.5e5 1.7e5 3.5e5 1.8e5 0 24e–1 13e–1 51e–1 1.8e6

1e−3 4 1.6e6 9.8e5 3.2e6 4.2e5

1e−5 1 7.2e6 3.5e6 >7e6 5.0e5

1e−8 0 39e–3 13e–5 14e–2 3.5e5

f17 in 5-D, N=15, mFE=502112 f17 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.8e1 2.1e1 3.6e1 2.8e1 15 3.6e3 2.7e3 4.5e3 3.6e3

1 15 9.9e3 9.2e3 1.1e4 9.9e3 15 9.4e4 9.2e4 9.7e4 9.4e4

1e−1 15 3.3e4 3.2e4 3.3e4 3.3e4 1 2.8e7 1.3e7 >3e7 2.0e6

1e−3 7 6.9e5 4.6e5 1.2e6 2.7e5 0 21e–2 11e–2 30e–2 1.6e6

1e−5 2 3.5e6 1.8e6 >7e6 5.0e5

1e−8 0 13e–4 24e–8 11e–3 4.5e5

f18 in 5-D, N=15, mFE=502112 f18 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.3e3 1.8e3 2.7e3 2.3e3 15 4.7e4 4.5e4 5.0e4 4.7e4

1 15 2.2e4 2.1e4 2.3e4 2.2e4 10 1.2e6 7.8e5 1.8e6 7.6e5

1e−1 13 1.3e5 7.9e4 2.0e5 1.2e5 0 73e–2 55e–2 20e–1 1.6e6

1e−3 0 15e–3 25e–4 10e–2 4.5e5

1e−5

1e−8

f19 in 5-D, N=15, mFE=502112 f19 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.5e1 2.8e1 4.1e1 3.5e1 15 1.4e4 1.3e4 1.4e4 1.4e4

1 15 1.2e4 1.0e4 1.3e4 1.2e4 14 6.5e5 5.0e5 8.4e5 5.1e5

1e−1 14 1.7e5 1.3e5 2.1e5 1.6e5 0 44e–2 21e–2 85e–2 1.8e6

1e−3 1 7.2e6 3.4e6 >7e6 5.0e5

1e−5 0 59e–3 24e–3 92e–3 2.8e5

1e−8

f20 in 5-D, N=15, mFE=502112 f20 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 7.5e2 5.5e2 9.4e2 7.5e2 15 4.1e4 4.0e4 4.2e4 4.1e4

1 15 1.8e4 1.7e4 1.9e4 1.8e4 15 1.3e5 1.2e5 1.3e5 1.3e5

1e−1 15 3.8e4 3.6e4 4.0e4 3.8e4 0 32e–2 23e–2 44e–2 1.3e6

1e−3 15 6.8e4 6.5e4 7.2e4 6.8e4

1e−5 14 1.4e5 1.1e5 1.8e5 1.3e5

1e−8 11 3.6e5 2.8e5 4.8e5 2.7e5

f21 in 5-D, N=15, mFE=502112 f21 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.9e2 1.4e2 2.5e2 1.9e2 15 5.0e4 4.7e4 5.4e4 5.0e4

1 15 6.4e3 5.4e3 7.4e3 6.4e3 5 4.1e6 2.5e6 8.1e6 1.2e6

1e−1 13 1.0e5 3.9e4 1.7e5 9.9e4 4 5.6e6 3.2e6 1.3e7 1.1e6

1e−3 13 1.2e5 6.0e4 1.8e5 1.1e5 2 1.3e7 7.1e6 >3e7 2.0e6

1e−5 11 2.4e5 1.6e5 3.3e5 2.2e5 0 20e–1 92e–6 47e–1 1.4e6

1e−8 8 5.3e5 3.7e5 7.8e5 3.0e5

f22 in 5-D, N=15, mFE=502112 f22 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.3e2 3.2e2 5.4e2 4.3e2 15 5.1e4 4.6e4 5.6e4 5.1e4

1 15 6.9e3 5.7e3 8.1e3 6.9e3 3 8.1e6 4.9e6 2.4e7 2.0e6

1e−1 9 3.6e5 2.1e5 5.9e5 1.9e5 0 20e–1 69e–2 87e–1 1.0e6

1e−3 4 1.5e6 8.6e5 3.3e6 2.8e5

1e−5 1 7.1e6 3.3e6 >7e6 5.0e5

1e−8 0 24e–3 13e–5 51e–2 2.8e5

f23 in 5-D, N=15, mFE=502112 f23 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.4e0 3.1e0 6.1e0 4.4e0 15 5.5e0 3.4e0 7.9e0 5.5e0

1 15 3.1e4 2.2e4 4.0e4 3.1e4 4 7.4e6 4.9e6 1.5e7 2.0e6

1e−1 0 49e–2 40e–2 63e–2 2.2e5 0 12e–1 48e–2 16e–1 1.3e6

1e−3

1e−5

1e−8

f24 in 5-D, N=15, mFE=502112 f24 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.4e4 3.1e4 3.8e4 3.4e4 0 42e+0 34e+0 65e+0 1.8e6

1 0 54e–1 52e–1 58e–1 4.5e5

1e−1

1e−3

1e−5

1e−8

Table 1: Shown are, for a given target difference to the optimal function value ∆f : the number of successful
trials (#); the expected running time to surpass fopt +∆f (ERT, see Figure 1); the 10%-tile and 90%-tile of the
bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was
successful, as last entry the median number of function evaluations to reach the best function value (RTsucc).
If fopt + ∆f was never reached, figures in italics denote the best achieved ∆f-value of the median trial and
the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum
of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

2477

D = 5 D = 20
a
ll

fu
n
ct

io
n
s

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0
p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1:24/24

-1:19/24

-4:14/24

-8:7/24

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-24
0 1 2 3 4 5

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-24+1:18/24

-1:6/24

-4:3/24

-8:0/24

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-24

se
p
a
ra

b
le

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1:5/5

-1:5/5

-4:5/5

-8:4/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-5
0 1 2 3 4 5

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f1-5+1:5/5

-1:3/5

-4:2/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f1-5

m
o
d
er

a
te

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9+1:4/4

-1:2/4

-4:2/4

-8:1/4

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f6-9
0 1 2 3 4 5

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f6-9 +1:2/4

-1:0/4

-4:0/4

-8:0/4

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f6-9

il
l-
co

n
d
it
io

n
ed

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14+1:5/5

-1:4/5

-4:1/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f10-14
0 1 2 3 4 5

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f10-14 +1:3/5

-1:1/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f10-14

m
u
lt
i-
m

o
d
a
l
fc

ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1:5/5

-1:5/5

-4:3/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f15-19
0 1 2 3 4 5

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f15-19+1:4/5

-1:1/5

-4:0/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f15-19

w
ea

k
st

ru
ct

u
re

fc
ts

0 1 2 3 4 5
log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1:5/5

-1:3/5

-4:3/5

-8:2/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f20-24
0 1 2 3 4 5

log10 of FEvals / DIM

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

p
o
rt

io
n
 o

f
tr

ia
ls

f20-24+1:4/5

-1:1/5

-4:1/5

-8:0/5

0 2 4 6 8 10 12 14 16
log10 of Df / Dftarget

f20-24

Figure 2: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left subplots) or versus ∆f (right subplots). The thick red line represents the best achieved results. Left
subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D,
to fall below fopt + ∆f with ∆f = 10k, where k is the first value in the legend. Right subplots: ECDF of the
best achieved ∆f divided by 10k (upper left lines in continuation of the left subplot), and best achieved ∆f
divided by 10−8 for running times of D, 10 D, 100 D . . . function evaluations (from right to left cycling black-
cyan-magenta). Top row: all results from all functions; second row: separable functions; third row: misc.
moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions with adequate
structure; last row: multi-modal functions with weak structure. The legends indicate the number of functions
that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote
search space dimension, and ∆f and Df denote the difference to the optimal function value.

2478

