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ABSTRACT
Variable Neighbourhood Search is a metaheuristic combining
three components: generation, improvement, and shaking
components. In this paper, we design a continuous Variable
Neighbourhood Search algorithm based on three specialised

Evolutionary Algorithms, which play the role of each afore-
mentioned component: 1) an EA specialised in generating
a good starting point as generation component, 2) an EA
specialised in exploiting local information as improvement
component, 3) and another EA specialised in providing lo-
cal diversity as shaking component. Experiments are carried
out on the noisy Black-Box Optimisation Benchmark 2009
testbed.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: OptimizationGlobal Opti-
mization, Unconstrained Optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization, Evolutionary com-
putation, Hybrid metaheuristics, Variable neighbourhood
search, Specialised evolutionary algorithms

1. INTRODUCTION
Metaheuristics (MHs) [11] are a family of search and opti-

misation algorithms based on extending basic heuristic meth-
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ods by including them into an iterative framework augment-
ing their exploration capabilities. MHs coordinate subor-

dinate components (such as probability distributions, tabu
lists or genetic operators among others) with the aim of per-
forming an effective and efficient process in searching for the
global optimum of a problem.

Over the last years, a large number of search algorithms
were reported that do not purely follow the concepts of one
single classical MH, but they attempt to obtain the best from
a set of MHs that perform together and complement each
other to produce a profitable synergy from their combina-
tion. These approaches are commonly referred to as hybrid

MHs [23].
Evolutionary Algorithms (EAs) [4] are stochastic search

methods that mimic the metaphor of natural biological evo-
lution. EAs rely on the concept of a population of individu-
als, which undergo probabilistic operators to evolve toward
increasingly better fitness values of the individuals.

A novel method to build hybrid MHs, recently introduced
in [20], concerns the incorporation of specialised EAs into
classical MHs, replacing determinate components, but pre-
serving the essence of the original MH as much as possible.
The idea is to build customised EAs playing the same role
as particular MH components, but more effectively, i.e., evo-

lutionary MH components. In this way, a classical MH is
transformed into an integrative hybrid MH (because one of
its components is another MH). In the literature, we find
some proposals that follow this idea: In [1] and [7], two EAs
are applied to perform local search processes within a multi-
start MH; and in [19, 20], an evolutionary ILS-perturbation
technique is presented (ILS is for Iterated Local Search).

Variable Neighbourhood Search (VNS) [22] is a MH that
exploits systematically the idea of neighbourhood change
(from a given set of neighbourhood structures Nk, k =
1, . . . , kmax), both in the descent to local minima and in
the escape from the valleys which contain them. It mainly
consists of the following three components, which work on a
single candidate solution, the current solution (sc) (see Fig.
1):

1. Generation component: Firstly, a method is executed
to generate s

c within the search space.

2. Improvement component: Secondly, s
c is refined, usu-

ally by a local search method.
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Figure 1: General VNS model / VNS based on spe-
cialised EAs

3. Shaking component: Then, shaking is performed to es-
cape from the valley where s

c lies. It selects a random
solution in the kth neighbourhood of s

c , which be-
comes a new starting solution for improvement com-
ponent. At the beginning of the run, and every time
last improvement process improved the best found so-
lution, k is set to one; otherwise, k is set to k + 1.

In this study, we introduce a continuous VNS model based
on three specialised EAs, which play the role of each VNS
component. The algorithm is benchmarked on the noisy

Black-Box Optimization Benchmark 2009 testbed. The same
model was also benchmarked on the noiseless Black-Box Op-
timization Benchmark 2009 testbed [8], including CPU tim-
ing experiment.

In Sect. 2, we briefly describe the proposed VNS model.
A slight more extensive description can be found in [8]. In
Sect. 3, we present the experimental results. Conclusions
are presented in Sect. 4.

2. VNS BASED ON SPECIALISED EAS
In this study, we design a continuous VNS model based

on three specialised EAs, which play the role of each VNS
component (see Fig. 1):

1. Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [14, 15] generates initial s
c (Sect. 2.1).

2. Continuous Local EA improves s
c (Sect. 2.2).

3. Micro Cross-generational elitist sel., Heterogeneous re-

combination, and Cataclysmic mutation (µCHC) per-
forms shaking to scape from the valley where s

c lies,
according to kth neighbourhood (Sect. 2.3).

Adaptation of parameter k is performed the same way
general VNS model does. However, to avoid small and
frequent improvements when tackling continuous prob-
lems, k is set to one only if the improvement is superior
to a threshold (1e − 8). Otherwise, k is set to k + 1.

Neighbourhoods structures are defined by using metric ρ:

Nk(sc) = {s | rk−1 ≤ ρ(sc , s) ≤ rk} (1)

where rk is the radius of Nk(sc) monotonically nondecreas-
ing with k. Hereafter, we will always consider the following
distance metric because of computational reasons:

ρ(x, y) =
n

X

i=1

|xi − yi| (2)

Figure 2: Continuous Local EA

Stop condition is reached when k surpasses kmax (in our
case, kmax is set to 20). At this point, as it is suggested in
[12], the algorithm performs a restart. In this way, exploit-
ing larger number of function evaluations may increase the
chance to achieve better function values or solve the function
up to the final target. In our case, a restart means that VNS
is run once again from the CMA-ES execution, generating a
new s

c .

2.1 CMA-ES as Generator Component
In this work, we apply CMA-ES [14, 15] to obtain a good

point in the design space from which the algorithm carries
out its search process. We have applied the C code, available
at http://www.lri.fr/∼hansen/cmaes_inmatlab.html with the
suggested parameter values from a random solution.

2.2 Continuous Local EA as
Improvement Component

Continuous Local EA is based on the principles of Binary
Local Genetic Algorithm [10]. It is a steady-state real-coded

genetic algorithm [16] that inserts one single new member
into the population (Pop) in each iteration. It uses a re-
placement method in order to force a member of the cur-
rent population to perish and to make room for the new
offspring. It is important to know that the selected replace-
ment method favours the acquisition of information about
the search space. Then, the algorithm exploits local infor-
mation around s

c , provided by the individuals in Pop close
to it, to orientate the improvement process.

Let’s suppose that Continuous Local EA is to improve the
given s

c . Then, following steps are carried out (see Fig. 2):

• Mate selection: A solution from Pop is selected as
s

mate by means of nearest improving solution selec-

tion method (Sect. 2.2.1).

• Crossover : s
mate and s

c are crossed over by means of
parent-centric BLX-α, creating offspring z (Sec. 2.2.2).

• Acceptance and replacement : If z is accepted (Sect.
2.2.3), it replaces s

c and is inserted into the popu-
lation forcing the individual with lowest information
contribution to perish (Sect. 2.2.4).

All these steps are repeated until a maximun number of
iterations without improving the best visited s

c is reached
(we stop the run after 100 iterations without improving best
s

c). At last, the best found s
c is returned.

An important aspect when using Continuous Local EA in
the proposed VNS model is that Pop undergoes initialisation
only once, at the beginning of the run, and not at every
invocation to improve s

c . In this way, the algorithm may
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gather up valuable information about the search space and
its optima, and employ accumulated search experience from
previous refinements to enhance future ones.

2.2.1 Nearest Improving Solution Selection
In Continuous Local EA, first parent is always s

c , then,
nearest improving solution selection mechanism selects as
second parent the individual in Pop most similar to s

c (at
phenotypic level) fulfilling two conditions: 1) it has a better
fitness value than s

c and 2) similarity between both solu-
tions is above a given threshold. Mating threshold has been
initially set to 1e − 2. Then, after every VNS restart, it is
set to half its value to perform a more precise search. The
interested reader is referred to [8] for the idea behind this
selection mechanism.

An important remark is that this selection mechanism
may return no mate for s

c . It occurs when the mechanism
has dismissed all solutions in Pop because they are either
worse than s

c , either their distances to s
c are under mating

threshold. Crossover is not performed in this case. Offspring
is generated by perturbing s

c instead (Sect. 2.2.2).

2.2.2 PBX-α Crossover Operator
PBX-α [21] is an instance of parent-centric crossover op-

erators, which have arisen as a meaningful and efficient way
of solving real-parameter optimisation problems [3, 9].

Given s
c= (sc

1 · · · s
c

n) and s
mate= (smate

1 · · · smate

n ), PBX-
α generates offspring z= (z1 · · · zn), where zi is a random
(uniform) number from interval [sc

i −I ·α, sc

i +I ·α], with I =
|sc

i − smate

i |. Parameter α is initially set to 0.5. Then, after
every VNS restart, it is set to 0.5/loge(number of restarts+
1) for a more precise search.

As mentioned before, crossover operation occurs when
mate selection returns a solution from Pop. Otherwise, off-
spring is generated by adding a normal random vector to s

c ,
whose standard deviation is the product of the current val-
ues of aforementioned parameters α and mating threshold.

2.2.3 Acceptance Criterion
Once offspring z has been generated either by PBX-α or

perturbation, Continuous Local EA decides which solution,
between z and s

c , becomes the new s
c . It follows a similar

idea to the ones behind Simulated Annealing [18] and Nois-

ing Methods [2] to overcome rugged landscapes and local
optima. In particular, it always accepts z if it is better than
a specific computed bound. At the beginning, that bound
is set equal to the fitness value of s

c , only allowing improv-
ing offspring. Then, every time a new best s

c is found, the
bound is computed as the average of the fitness of the new
best s

c and the old bound. This mechanism provides some
selection pressure on the process that also lets the algorithm
to accept uphill moves, and overcome small local optima.

2.2.4 Lowest Information Contribution Replacement
In this work, we propose a method for updating Pop of

Continuous Local EA, when solving mono-objective prob-
lems. Its aim is to maintain a set of good solutions properly
spread over the search space. A more extensive description
of this idea can be found in [8]. The mechanism firstly in-
serts the new offspring in Pop, then, it removes the most
crowded solution, keeping population size constant (we use
|Pop| = 100). To determine the solution to be removed, ev-
eryone in Pop holds a pointer to its nearest solution as well

Figure 3: µCHC as shaking module

as the distance between them, at phenotypic level. Since,
according to this definition, there are always, at least, two
solutions holding the minimum distance, the worst of them
is the one to be removed. Pointers and distances are up-
dated every time Pop changes, i.e., when inserting the new
solution and when removing the most crowded one. Notice
that the best found solution is never removed.

2.3 µCHC as Shaking Component
In this work, we propose µCHC as the shaking compo-

nent of VNS. µCHC was firstly presented as an evolutionary

ILS-perturbation technique for binary-coded problems [19,
20], obtaining promising results with regards to several per-
turbation techniques proposed in the literature. The role of
µCHC is to receive s

c , provide local diversity, and generate
a solution that is then considered as starting point for the
next improvement process (see Fig. 3).

2.3.1 µCHC Model
We have conceived µCHC to be an effective explorer in the

neighbourhood of s
c to perform shaking process, because it

provides local diversity. At the beginning, s
c is used to cre-

ate its initial population (Sect. 2.3.2). Then, it is performed
throughout a predetermined number of fitness function eval-
uations. The best reached individual is then considered as
starting point for the next improvement process (see Fig. 3).

The main components of the algorithm are:

• Population size: µCHC manages a population with
few individuals (|Pop| = 5), and thus, it may be seen
as micro EA. In standard VNS models, the number
of fitness function evaluations required by the shaking
mechanism is very low as compared with the one for
the improvement method. With the aim of preserving,
as far as possible, the essence of VNS, we have consid-
ered an EA with a low sized population; for being able
to work adequately under the requirement of spending
reduced number of evaluations.

• Number of evaluations: In particular, the number of
evaluations assigned to µCHC for a particular invoca-
tion will be a fixed proportion (pevals), of the num-
ber of evaluations consumed by the previously per-
formed improvement method (Continuous Local EA).
It is worth noting that pevals should be set to a low
value. We will use pevals equal to 0.5.

• Elitist selection: Current population is merged with
offspring population obtained from it and the best |Pop|
individuals are selected for the new population.

• Incest prevention mechanism: Before mating, Ham-
ming distance between the corresponding Gray-coding
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Figure 4: Shape of probability distribution for ini-
tialisation

strings of paired individuals (with 20 bits per variable)
is calculated. Only paired individuals whose distance
exceed a difference threshold d are allowed to undergo
crossover operation. Aforementioned threshold is ini-
tialised to L/4 (with L being the number of bits coding
a potential solution). If no offspring is obtained in one
generation, difference threshold is decremented by one.

• BLX-α crossover operator : Paired individuals allowed
to produce offspring undergo BLX-α crossover oper-
ator [5], producing one offspring. Given y

1 and y
2,

BLX-α generates offspring z, where zi is a random
(uniform) number from [ymin − I · α, ymax + I · α] in-
terval, with ymin = min(y1

i , y2
i ), ymax = max(y1

i , y2
i ),

and I = |y1
i − y2

i |. This parameter α is set to 0.5.

• Mating with s
c: µCHC incorporates the strategy of re-

combining s
c with another solution [17]. In addition to

the typical recombination phase of CHC, our algorithm
mates s

c with a member of Pop (selected at random)
and, if they are finally crossed over (attending on the
incest prevention mechanism), the resulting offspring
will be introduced into the offspring population.

• Cataclysmic mutation: µCHC, as CHC, uses no mu-
tation in the classical sense of the concept, but in-
stead, it goes through a process of cataclysmic muta-
tion when the population has converged. The differ-
ence threshold is considered to measure the stagnation
of the search, which happens when it has dropped to
one. Then, the population is reinitialised with individ-
uals generated by perturbing s

c attending to the kth
neighbourhood structure (Sect. 2.3.2).

2.3.2 Initialisation and Cataclysmic Mutation
Every individual in the initial µCHC population is gen-

erated by perturbing s
c according to a relaxed idea of the

given neighbourhood structure Nk (see equation 1). In par-
ticular, each individual is generated by adding a vector of
random values from the following equation (see Fig. 4):

N(0, 1) · rangei/kmax ± k · rangei/kmax (3)

where N(0, 1) is a normal random value with mean 0 and
variance 1, rangei is the range of ith variable domain, kmax

is the maximum number of neighbourhood structures VNS
manages, and k is the current neighbourhood index; ± is
chosen according to the sign of the random value.

Cataclysmic mutation fills the population with individu-
als created by the same way as initial population is built,
but preserving the best performing individual found in the
previous generation. After applying cataclysmic mutation,
the difference threshold is set to: σ · (1−σ) ·L, with L being
the number of bits coding a potential solution of the problem
(20 bits per variable) and σ is the average of the minimal
radius of neighbourhoods Nk and Nk+1 ((2k + 1)/(2kmax)).

3. RESULTS
Results from experiments according to [12] on the bench-

marks functions given in [6, 13] are presented in Figures 5
and 6 and in Tables 1 and 2.

Individual experiments were run with a maximum and
adaptive time budget equal to a total time (from 2009-04-07
to 2009-04-16) divided by the number of remaining experi-
ments (initially, 5dims · 30funcs · 15runs). Crafting effort

[12] is 0 because all the functions where approached with
the very same parameter setting.

4. CONCLUSIONS
We have presented a continuous VNS model based on

three specialised EAs: 1) CMA-ES as an EA specialised in
generating a good starting point, as generation component,
2) Continuous Local EA, specialised in exploiting local infor-
mation, as improvement component, and 3) µCHC, which
provides local diversity, as shaking component. Experiments
have been carried out on the noisy Black-Box Optimization
Benchmark 2009 testbed.
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Figure 5: Expected Running Time (ERT, •) to reach fopt + ∆f and median number of function evaluations of
successful trials (+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the exponent is given in the legend of f101

and f130) versus dimension in log-log presentation. The ERT(∆f) equals to #FEs(∆f) divided by the number
of successful trials, where a trial is successful if fopt + ∆f was surpassed during the trial. The #FEs(∆f) are
the total number of function evaluations while fopt +∆f was not surpassed during the trial from all respective
trials (successful and unsuccessful), and fopt denotes the optimal function value. Crosses (×) indicate the total
number of function evaluations #FEs(−∞). Numbers above ERT-symbols indicate the number of successful
trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and
quadratic scaling.
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f101 in 5-D, N=15, mFE=1006 f101 in 20-D, N=15, mFE=3102

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 8.2e1 6.5e1 9.8e1 8.2e1 15 5.0e2 4.8e2 5.2e2 5.0e2

1 15 2.5e2 2.4e2 2.6e2 2.5e2 15 7.9e2 7.7e2 8.1e2 7.9e2

1e−1 15 3.3e2 3.2e2 3.4e2 3.3e2 15 1.1e3 1.0e3 1.1e3 1.1e3

1e−3 15 4.9e2 4.7e2 5.0e2 4.9e2 15 1.6e3 1.6e3 1.7e3 1.6e3

1e−5 15 6.3e2 6.1e2 6.5e2 6.3e2 15 2.2e3 2.1e3 2.2e3 2.2e3

1e−8 15 8.7e2 8.5e2 9.0e2 8.7e2 15 3.0e3 3.0e3 3.0e3 3.0e3

f102 in 5-D, N=15, mFE=1022 f102 in 20-D, N=15, mFE=3210

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 7.8e1 6.5e1 9.3e1 7.8e1 15 5.2e2 5.1e2 5.4e2 5.2e2

1 15 2.3e2 2.3e2 2.4e2 2.3e2 15 8.1e2 7.9e2 8.4e2 8.1e2

1e−1 15 3.0e2 2.9e2 3.2e2 3.0e2 15 1.1e3 1.1e3 1.1e3 1.1e3

1e−3 15 4.8e2 4.6e2 4.9e2 4.8e2 15 1.6e3 1.6e3 1.7e3 1.6e3

1e−5 15 6.4e2 6.3e2 6.6e2 6.4e2 15 2.2e3 2.1e3 2.2e3 2.2e3

1e−8 15 8.8e2 8.6e2 9.0e2 8.8e2 15 3.0e3 3.0e3 3.1e3 3.0e3

f103 in 5-D, N=15, mFE=1110 f103 in 20-D, N=15, mFE=3774

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 8.2e1 6.6e1 9.9e1 8.2e1 15 5.0e2 4.9e2 5.2e2 5.0e2

1 15 2.4e2 2.3e2 2.5e2 2.4e2 15 7.7e2 7.4e2 7.9e2 7.7e2

1e−1 15 3.2e2 3.1e2 3.3e2 3.2e2 15 1.0e3 1.0e3 1.1e3 1.0e3

1e−3 15 4.9e2 4.7e2 5.0e2 4.9e2 15 1.7e3 1.6e3 1.7e3 1.7e3

1e−5 15 7.1e2 6.8e2 7.3e2 7.1e2 15 2.4e3 2.3e3 2.4e3 2.4e3

1e−8 15 1.0e3 9.8e2 1.0e3 1.0e3 15 3.5e3 3.5e3 3.6e3 3.5e3

f104 in 5-D, N=15, mFE=240533 f104 in 20-D, N=15, mFE=1.68e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.4e2 3.2e2 3.6e2 3.4e2 0 15e+0 14e+0 16e+0 1.1e7

1 15 5.7e3 1.2e3 1.0e4 5.7e3 . . . . .

1e−1 15 7.2e3 1.8e3 1.2e4 7.2e3 . . . . .

1e−3 15 2.0e4 2.2e3 3.8e4 2.0e4 . . . . .

1e−5 15 2.0e4 2.4e3 3.8e4 2.0e4 . . . . .

1e−8 15 2.1e4 2.6e3 3.9e4 2.1e4 . . . . .

f105 in 5-D, N=15, mFE=732995 f105 in 20-D, N=15, mFE=1.46e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.4e3 5.4e2 8.1e3 4.4e3 0 16e+0 15e+0 16e+0 7.9e6

1 15 6.0e4 4.2e4 8.0e4 6.0e4 . . . . .

1e−1 15 1.6e5 1.1e5 2.1e5 1.6e5 . . . . .

1e−3 15 2.7e5 1.9e5 3.5e5 2.7e5 . . . . .

1e−5 15 2.7e5 1.9e5 3.5e5 2.7e5 . . . . .

1e−8 15 2.7e5 2.0e5 3.6e5 2.7e5 . . . . .

f106 in 5-D, N=15, mFE=179381 f106 in 20-D, N=15, mFE=747088

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.9e2 3.4e2 4.4e2 3.9e2 15 1.1e4 1.1e4 1.2e4 1.1e4

1 15 6.1e3 9.8e2 1.1e4 6.1e3 15 6.8e4 1.9e4 1.2e5 6.8e4

1e−1 15 6.7e3 1.5e3 1.2e4 6.7e3 15 7.0e4 2.2e4 1.2e5 7.0e4

1e−3 15 1.4e4 2.0e3 2.6e4 1.4e4 15 7.2e4 2.4e4 1.2e5 7.2e4

1e−5 15 1.4e4 2.3e3 2.6e4 1.4e4 15 7.3e4 2.5e4 1.2e5 7.3e4

1e−8 15 1.4e4 2.6e3 2.6e4 1.4e4 15 7.5e4 2.6e4 1.2e5 7.5e4

f107 in 5-D, N=15, mFE=76787 f107 in 20-D, N=15, mFE=1.65e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.1e2 7.0e1 1.5e2 1.1e2 15 2.2e6 1.4e6 3.1e6 2.2e6

1 15 1.8e3 3.8e2 3.3e3 1.8e3 2 1.0e8 5.3e7 >2e8 1.4e7

1e−1 15 2.8e3 6.6e2 5.0e3 2.8e3 0 27e–1 81e–2 47e–1 7.9e6

1e−3 15 9.4e3 4.8e3 1.4e4 9.4e3 . . . . .

1e−5 15 1.2e4 6.6e3 1.7e4 1.2e4 . . . . .

1e−8 15 2.8e4 1.8e4 3.8e4 2.8e4 . . . . .

f108 in 5-D, N=15, mFE=3.48e7 f108 in 20-D, N=15, mFE=1.48e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 5.3e3 1.4e2 1.0e4 5.3e3 0 37e+0 27e+0 55e+0 4.0e6

1 15 5.8e4 4.7e4 6.9e4 5.8e4 . . . . .

1e−1 15 6.4e5 4.4e5 8.5e5 6.4e5 . . . . .

1e−3 3 1.5e8 8.5e7 4.7e8 2.4e7 . . . . .

1e−5 0 39e–4 47e–5 12e–3 1.1e7 . . . . .

1e−8 . . . . . . . . . .

f109 in 5-D, N=15, mFE=2566 f109 in 20-D, N=15, mFE=7698

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 8.0e1 6.5e1 9.7e1 8.0e1 15 5.4e2 5.1e2 5.7e2 5.4e2

1 15 2.4e2 2.3e2 2.5e2 2.4e2 15 8.7e2 8.4e2 9.0e2 8.7e2

1e−1 15 3.5e2 3.4e2 3.7e2 3.5e2 15 1.4e3 1.3e3 1.4e3 1.4e3

1e−3 15 7.4e2 7.0e2 7.7e2 7.4e2 15 2.7e3 2.6e3 2.8e3 2.7e3

1e−5 15 1.2e3 1.1e3 1.2e3 1.2e3 15 4.2e3 4.1e3 4.4e3 4.2e3

1e−8 15 2.0e3 1.9e3 2.0e3 2.0e3 15 6.6e3 6.4e3 6.7e3 6.6e3

f110 in 5-D, N=15, mFE=3.82e7 f110 in 20-D, N=15, mFE=1.51e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.2e3 4.6e2 6.0e3 3.2e3 0 47e+0 38e+0 61e+0 3.5e6

1 15 3.0e5 1.6e5 4.5e5 3.0e5 . . . . .

1e−1 15 1.3e6 9.4e5 1.8e6 1.3e6 . . . . .

1e−3 14 1.7e7 1.2e7 2.2e7 1.5e7 . . . . .

1e−5 5 9.8e7 6.7e7 1.7e8 3.6e7 . . . . .

1e−8 0 77e–6 35e–7 82e–5 1.8e7 . . . . .

f111 in 5-D, N=15, mFE=3.47e7 f111 in 20-D, N=15, mFE=1.46e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 7.7e4 6.4e4 8.9e4 7.7e4 0 76e+2 43e+2 11e+3 3.2e6

1 15 2.2e6 1.5e6 3.0e6 2.2e6 . . . . .

1e−1 7 4.8e7 3.4e7 7.6e7 2.3e7 . . . . .

1e−3 0 11e–2 11e–3 32e–2 2.2e7 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f112 in 5-D, N=15, mFE=8222 f112 in 20-D, N=15, mFE=1.50e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.8e2 3.7e2 6.0e2 4.8e2 15 3.1e4 2.3e4 4.0e4 3.1e4

1 15 1.9e3 1.6e3 2.2e3 1.9e3 15 1.7e5 6.2e4 2.8e5 1.7e5

1e−1 15 3.4e3 3.1e3 3.8e3 3.4e3 15 1.8e5 7.7e4 2.9e5 1.8e5

1e−3 15 4.5e3 4.2e3 4.9e3 4.5e3 15 1.9e5 8.5e4 2.9e5 1.9e5

1e−5 15 5.1e3 4.8e3 5.5e3 5.1e3 15 1.9e5 8.8e4 3.1e5 1.9e5

1e−8 15 5.9e3 5.5e3 6.3e3 5.9e3 15 2.0e5 9.4e4 3.0e5 2.0e5

f113 in 5-D, N=15, mFE=2.83e6 f113 in 20-D, N=15, mFE=1.19e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.7e3 2.7e2 7.1e3 3.7e3 3 5.4e7 3.2e7 1.7e8 1.0e7

1 15 2.4e4 1.5e4 3.2e4 2.4e4 0 12e+0 73e–1 21e+0 7.1e6

1e−1 15 1.1e5 7.6e4 1.4e5 1.1e5 . . . . .

1e−3 15 3.6e5 1.7e5 5.7e5 3.6e5 . . . . .

1e−5 15 3.6e5 1.7e5 5.7e5 3.6e5 . . . . .

1e−8 15 3.6e5 1.7e5 5.7e5 3.6e5 . . . . .

f114 in 5-D, N=15, mFE=3.14e7 f114 in 20-D, N=15, mFE=1.22e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.6e4 1.7e4 3.5e4 2.6e4 0 11e+1 67e+0 17e+1 5.0e6

1 15 2.1e5 1.5e5 2.7e5 2.1e5 . . . . .

1e−1 15 8.1e6 5.9e6 1.0e7 8.1e6 . . . . .

1e−3 1 4.5e8 2.2e8 >4e8 3.0e7 . . . . .

1e−5 1 4.5e8 2.2e8 >4e8 3.0e7 . . . . .

1e−8 1 4.5e8 2.2e8 >4e8 3.0e7 . . . . .

f115 in 5-D, N=15, mFE=55350 f115 in 20-D, N=15, mFE=1.08e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.2e2 2.0e2 2.3e2 2.2e2 15 1.1e4 2.5e3 2.0e4 1.1e4

1 15 4.9e2 3.4e2 6.4e2 4.9e2 15 3.0e6 2.2e6 3.8e6 3.0e6

1e−1 15 8.1e3 5.4e3 1.1e4 8.1e3 4 3.2e7 2.0e7 6.9e7 8.1e6

1e−3 15 1.4e4 9.2e3 1.8e4 1.4e4 1 1.5e8 7.5e7 >2e8 1.0e7

1e−5 15 1.4e4 9.4e3 1.8e4 1.4e4 1 1.5e8 7.5e7 >2e8 1.0e7

1e−8 15 1.6e4 1.0e4 2.1e4 1.6e4 1 1.5e8 7.5e7 >2e8 1.0e7

f116 in 5-D, N=15, mFE=3.27e7 f116 in 20-D, N=15, mFE=1.01e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 8.2e4 5.3e4 1.1e5 8.2e4 0 14e+2 47e+1 20e+2 5.6e6

1 15 3.1e5 2.4e5 3.8e5 3.1e5 . . . . .

1e−1 15 1.2e6 8.6e5 1.5e6 1.2e6 . . . . .

1e−3 15 6.9e6 5.1e6 8.7e6 6.9e6 . . . . .

1e−5 13 1.7e7 1.3e7 2.3e7 1.5e7 . . . . .

1e−8 10 3.1e7 2.3e7 4.4e7 1.9e7 . . . . .

f117 in 5-D, N=15, mFE=3.61e7 f117 in 20-D, N=15, mFE=1.08e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 5.6e5 3.9e5 7.4e5 5.6e5 0 94e+2 52e+2 12e+3 2.5e6

1 12 2.1e7 1.4e7 2.9e7 1.4e7 . . . . .

1e−1 1 5.0e8 2.4e8 >5e8 1.3e7 . . . . .

1e−3 0 60e–2 16e–2 12e–1 1.3e7 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f118 in 5-D, N=15, mFE=5102 f118 in 20-D, N=15, mFE=95334

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 7.6e2 7.0e2 8.2e2 7.6e2 15 6.9e3 6.6e3 7.2e3 6.9e3

1 15 1.2e3 1.1e3 1.3e3 1.2e3 15 1.2e4 1.1e4 1.3e4 1.2e4

1e−1 15 1.6e3 1.4e3 1.7e3 1.6e3 15 1.8e4 1.6e4 2.0e4 1.8e4

1e−3 15 2.0e3 1.9e3 2.2e3 2.0e3 15 2.6e4 2.2e4 3.1e4 2.6e4

1e−5 15 2.4e3 2.3e3 2.6e3 2.4e3 15 3.0e4 2.5e4 3.5e4 3.0e4

1e−8 15 3.1e3 2.9e3 3.4e3 3.1e3 15 3.4e4 2.9e4 4.0e4 3.4e4

f119 in 5-D, N=15, mFE=4.24e7 f119 in 20-D, N=15, mFE=1.15e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.3e1 2.6e1 4.0e1 3.3e1 15 4.0e5 2.5e5 5.5e5 4.0e5

1 15 5.4e3 5.0e2 1.0e4 5.4e3 4 3.7e7 2.3e7 7.7e7 9.5e6

1e−1 15 8.3e3 3.4e3 1.3e4 8.3e3 0 18e–1 64e–2 30e–1 7.1e6

1e−3 15 4.8e4 3.9e4 5.7e4 4.8e4 . . . . .

1e−5 15 4.6e6 2.8e6 6.6e6 4.6e6 . . . . .

1e−8 0 11e–7 21e–8 38e–7 1.3e7 . . . . .

f120 in 5-D, N=15, mFE=3.73e7 f120 in 20-D, N=15, mFE=1.18e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.3e1 2.6e1 4.0e1 3.3e1 7 1.6e7 1.1e7 2.7e7 6.5e6

1 15 3.2e4 2.2e4 4.1e4 3.2e4 0 10e+0 86e–1 13e+0 5.0e6

1e−1 15 7.7e5 5.4e5 1.0e6 7.7e5 . . . . .

1e−3 0 58e–4 20e–4 14e–3 1.8e7 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

Table 1: Shown are, for functions f101-f120 and for a given target difference to the optimal function value ∆f :
the number of successful trials (#); the expected running time to surpass fopt + ∆f (ERT, see Figure 5); the
10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in
successful trials or, if none was successful, as last entry the median number of function evaluations to reach
the best function value (RTsucc). If fopt + ∆f was never reached, figures in italics denote the best achieved
∆f-value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials,
and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 5 for the
names of functions.
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Figure 6: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left) or ∆f . Left subplots: ECDF of the running time (number of function evaluations), divided by
search space dimension D, to fall below fopt +∆f with ∆f = 10k, where k is the first value in the legend. Right
subplots: ECDF of the best achieved ∆f divided by 10k (upper left lines in continuation of the left subplot),
and best achieved ∆f divided by 10−8 for running times of D, 10 D, 100 D . . . function evaluations (from right
to left cycling black-cyan-magenta). Top row: all results from all functions; second row: moderate noise
functions; third row: severe noise functions; fourth row: severe noise and highly-multimodal functions. The
legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of
function evaluations, D and DIM denote search space dimension, and ∆f and Df denote the difference to the
optimal function value.
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f121 in 5-D, N=15, mFE=8558 f121 in 20-D, N=15, mFE=171522

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.3e1 2.6e1 4.0e1 3.3e1 15 4.4e2 4.1e2 4.7e2 4.4e2

1 15 2.1e2 2.0e2 2.2e2 2.1e2 15 9.5e2 9.0e2 9.9e2 9.5e2

1e−1 15 3.5e2 3.3e2 3.7e2 3.5e2 15 1.9e3 1.8e3 2.0e3 1.9e3

1e−3 15 1.6e3 1.5e3 1.7e3 1.6e3 15 9.3e3 8.5e3 1.0e4 9.3e3

1e−5 15 3.9e3 3.6e3 4.1e3 3.9e3 15 3.6e4 2.5e4 4.8e4 3.6e4

1e−8 15 7.4e3 7.1e3 7.6e3 7.4e3 15 8.3e4 7.1e4 9.7e4 8.3e4

f122 in 5-D, N=15, mFE=3.97e7 f122 in 20-D, N=15, mFE=1.01e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.4e1 2.9e1 4.0e1 3.4e1 15 2.2e3 5.6e2 3.8e3 2.2e3

1 15 3.0e4 2.0e4 4.2e4 3.0e4 0 36e–1 21e–1 41e–1 3.5e6

1e−1 15 3.1e5 2.3e5 4.0e5 3.1e5 . . . . .

1e−3 8 5.3e7 3.8e7 7.9e7 2.7e7 . . . . .

1e−5 0 76e–5 15e–5 45e–4 1.8e7 . . . . .

1e−8 . . . . . . . . . .

f123 in 5-D, N=15, mFE=3.79e7 f123 in 20-D, N=15, mFE=1.05e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.4e1 2.9e1 4.0e1 3.4e1 15 4.3e5 2.4e5 6.2e5 4.3e5

1 15 4.5e5 2.9e5 6.2e5 4.5e5 0 58e–1 52e–1 74e–1 4.5e6

1e−1 2 2.7e8 1.4e8 >5e8 3.7e7 . . . . .

1e−3 0 16e–2 85e–3 31e–2 2.2e7 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f124 in 5-D, N=15, mFE=3.45e7 f124 in 20-D, N=15, mFE=9.32e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.4e1 2.9e1 3.9e1 3.4e1 15 3.7e2 3.5e2 4.0e2 3.7e2

1 15 4.3e3 4.1e2 8.3e3 4.3e3 15 2.0e3 1.8e3 2.2e3 2.0e3

1e−1 15 3.1e4 1.3e4 5.0e4 3.1e4 15 3.3e5 1.7e5 5.1e5 3.3e5

1e−3 15 1.4e6 1.0e6 1.8e6 1.4e6 0 24e–3 98e–4 47e–3 5.6e6

1e−5 2 2.5e8 1.3e8 >5e8 3.4e7 . . . . .

1e−8 0 20e–6 75e–7 82e–6 1.6e7 . . . . .

f125 in 5-D, N=15, mFE=4.65e7 f125 in 20-D, N=15, mFE=4.15e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.0e0 1.0e0 1.0e0 1.0e0 15 1.0e0 1.0e0 1.0e0 1.0e0

1 15 5.2e1 3.7e1 6.6e1 5.2e1 15 4.2e4 7.1e2 8.4e4 4.2e4

1e−1 15 2.6e4 2.0e4 3.2e4 2.6e4 0 44e–2 38e–2 47e–2 2.0e7

1e−3 8 6.0e7 4.3e7 9.1e7 3.1e7 . . . . .

1e−5 1 6.0e8 2.8e8 >6e8 4.2e7 . . . . .

1e−8 0 87e–5 13e–6 21e–4 1.8e7 . . . . .

f126 in 5-D, N=15, mFE=4.04e7 f126 in 20-D, N=15, mFE=3.76e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.0e0 1.0e0 1.0e0 1.0e0 15 1.0e0 1.0e0 1.0e0 1.0e0

1 15 5.6e1 3.9e1 7.5e1 5.6e1 15 1.3e6 9.9e5 1.7e6 1.3e6

1e−1 15 1.2e5 8.2e4 1.5e5 1.2e5 0 67e–2 60e–2 78e–2 1.1e7

1e−3 0 15e–3 10e–3 18e–3 1.8e7 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f127 in 5-D, N=15, mFE=3.66e7 f127 in 20-D, N=15, mFE=3.35e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.0e0 1.0e0 1.0e0 1.0e0 15 1.0e0 1.0e0 1.0e0 1.0e0

1 15 5.2e1 3.8e1 6.7e1 5.2e1 15 3.5e2 3.2e2 3.7e2 3.5e2

1e−1 15 2.7e4 1.4e4 3.9e4 2.7e4 15 1.1e6 6.1e5 1.6e6 1.1e6

1e−3 10 4.0e7 3.0e7 5.5e7 2.6e7 0 45e–3 26e–3 59e–3 1.8e7

1e−5 6 8.3e7 5.8e7 1.3e8 3.1e7 . . . . .

1e−8 6 8.3e7 5.8e7 1.3e8 3.1e7 . . . . .

f128 in 5-D, N=15, mFE=325029 f128 in 20-D, N=15, mFE=2.10e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.2e2 8.1e1 1.5e2 1.2e2 1 2.8e8 1.3e8 >3e8 2.0e7

1 15 5.3e4 3.4e4 7.4e4 5.3e4 0 35e+0 14e+0 47e+0 8.9e6

1e−1 15 9.0e4 6.9e4 1.1e5 9.0e4 . . . . .

1e−3 15 9.2e4 7.1e4 1.1e5 9.2e4 . . . . .

1e−5 15 9.4e4 7.4e4 1.1e5 9.4e4 . . . . .

1e−8 15 1.3e5 1.0e5 1.6e5 1.3e5 . . . . .

f129 in 5-D, N=15, mFE=3.33e7 f129 in 20-D, N=15, mFE=1.38e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.4e2 8.2e1 2.0e2 1.4e2 0 56e+0 46e+0 63e+0 4.5e6

1 15 1.7e5 1.2e5 2.2e5 1.7e5 . . . . .

1e−1 15 5.3e5 3.8e5 6.9e5 5.3e5 . . . . .

1e−3 15 2.5e6 1.8e6 3.3e6 2.5e6 . . . . .

1e−5 14 1.3e7 9.9e6 1.7e7 1.3e7 . . . . .

1e−8 1 4.6e8 2.2e8 >5e8 1.1e7 . . . . .

f130 in 5-D, N=15, mFE=3.01e6 f130 in 20-D, N=15, mFE=1.92e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 9.6e1 7.9e1 1.1e2 9.6e1 15 3.4e5 1.4e5 5.3e5 3.4e5

1 15 9.7e4 6.0e4 1.4e5 9.7e4 12 7.2e6 4.7e6 1.0e7 6.2e6

1e−1 15 3.2e5 2.2e5 4.2e5 3.2e5 10 1.2e7 9.1e6 1.6e7 9.5e6

1e−3 15 6.0e5 3.3e5 8.8e5 6.0e5 10 1.2e7 9.0e6 1.6e7 9.5e6

1e−5 15 6.0e5 3.4e5 8.7e5 6.0e5 10 1.2e7 9.0e6 1.6e7 9.5e6

1e−8 15 6.0e5 3.4e5 8.8e5 6.0e5 10 1.2e7 9.0e6 1.6e7 9.5e6

Table 2: Shown are, for functions f121-f130 and for a given target difference to the optimal function value ∆f :
the number of successful trials (#); the expected running time to surpass fopt + ∆f (ERT, see Figure 5); the
10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in
successful trials or, if none was successful, as last entry the median number of function evaluations to reach
the best function value (RTsucc). If fopt + ∆f was never reached, figures in italics denote the best achieved
∆f-value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials,
and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 5 for the
names of functions.
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