BBOB-Benchmarking the Rosenbrock's Local Search Algorithm

Petr Pošík Czech Technical University in Prague, Faculty of Electrical Engineering, Dept. of Cybernetics Technická 2, 166 27 Prague 6 posik@labe.felk.cvut.cz

ABSTRACT

The restarted Rosenbrock's optimization algorithm is tested on the BBOB 2009 testbed. The algorithm turned out to be very efficient for functions with simple structure (independently of dimensionality), but is not reliable for multimodal or ill-conditioned functions.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—*Global Optimization, Unconstrained Optimization*; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms, Experimentation, Performance, Reliability

Keywords

Benchmarking, Black-box optimization, Local search, Rosenbrock's algorithm, Evolutionary computation

1. INTRODUCTION

The Rosenbrock's algorithm [6] is a classical local search technique—it maintains the best-so-far solution and searches in its neighborhood for improvements. What distinguishes this algorithm from other local search techniques is the fact that it also maintains a model of the current local neighborhood—it adapts the model orientation and size. This feature can be observed in many recent successful optimization techniques, e.g. in CMA-ES [4].

2. ALGORITHM DECRIPTION

The Rosenbrock's local search technique is depicted as Alg. 1. The model of the local neighborhood consists of Dvectors $\mathbf{e}_1, \ldots, \mathbf{e}_D$ forming the orthonormal basis, and of Dmultipliers (or step lengths, if you want) d_1, \ldots, d_D , where

Copyright 2009 ACM 978-1-60558-505-5/09/07 ...\$5.00.

Algorithm 1: Rosenbrock's Algorithm				
Input : $\alpha > 1, \beta \in (0, 1)$				
1 begin				
$2 \mid \mathbf{x} \leftarrow \texttt{Init}$	$\texttt{sialize()}; \mathbf{x}_o \gets \mathbf{x}$			
$3 \{\mathbf{e}_1,\ldots,\mathbf{e}\}$	$\{\mathbf{e}_D\} \leftarrow \texttt{InitOrthoBasis()}$			
4 $\{d_1, \ldots, d_n\}$	$\{l_D\} \leftarrow \texttt{InitMultipliers()}$			
5 while no	while not TerminationCondition() do			
6 for <i>i</i> =	$=1\dots D \operatorname{\mathbf{do}}$			
7 y	$\leftarrow \mathbf{x} + d_i \mathbf{e}_i$			
8 if	BetterThan (y,x) then			
9	$\mathbf{x} \leftarrow \mathbf{y}$			
10	$d_i \leftarrow lpha \cdot d_i$			
11 els	se			
12	$d_i \leftarrow -\beta \cdot d_i$			
13 if AtL	eastOneSuccessInAllDirs() and			
AtLea	stOneFailInAllDirs() then			
14 {e	$\{\mathbf{e}_1, \dots, \mathbf{e}_D\} \leftarrow \texttt{UpdOrthoBasis}(\mathbf{x} - \mathbf{x}_o)$			
15 { <i>d</i>	$\{a_1,\ldots,d_D\} \leftarrow \texttt{InitMultipliers()}$			
16 x _o	$\leftarrow \mathbf{x}$			
17 ena	7 end			

D is the dimensionality of the search space. In each iteration, the algorithm performs a kind of pattern line search along the directions given by the orthornormal basis. If in one direction \mathbf{e}_i an improvement is found, next time (after trying all other directions) a point α times further in that direction is sampled; if no improvement is found in the \mathbf{e}_i direction, next time a closer point on the other side is sampled (governed by the β parameter). Usually, the values of parameters are $\alpha = 2$ and $\beta = \frac{1}{2}$.

As soon as at least one successful and one unsuccessful move in each direction was carried out, the algorithm updates its orthonormal basis to reflect the cumulative effect of all successful steps in all directions. It also resets the multipliers to their original values. The update of the orthonormal basis is done by the Palmer's orthogonalization method [5] so that the first basis vector is always parallel to the last vector $\mathbf{x} - \mathbf{x}_0$.

The demonstration of the Rosenbrock's algorithm behaviour on 2D sphere and 2D Rosenbrock's function can be seen in Fig. 1.

To improve performance on multimodal functions, a restarting strategy (see Fig. 2) was used. Each restart begins with an initial point uniformly chosen from the interval $\langle -5, 5 \rangle^D$.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'09, July 8-12, 2009, Montréal Québec, Canada.

Figure 1: The behaviour of the Rosenbrock's optimization algorithm on the sphere (left) and on the Rosenbrock's (right) function

```
function [x, ilaunch] = bbobRestRosenbrockLS(FUN, ...
   DIM, ftarget, outermaxfunevals, innermaxfunevals, varargin)
options = struct('MaxFunEvals', min(1e8*DIM, outermaxfunevals), ...
    'MaxIter', inf, ...
    'Tolfun', 1e-11, ...
    'TolX', 1e-9, ...
    'StopFitness', ftarget, ...
    'Display', 'off' ...
   );
for ilaunch = 1:100; % relaunch optimizer up to 100 times
   \% set initial conditions
   ropts = options;
   ropts.MaxFunEvals = min( innermaxfunevals, outermaxfunevals - feval(FUN, 'evaluations'));
   ropts.dInit = 0.1;
   xstart = -5 + 10 * rand(1,DIM); % random start solution
   % try the Rosenbrock's algorithm
    x = minNDRosenbrockMod(FUN, xstart, ropts);
    if feval(FUN, 'fbest') < ftarget || feval(FUN, 'evaluations') >= options.MaxFunEvals,
        break;
    end
end
```

Figure 2: Restarting procedure for the Rosenbrock's Algorithm

2.1 Implementation Modifications

The original Rosenbrock's algorithm resets the multipliers d_i at each stage of the algorithm, i.e. each time the orthonormal basis is updated. In the particular implementation used in this article, the multipliers are not reset. It was observed that this modification improves the results on many benchmark problems—it spares some function evaluation needed to adapt the multipliers at each stage. Instead, it converges faster, allowing for more algorithm restarts.

2.2 Parameter Settings

The algorithm has 2 parameters, α and β . As already stated, the default values of $\alpha = 2$ and $\beta = \frac{1}{2}$ were used.

2.3 Box Constraints? No

The algorithm was run in unconstrained setting. In the BBOB comparison, some global search algorithms are present and these usually need the box constraints to be able to work. In this sense, the comparison is not quite fair since algorithms run in the unconstrained setting may spend some part of the available evaluation budget evaluating solutions lying far away from the area of the global optimum.

2.4 The Crafting Effort

The algorithm has no additional parameters, so that no further tuning is necessary; the crafting effort CrR = 0.

2.5 Invariance Properties

With the exception of initialization, the algorithm is *invariant with respect to translation and rotation* which is demonstrated in the next section on the unrotated and rotated Rastrigin functions (3 and 15), and the Rosenbrock function (8 and 9). Looking at the separable and non-separable version of the ellipsoid function (2 and 10), we can see rather unexpected phenomenon: a different pattern which would suggest that the algorithm is not rotationally invariant. For the time being, we do not have any sound explanation for this effect, but we believe it is caused by the initialization which always initializes the algorithm with the best possible model in case of separable Ellipsoid function, while it initializes the algorithm with a bad model in case of non-separable Ellipsoid function.

The algorithm is also *invariant with respect to order-pre*serving transformations of the fitness function since it uses only comparisons between two individuals.

3. EXPERIMENTAL PROCEDURE

The standard experimental procedure of BBOB was adopted: the algorithm was run on 24 test functions, 5 instances each, 3 runs on each instance. Each run was finished

- after finding a solution with fitness difference $\Delta f \leq 10^{-8}$, or
- after performing more than $10^4 \times D$ function evaluations.

Each individual launch of the basic Rosenbrock's algorithm was interrupted (and the algorithm was restarted)

- after finding a solution with fitness difference $\Delta f \leq 10^{-8}$, or
- after performing more than the allowed number of function evaluations, or

• after the model converged too much, i.e. when $\max_i |d_i| < 10^{-9}$.

4. **RESULTS**

Results from experiments according to [2] on the benchmark functions given in [1, 3] are presented in Figures 3 and 4 and in Table 1. The method solves at least once (out of 15 runs) 20 (2D), 16 (3D), 13 (5D), 8 (10D), and 5 (20D) out of 24 functions.

5. CPU TIMING EXPERIMENT

The multistart algorithm was run with the maximal number of evaluations set to 10^5 , the basic algorithm was restarted for at least 30 seconds. The algorithm takes on average from $3.1 \cdot 10^{-4}$ to $3.7 \cdot 10^{-4}$ seconds per function evaluation for all tested dimensionalities (2–40) of the search space. The experiment was conducted on Intel Core 2 CPU, T5600, 1.83 GHz, 1 GB RAM with Windows XP SP3 in MATLAB R2007b.

6. CONCLUSIONS

The restarted Rosenbrock's optimization algorithm is an optimization technique suitable for functions with simple structure and low number of local optima. For the most simple functions (Sphere, Linear slope), the algorithm finds the solution very quickly and exhibits only linear scaling. The more complex functions (especially highly multimodal or ill-conditioned) are very hard for this algorithm and it cannot be considered a reliable solver for them.

Acknowledgements

The project was supported by the Ministry of Education, Youth and Sport of the Czech Republic with the grant No. MSM6840770012 entitled "Transdisciplinary Research in Biomedical Engineering II".

7. REFERENCES

- S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [2] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [3] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
- [4] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. *Evolutionary Computation*, 9(2):159–195, 2001.
- [5] J. R. Palmer. An improved procedure for orthogonalising the search vectors in Rosenbrock's and Swann's direct search optimisation methods. *The Computer Journal*, 12(1):69–71, February 1969.
- [6] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function. *The Computer Journal*, 3(3):175–184, March 1960.

Figure 3: Expected Running Time (ERT, \bullet) to reach $f_{opt} + \Delta f$ and median number of function evaluations of successful trials (+), shown for $\Delta f = 10, 1, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-5}, 10^{-8}$ (the exponent is given in the legend of f_1 and f_{24}) versus dimension in log-log presentation. The ERT(Δf) equals to $\#FEs(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{opt} + \Delta f$ was surpassed during the trial. The $\#FEs(\Delta f)$ are the total number of function evaluations while $f_{opt} + \Delta f$ was not surpassed during the trial from all respective trials (successful and unsuccessful), and f_{opt} denotes the optimal function value. Crosses (×) indicate the total number of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and quadratic scaling.

	f_1 in 5-D, N=15, mFE=261	f_1 in 20-D, N=15, mFE=901	f2 in 5-D , N=15, mFE=50002 f2 in 20-D , N=15, mFE=2000	01
$\frac{\Delta f}{10}$	# ERI 10% 90% RIsuce 15 3.2e1 3.0e1 3.5e1 3.2e1	$\begin{array}{c} c \\ \hline \pi \\ \hline 15 \\ 1.6e2 \\ 1.6e2 \\ 1.6e2 \\ 1.7e2 \\ 1.6e2 \\ \hline 1.6e2 \\ \hline \end{array}$	$\frac{\Delta f}{10} = \frac{\#}{15} \frac{110\%}{1.1e3} \frac{90\%}{5.9e2} \frac{1.6e3}{1.1e3} \frac{1.1e3}{15} \frac{15}{5.3e2} \frac{5.1e2}{5.1e2} \frac{5.5e2}{5.3e2} \frac{5.3e2}{5.3e2}$	<u>c</u>
1	15 5.1e1 4.5e1 5.6e1 5.1e1	15 2.5e2 2.4e2 2.6e2 2.5e2	1 14 9.0e3 4.3e3 1.4e4 8.9e3 15 6.0e2 5.9e2 6.2e2 6.0e2	
1e-3	3 15 1.1e2 9.8e1 1.1e2 1.1e2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e-3 13 1.2e4 0.2e3 1.8e4 1.1e4 15 2.2e3 0.5e2 3.8e3 2.2e3 e-3 13 1.4e4 7.6e3 2.0e4 1.2e4 15 1.1e4 8.3e2 2.2e4 1.1e4	
1e-5	5 15 1.4e2 1.4e2 1.5e2 1.4e2 8 15 2.0e2 1.0e2 2.1e2 2.0e2	15 6.0e2 5.9e2 6.1e2 6.0e2	e-5 13 1.7e4 1.1e4 2.4e4 1.6e4 14 2.9e4 1.1e3 5.5e4 1.4e4	
10-1	f_3 in 5-D, N=15, mFE=48525	f_3 in 20-D, N=15, mFE=156740	$ f_4 \text{ in } 5\text{-D}, \text{ N}=15, \text{ mFE}=50004 f_4 \text{ in } 20\text{-D}, \text{ N}=15, \text{ mFE}=194$	4980
Δf	# ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	$\frac{\Delta f}{10} \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}} \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{su}}$	100
10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 23e+1 17e+1 29e+1 0.3e4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64
1e - 1	0 70 $e-1$ 20 $e-1$ 14 $e+0$ 1.6 e4		1e-1	
1e-5 1e-5			1e-5	
1e - 8			1e-8	0.1
Δf	# ERT 10% 90% RT _{suce}	$_{\rm c}$ # ERT 10% 90% RT _{succ}	$\Delta f = \frac{1}{4} = \text{ERT} = 10\% = 90\% \text{ RT}_{\text{succ}} = \frac{1}{4} = \text{ERT} = 10\% = 90\% \text{ RT}_{\text{succ}}$	c
10	15 4.0e1 3.9e1 4.2e1 4.0e1	15 1.7e2 1.7e2 1.7e2 1.7e2 15 1.7e2 1.7e2 1.7e2	10 15 2.5e2 9.5e1 4.2e2 2.5e2 15 4.0e4 3.4e4 4.6e4 4.0e4	
1e-1	15 4.2e1 4.1e1 4.4e1 4.2e1 $1 15 4.2e1 4.1e1 4.4e1 4.2e1$	15 1.7e2 1.7e2 1.8e2 1.7e2 15 1.7e2 1.7e2 1.8e2 1.7e2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1e-3	3 15 4.2e1 4.1e1 4.4e1 4.2e1	15 1.7e2 1.7e2 1.8e2 1.7e2	e-3 15 2.5e3 8.4e2 4.3e3 2.5e3 1 3.0e6 3.0e6 3.0e6 2.0e5	
1e-8	8 15 4.2e1 4.1e1 4.4e1 4.2e1 8 15 4.2e1 4.1e1 4.4e1 4.2e1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
A. 6	f7 in 5-D, N=15, mFE=16325	f7 in 20-D, N=15, mFE=74760	fs in 5-D, N=15, mFE=50001 fs in 20-D, N=15, mFE=200	003
10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\#}{0} \frac{\#}{38e+1} \frac{10\%}{26e+1} \frac{90\%}{59e+1} \frac{10}{4.0e4}$	$\begin{array}{c} \Delta J & \# & \text{ERI} & 10\% & 90\% & \text{R1}_{\text{succ}} & \# & \text{ERI} & 10\% & 90\% & \text{R1}_{\text{su}} \\ 10 & 15 & 2.4e3 & 1.5e2 & 4.6e3 & 2.4e3 & 15 & 7.8e3 & 4.4e3 & 1.1e4 & 7.8e \end{array}$	3
1	1 2.2e5 2.0e5 2.3e5 1.5e4		1 15 6.2e3 2.1e3 1.0e4 6.2e3 11 9.4e4 5.9e4 1.3e5 3.9e	4
1e-1 1e-3	· · · · · · · · · · · · · · · · · · ·		10^{-1} $10^{$	5
1e-5			1e-5 15 1.2e4 7.6e3 1.8e4 1.2e4 9 2.7e5 2.5e5 2.9e5 1.6e	5
1e-8	f9 in 5-D , N=15. mFE=26886	f9 in 20-D, N=15. mFE=200001	f_{10} in 5-D, N=15, mFE=50002 f_{10} in 20-D, N=15, mFE=20	00001
$\Delta f \neq$	# ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	$\Delta f \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}} \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{s}}$	ucc
10 1 1 1	L5 1.8e2 7.7e1 2.9e2 1.8e2 L5 1.2e3 8.1e2 1.7e3 1.2e3	15 1.4e4 1.3e4 1.6e4 1.4e4 12 9.6e4 7.0e4 1.2e5 8.4e4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	e5
1e-1 1	5 2.2e3 1.5e3 2.8e3 2.2e3	12 1.2e5 1.0e5 1.4e5 1.0e5	le-1 11 2.3e4 1.4e4 3.2e4 2.2e4	
1e-3 1 1e-5 1	15 4.2e3 3.3e3 5.3e3 4.2e3 15 4.6e3 3.3e3 6.1e3 4.6e3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1e - 8 1	5 5.2e3 3.3e3 7.2e3 5.2e3		le-8 10 3.3e4 2.3e4 4.3e4 2.6e4	
$\Delta f = \frac{f}{\#}$	11 in 5-D , N=15, mFE=50001 EBT 10% 90% BT	f_{11} in 20-D, N=15, mFE=200001 # EBT 10% 90% BT_{max}	f_{12} in 5-D, N=15, mFE=50004 f_{12} in 20-D, N=15, mFE=50004 $\#$ EBT 10% 90% BT	200004
10 13	3 1.7e4 9.1e3 2.5e4 1.3e4	$\frac{1}{0} \frac{1}{11e+1} \frac{10}{75e+0} \frac{100}{19e+1} \frac{100}{2.0e5}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 e4
1 13 12 12 12 12 12 12 1	3 1.8e4 1.0e4 2.6e4 1.4e4 2 0e4 1 1e4 2 8e4 1 5e4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0e4 2e5
1e-3 12	2 2.1e4 1.3e4 2.9e4 1.6e4		1e-3 9 4.4e4 3.3e4 5.5e4 2.6e4 0 70e-2 11e-3 20e-1 1.	0 e5
1e-5 12 1e-8 12	2 2.1e4 1.3e4 2.9e4 1.6e4 2 2 1e4 1 4e4 3 0e4 1 7e4		1e-5 8 5.5e4 4.2e4 6.8e4 2.8e4	•
	13 in 5-D , N=15, mFE=46360	f13 in 20-D, N=15, mFE=200019	f_{14} in 5-D, N=15, mFE=50004 f_{14} in 20-D, N=15, mFE=	200002
$\Delta f \#$	ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	$\frac{\Delta f}{10} \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}} \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}}$	succ
1 15	2.5e3 2.0e3 3.0e3 2.5e3	15 1.6e5 1.0e5 2.5e5 1.6e5 15 8.5e3 5.6e3 1.1e4 8.5e3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9e2
1e-1 15	6.6e3 5.2e3 7.9e3 6.6e3	15 2.3 e4 1.8 e4 2.8 e4 2.3 e4 7 2.3 e5 2.7 e5 2.7 e5 1.7 e5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 e2
1e-5 5	1.1e5 9.9e4 1.2e5 3.0e4	1 3.0e6 3.0e6 3.0e6 2.0e5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0e5
1e-8 1	6.5e5 6.5e5 6.6e5 4.1e4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1e-8 10 3.6e4 2.7e4 4.8e4 2.9e4	
$\Delta f = \frac{J}{\#}$	ERT 10% 90% RT_{succ}	# ERT 10% 90% RT_{succ}	$\Delta f = \frac{116}{4} \text{ m s-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text{ N=13}, \text{ mFE=30004} = \frac{116}{4} \text{ m 20-D}, \text$	succ
10 4	1.6e5 1.4e5 1.8e5 3.8e4	$0 35e+1 24e+1 62e+1 \qquad 7.1 e4$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1e4
1e-1 .	100+0 300-1 340+0 2.804		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1e-3 .			1e-3	
1e-3 . 1e-8 .			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	17 in 5-D , N=15, mFE=50004	f17 in 20-D, N=15, mFE=200001	$f_{18} \text{ in } 5\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{ N}=15, \text{ mFE}=50004 f_{18} \text{ in } 20\text{-}\text{D}, \text{mFE}=50004 f_{18} \text{ in } 20$	200002
$\frac{\Delta f}{10} = \frac{\#}{12}$	ERI 10% 90% R1 _{succ} 2 1.4e4 5.7e3 2.2e4 8.4e3	$\frac{\# \text{ ER1 } 10\% 90\% \text{ R1}_{\text{succ}}}{2 1.3 \text{ e6 } 1.1 \text{ e6 } 1.5 \text{ e6 } 2.0 \text{ e5}}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	o e5
1 0	57e-1 $24e-1$ $14e+0$ $2.0e4$	$0 19e + 0 97e - 1 90e + 0 \qquad 2.0e5$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1e-1 . 1e-3 .			1e-1	
1e-5 .			1e-5	
IE-0 .	19 in 5-D , N=15, mFE=50004	f19 in 20-D, N=15, mFE=200001	f_{20} in 5-D, N=15, mFE=50004 f_{20} in 20-D, N=15, mFE=50004 f_{20} f_{2	200016
$\Delta f \#$	ERT 10% 90% RT _{succ}	# ERT 10% 90% RT _{succ}	Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% RT	succ
10 13	7.1e5 6.8e5 7.5e5 5.0e4	0 33e+0 16e+0 10e+1 2.0e5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 e2 2 e5
1e-1 0	38e-1 $11e-1$ $13e+0$ $1.6e4$		1e-1 0 47e-2 24e-2 67e-2 1.8e4 0 97e-2 85e-2 10e-1 1.	1 e 5
1e-5 .			1e-5	
1e-8 .			1e-8	
$\Delta f = \frac{f_2}{\#}$	21 in 5-D, N=15, mFE=50003 ERT 10% 90% RTsucc	f_{21} in 20-D, N=15, mFE=200004 # ERT 10% 90% RTsucc	$\Delta f = \frac{f_{22} \text{ in 5-D}}{F_{22} \text{ in 5-D}}$, N=15, mFE=42005 $f_{22} \text{ in 20-D}$, N=15, mFE=42005 $\#$ ERT 10% 90% RT	200016 Succ
10 15	4.0e2 1.9e2 6.4e2 4.0e2	15 4.4e3 3.1e3 5.7e3 4.4e3	10 15 1.3e3 7.5e2 2.0e3 1.3e3 15 1.6e3 8.3e2 2.4e3 1.	6 e3
$1 15 \\ 1e-1 12$	9 9.2e3 6.7e3 1.2e4 9.2e3 2 2.5e4 1.8e4 3.3e4 2.3e4	14 5.0e4 3.0e4 7.1e4 4.7e4 14 6.6e4 4.1e4 9.1e4 6.3e4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 e4 6 e5
1e-3 12	2 2.5e4 1.8e4 3.3e4 2.3e4	14 6.6e4 4.2e4 9.1e4 6.3e4	1e-3 15 1.0e4 6.8e3 1.4e4 1.0e4 8 2.9e5 2.5e5 3.2e5 1.	6 e 5
1e-5 12 1e-8 12	2 2.6e4 1.8e4 3.3e4 2.3e4 2 2.6e4 1.8e4 3.3e4 2.3e4	14 0.6e4 4.2e4 9.4e4 6.3e4 14 6.7e4 4.3e4 9.0e4 6.4e4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	бе5 7е5
	23 in 5-D , N=15, mFE=28320	f23 in 20-D, N=15, mFE=86140	f24 in 5-D, N=15, mFE=50004 f24 in 20-D, N=15, mFE=2	200019
$\Delta f \#$		# ERT 10% 90% RT _{succ}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	succ 0e5
1 15	5 9.5e2 6.7e2 1.3e3 9.5e2	15 7.5e3 4.6e3 1.0e4 7.5e3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$1e-1 5 \\ 1e-3 0$	6.5e4 5.9e4 7.1e4 2.0e4 17e-2 43e-3 39e-2 1.6e4	$0 \ 50e-2 \ 29e-2 \ 54e-2 \ 3.5e4$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1e-5 .			1e-5	
1e-8 .		[· · · · ·	1e-8	

Table 1: Shown are, for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{opt} + \Delta f$ (ERT, see Figure 3); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 3 for the names of functions.

Figure 4: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left) or Δf . Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 100D... function evaluations (from right to left cycling black-cyan-magenta). Top row: all results from all functions; second row: separable functions; third row: misc. moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions with weak structure. The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value.