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ABSTRACT

This paper presents benchmarking of a stochastic local search
algorithm called Prototype Optimization with Evolved Im-
provement Steps (POEMS) on the noise-free BBOB 2009
testbed. Experiments for 2, 3, 5, 10 and 20 D were done,
where D denotes the search space dimension. The maxi-
mum number of function evaluations is chosen as 105 × D.
Experimental results show that POEMS performs best on
all separable functions and the attractive sector function. It
works also quite well on multi-modal functions with lower
dimensions. On the other hand, the algorithm fails to solve
functions with high conditioning.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—Global Opti-

mization, Unconstrained Optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms

Algorithms, Experimentation, Performance

Keywords

Benchmarking, Black-box optimization, Evolutionary com-
putation, Stochastic local search

1. INTRODUCTION
The Prototype Optimization with Evolved Improvement

Steps (POEMS) is a stochastic local search algorithm that
uses an evolutionary algorithm for searching the neighbor-
hood of the current best solution. The moves in the search
space can be thought of as so-called evolved hypermutations.
The concept of the evolved hypermutations has been shown
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to outperform other mutation-based evolutionary algorithms
that use pure random hypermutations for generating new
points in the search space on several combinatorial opti-
mization problems [1, 3, 4]. It has also been implemented
for solving real-valued function optimizations [2].

2. POEMS
Prototype Optimization with Evolved iMprovement Steps

is an iterative optimization approach that employs an EA for
finding the best modification of the current solution, called
prototype, in each iteration. Modifications are represented
as fixed length sequences of primitive actions defined specifi-
cally for the problem at hand. Action sequences are assessed
based on how well/badly they modify the current prototype,
which is an input parameter to the EA. After the EA fin-
ishes, it is checked to determine whether the best evolved
sequence improves the current prototype or not. If the best
action sequence generates a new solution of at least the same
quality as the current prototype, then the modified proto-
type is considered as a new prototype for the next iteration.
Otherwise the current prototype remains unchanged. The
iterative process stops after a specified number of iterations.
An outline of the POEMS algorithm is shown in Figure 1.

The EA employed in POEMS evolves linear chromosomes
of length MaxGenes, where each gene represents an instance
of certain action chosen from a set of elementary actions de-
fined for the given problem. Each gene is represented by a
record, with an attribute action type followed by parameters

1 i ← 0

2 generate(Prototype(i))

3 repeat

4 i ← i + 1

5 BestSequence ← run_EA(Prototype(i−1))

6 Cand ← apply(BestSequence,Prototype(i−1))

7 if(Cand better_than_or_equal_to Prototype(i−1))

8 Prototype(i)
← Cand

9 else

10 Prototype(i)
← Prototype(i−1)

11 until(POEMS termination condition)

12 return Prototype(i)

Figure 1: Outline of the POEMS algorithm
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1 i← 0

2 InitializeActionSequences(Population(i))

3 Evaluate(Population(i))

4 while not TerminationCondition() do

5 i← i + 1

6 Parents ← Select(Population(i))

7 if rand() < Pcross

8 Ch ← Crossover(Parents)

9 else

10 Ch ← Mutate(Parents)

11 Evaluate(Ch)

12 R ← FindReplacement(Population(i−1))

13 Population(i)
← Replace(Population(i−1),R, Ch)

14 BestSequence ← BestOf(Population(i))

15 return BestSequence

Figure 2: Iterative evolutionary algorithm used in
POEMS

of the action. Besides actions that truly modify the proto-
type, there is also a special type of action called nop (no op-
eration). Any action with action type = nop is interpreted
as a void action with no effect on the prototype, regardless of
the values of its parameters. Chromosomes can contain one
or more instances of the nop operation. This way a variable
effective length of chromosomes is implemented. However,
sequences that do not change the prototype at all (e.g., those
composed entirely of nop actions) are fatally penalized in or-
der to avoid a convergence to useless trivial ”modifications”.

During the evolutionary algorithm, the evolved action se-
quences are varied by means of crossover and mutation oper-
ators. A generalized uniform crossover introduced in [1] and
mutation operator that changes either the action type or ac-
tion parameters are used in this work. In each generation,
the parents are crossed with probability Pcross, otherwise
they are mutated so that their every action is changed with
probability Pmutate. New action sequences resulting from
crossover and mutation operator are further adjusted to con-
tain at least one active action. Thus, if the original newly
generated sequence consists of all nop actions then one of its
actions (chosen at random) is changed to an active action.

It is obvious that once the prototype solution is already
of a good quality the randomly initialized action sequences
will very likely only worsen it. Moreover, action sequences
with smaller number of active actions will worsen the pro-
totype less than action sequences with greater number of
active actions on average. In order to prevent the evolu-
tionary algorithm from converging towards action sequences
with a minimal number of active actions niching tournament

selection and niching replacement strategy are proposed.
A population of size PopSize is split into MaxGenes

niches of equal size PopSize/MaxGenes so that each niche
nichei can contain only sequences with the number of active
actions greater than or equal to i.

The niching tournament selection first selects by random
a niche i and then runs the tournament between n randomly
selected action sequences within the niche. Thus, only action
sequences with at least i active actions compete for being
selected as a parent.

The niching replacement strategy works so that each newly
generated action sequence is inserted into the population

only if an admissible replacement is found in the current
population by function FindReplacement() (step 12 in Fig-
ure 2). An action sequence ASold can be replaced by the new
one ASnew with i active actions iff fitness(ASnew) is better
than or equal to fitness(ASold) and ASold is in nichej such
that j ≤ i. This way both the quality and diversity of action
sequences in the population are ensured.

3. TAILORING POEMS TO REAL-VALUED

OPTIMIZATION
The prototype solution is represented as a vector of D

real valued variables. In all experiments the variables are
limited to take values from the interval 〈lbound, ubound〉,
where lbound and ubound are lower and upper bounds of
the variable domains.

Prototype initialization. POEMS is an iterative al-
gorithm and as such its performance strongly depends on
the initial prototype from which the iterative optimization
starts. However, no initialization heuristic was used in this
work so the prototype solution was simply sampled uni-
formly in [lbound, ubound]D.

Actions. Only one active action changeV ariable(i, value)
was proposed in this work. This action changes the value of
the current prototype’s variable i by adding the value value.
The parameter value can be positive or negative number
sampled from the normal distribution N(0, σ2

i ). Moreover,
the value is always chosen so that the constraint

lbound ≤ prototype[i] + value ≤ ubound

is satisfied.
The parameters σ2

i are initialized to

σ2
i = 0.25 ∗ (ubound − lbound)

at the beginning of the POEMS run.
During the course of the run the values of σ2

i are adapted
between iteration k − 1 and iteration k according to the
following rule

σ2
i,k = σ2

i,k−1 ∗ (1 − α) + δi ∗ α,

where

δi = prototype[i](k) − prototype[i](k−1)

and α is a weighting factor that takes values from the interval
(0, 1). Thus, if the prototype’s variable i does not change
from iteration k − 1 to iteration k then the corresponding
σ2

i,k decreases to maximally possible extent. In the opposite

case, the σ2
i,k is decreased less or it can even increase.

This can be interpreted so that if for the given value of σ2
i

an improving action sequence that includes a modification
of the variable i has been found then there is perhaps no
need for decreasing a value of σ2

i . On the contrary, an ab-
sence of an action modifying the variable i in the improving
action sequence or if no improving action sequence has been
found in the current iteration can indicate that the interval
determined by σ2

i is too wide. Thus, the search should focus
to a closer neighborhood of the current prototype’s value of
the variable i.

Operators. A generalized uniform crossover as intro-
duced in [1] is used in this work. It works so that given
two parental action sequences, the offspring is created by
randomly picking the parental actions (from both parents)
without replacement.
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The mutation operator changes either the type of the ac-
tion (changeV ariable(i, value) ↔ nop(i, value)) or its pa-
rameter value. When the parameter value is to be changed,
its new value is sampled uniformly from the interval 〈0.5 ∗
value, 2.0 ∗ value〉. Only values for which the prototype[i] +
value does not fall below the lbound or under the ubound
are accepted.

Restarted strategy. The algorithm stops either when
the maximum number of 105 × D function evaluations has
been exceeded or when a solution of a quality equal to or
better than the target function value ftarget = fopt + 10−8

has been found. Additionally, if the values of σ2
i for i =

1 . . . D fall below 10−11 then they are reinitialized to the
original values 0.25 ∗ (ubound − lbound) while the current
prototype remains unchanged.

4. EXPERIMENTAL SETUP
No tuning of POEMS control parameters was done. The

configuration was parameterized solely by the dimension of
the problem at hand. The parameter setting was identical
for all functions so the crafting effort is zero. The POEMS
algorithm was configured as follows:

• MaxGenes = D, NicheSize = 20,

• PopSize = MaxGenes ∗ NicheSize,

• Pcross = 0.75, Pmutate = 0.5, α = 0.2,

• Tournament selection with n = 2,

• lbound = −5.0, ubound = 5.0,

• Number of fitness evaluations calculated in each itera-
tion: 10 ∗ PopSize,

• Maximal number of fitness evaluations: D × 105.

The simulations for 2, 3, 5, 10 and 20 D were done with a
maximum of 105 × D function evaluations with the C-code
and they took altogether 6 hours and a half.

5. CPU TIMING EXPERIMENTS
For the timing experiment the POEMS algorithm was

run with a maximum of 105 × D function evaluations and
restarted until 30 seconds has passed. The experiments have
been conducted with an Intel Pentium-M 1400 MHz under
MS Windows using the C-code provided. The time per func-
tion evaluation was 2.4, 2.7, 4.0, 8.5, 13 × 10−6 seconds in
dimensions 2, 3, 5, 10, 20 respectively.

6. RESULTS
Results from experiments according to [6] on the bench-

mark functions given in [5, 7] are presented in Figure 3, Fig-
ure 4 and in Table 1. The POEMS algorithm performs best
on all separable functions and the attractive sector func-
tion. These functions are solved for all considered dimen-
sions D = 2, 3, 5, 10, 20. The algorithm works quite well on
multi-modal functions with lower dimensions. On the other
hand, it fails to solve the group of functions with high con-
ditioning; for the Bent cigar and the Sharp ridge the target
solution was not found not even for D = 2.

7. CONCLUSIONS
In our opinion, the rather low overall performance of the

POEMS algorithm on the multi-modal functions with high
dimensions and functions with high conditioning is caused
by the following two factors:

1. POEMS has weak ability to identify and utilize depen-
dencies among variables.

2. POEMS has weak adaptation mechanism that would
determine the proper size of the neighborhood of the
current solution prototype to be searched by the EA
in the next iteration.

Another observation is that POEMS is not very time ef-
ficient. Even for the simplest problems like Linear slope

problem it takes several hundreds to thousands fitness eval-
uations to reach a solution of the desired quality. This fol-
lows from the nature of the algorithm since each single step
from prototype at time t to prototype at time t + 1 involves
running an evolutionary algorithm.
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Figure 3: Expected Running Time (ERT, •) to reach fopt + ∆f and median number of function evaluations of
successful trials (+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the exponent is given in the legend of f1

and f24) versus dimension in log-log presentation. The ERT(∆f) equals to #FEs(∆f) divided by the number
of successful trials, where a trial is successful if fopt + ∆f was surpassed during the trial. The #FEs(∆f) are
the total number of function evaluations while fopt +∆f was not surpassed during the trial from all respective
trials (successful and unsuccessful), and fopt denotes the optimal function value. Crosses (×) indicate the total
number of function evaluations #FEs(−∞). Numbers above ERT-symbols indicate the number of successful
trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and
quadratic scaling.
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f1 in 5-D, N=15, mFE=42760 f1 in 20-D, N=15, mFE=185686

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.2e3 1.1e3 1.2e3 1.2e3 15 7.9e3 7.7e3 8.1e3 7.9e3

1 15 1.6e3 1.5e3 1.6e3 1.6e3 15 1.7e4 1.7e4 1.8e4 1.7e4

1e−1 15 4.6e3 4.2e3 5.0e3 4.6e3 15 3.8e4 3.6e4 3.9e4 3.8e4

1e−3 15 1.4e4 1.4e4 1.5e4 1.4e4 15 7.7e4 7.6e4 7.8e4 7.7e4

1e−5 15 2.5e4 2.5e4 2.6e4 2.5e4 15 1.2e5 1.2e5 1.2e5 1.2e5

1e−8 15 4.0e4 4.0e4 4.1e4 4.0e4 15 1.8e5 1.8e5 1.8e5 1.8e5

f2 in 5-D, N=15, mFE=70387 f2 in 20-D, N=15, mFE=292399

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.8e4 1.6e4 1.9e4 1.8e4 15 9.4e4 9.2e4 9.7e4 9.4e4

1 15 2.4e4 2.3e4 2.5e4 2.4e4 15 1.1e5 1.1e5 1.2e5 1.1e5

1e−1 15 2.9e4 2.8e4 3.1e4 2.9e4 15 1.3e5 1.3e5 1.3e5 1.3e5

1e−3 15 3.9e4 3.8e4 4.1e4 3.9e4 15 1.8e5 1.7e5 1.8e5 1.8e5

1e−5 15 4.8e4 4.6e4 5.0e4 4.8e4 15 2.2e5 2.2e5 2.2e5 2.2e5

1e−8 15 6.4e4 6.2e4 6.5e4 6.4e4 15 2.8e5 2.8e5 2.8e5 2.8e5

f3 in 5-D, N=15, mFE=294785 f3 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.7e3 2.5e3 3.0e3 2.7e3 15 4.9e4 4.6e4 5.2e4 4.9e4

1 15 1.6e4 1.3e4 1.8e4 1.6e4 15 5.3e5 4.6e5 5.9e5 5.3e5

1e−1 15 5.7e4 3.5e4 8.1e4 5.7e4 13 1.1e6 8.3e5 1.4e6 8.8e5

1e−3 15 6.9e4 4.6e4 9.3e4 6.9e4 13 1.1e6 8.7e5 1.4e6 9.2e5

1e−5 15 7.8e4 5.5e4 1.0e5 7.8e4 13 1.2e6 9.3e5 1.5e6 9.7e5

1e−8 15 9.5e4 7.2e4 1.2e5 9.5e4 13 1.2e6 9.8e5 1.5e6 1.0e6

f4 in 5-D, N=15, mFE=292807 f4 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.6e3 3.2e3 4.0e3 3.6e3 15 6.3e4 6.0e4 6.7e4 6.3e4

1 15 2.8e4 2.0e4 3.7e4 2.8e4 13 1.1e6 8.1e5 1.4e6 9.2e5

1e−1 15 7.5e4 5.3e4 9.8e4 7.5e4 11 1.7e6 1.3e6 2.2e6 1.3e6

1e−3 15 8.5e4 6.2e4 1.1e5 8.5e4 10 1.9e6 1.4e6 2.6e6 1.2e6

1e−5 15 9.8e4 7.4e4 1.2e5 9.8e4 10 1.9e6 1.5e6 2.7e6 1.2e6

1e−8 15 1.1e5 8.9e4 1.4e5 1.1e5 10 2.0e6 1.5e6 2.8e6 1.3e6

f5 in 5-D, N=15, mFE=3087 f5 in 20-D, N=15, mFE=17260

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.5e3 1.5e3 1.6e3 1.5e3 15 1.0e4 1.0e4 1.1e4 1.0e4

1 15 2.0e3 1.9e3 2.1e3 2.0e3 15 1.3e4 1.2e4 1.3e4 1.3e4

1e−1 15 2.1e3 2.0e3 2.2e3 2.1e3 15 1.4e4 1.3e4 1.4e4 1.4e4

1e−3 15 2.2e3 2.1e3 2.3e3 2.2e3 15 1.4e4 1.4e4 1.5e4 1.4e4

1e−5 15 2.2e3 2.1e3 2.3e3 2.2e3 15 1.4e4 1.4e4 1.5e4 1.4e4

1e−8 15 2.2e3 2.1e3 2.3e3 2.2e3 15 1.4e4 1.4e4 1.5e4 1.4e4

f6 in 5-D, N=15, mFE=59096 f6 in 20-D, N=15, mFE=260687

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.1e3 2.7e3 3.4e3 3.1e3 15 4.1e4 4.0e4 4.2e4 4.1e4

1 15 9.7e3 9.3e3 1.0e4 9.7e3 15 6.4e4 6.3e4 6.5e4 6.4e4

1e−1 15 1.5e4 1.4e4 1.5e4 1.5e4 15 8.8e4 8.6e4 9.0e4 8.8e4

1e−3 15 2.7e4 2.6e4 2.7e4 2.7e4 15 1.3e5 1.3e5 1.3e5 1.3e5

1e−5 15 3.8e4 3.8e4 3.8e4 3.8e4 15 1.8e5 1.8e5 1.8e5 1.8e5

1e−8 15 5.6e4 5.5e4 5.6e4 5.6e4 15 2.5e5 2.5e5 2.5e5 2.5e5

f7 in 5-D, N=15, mFE=142676 f7 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.7e3 1.6e3 1.8e3 1.7e3 15 2.8e4 2.6e4 3.0e4 2.8e4

1 15 4.9e3 4.5e3 5.3e3 4.9e3 3 8.5e6 5.1e6 2.6e7 2.0e6

1e−1 15 1.1e4 1.0e4 1.1e4 1.1e4 1 2.9e7 1.4e7 >3e7 2.0e6

1e−3 15 3.3e4 1.7e4 4.9e4 3.3e4 0 12e–1 31e–2 22e–1 1.0e6

1e−5 15 3.3e4 1.7e4 4.9e4 3.3e4 . . . . .

1e−8 15 3.6e4 2.1e4 5.2e4 3.6e4 . . . . .

f8 in 5-D, N=15, mFE=500001 f8 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 5.0e3 4.5e3 5.6e3 5.0e3 15 1.2e6 1.0e6 1.3e6 1.2e6

1 14 4.9e4 1.4e4 9.0e4 4.8e4 1 2.9e7 1.4e7 >3e7 2.0e6

1e−1 14 6.7e4 2.8e4 1.1e5 6.5e4 0 74e–1 18e–1 87e–1 2.0e6

1e−3 14 2.9e5 2.3e5 3.5e5 2.6e5 . . . . .

1e−5 3 2.2e6 1.3e6 6.8e6 4.7e5 . . . . .

1e−8 0 14e–5 18e–7 51e–5 4.5e5 . . . . .

f9 in 5-D, N=15, mFE=500001 f9 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.7e3 4.2e3 5.2e3 4.7e3 8 3.5e6 2.7e6 4.9e6 1.9e6

1 15 1.7e4 1.6e4 1.8e4 1.7e4 0 99e–1 88e–1 15e+0 2.0e6

1e−1 15 6.2e4 4.5e4 7.9e4 6.2e4 . . . . .

1e−3 14 3.2e5 2.7e5 3.7e5 3.0e5 . . . . .

1e−5 2 3.6e6 1.8e6 >7e6 4.5e5 . . . . .

1e−8 0 39e–6 18e–7 25e–5 4.5e5 . . . . .

f10 in 5-D, N=15, mFE=500001 f10 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 12 2.8e5 1.9e5 3.8e5 2.1e5 0 12e+2 86e+1 22e+2 2.0e6

1 5 1.2e6 8.0e5 2.3e6 3.4e5 . . . . .

1e−1 0 45e–1 52e–2 11e+0 4.5e5 . . . . .

1e−3 . . . . . . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f11 in 5-D, N=15, mFE=500001 f11 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.2e4 1.7e4 4.8e4 3.2e4 15 4.4e5 3.8e5 5.0e5 4.4e5

1 15 1.0e5 7.9e4 1.3e5 1.0e5 15 9.1e5 8.4e5 9.7e5 9.1e5

1e−1 15 2.0e5 1.7e5 2.4e5 2.0e5 15 1.2e6 1.1e6 1.3e6 1.2e6

1e−3 8 7.4e5 5.5e5 1.1e6 3.9e5 3 9.6e6 5.7e6 2.9e7 1.9e6

1e−5 5 1.4e6 9.4e5 2.4e6 4.6e5 0 34e–4 41e–5 68e–4 1.8e6

1e−8 2 3.7e6 1.9e6 >7e6 5.0e5 . . . . .

f12 in 5-D, N=15, mFE=500001 f12 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 11 2.1e5 1.2e5 3.0e5 2.0e5 13 4.3e5 1.7e5 6.8e5 4.1e5

1 6 7.8e5 5.3e5 1.3e6 3.4e5 5 4.1e6 2.4e6 8.1e6 5.1e5

1e−1 2 3.3e6 1.8e6 >7e6 5.0e5 0 37e–1 22e–2 17e+0 1.8e6

1e−3 0 17e–1 21e–3 24e+0 4.5e5 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f13 in 5-D, N=15, mFE=500001 f13 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.2e4 1.1e4 1.2e4 1.2e4 10 1.1e6 5.9e5 1.7e6 6.5e5

1 13 1.3e5 5.7e4 2.1e5 9.5e4 1 2.8e7 1.3e7 >3e7 1.3e5

1e−1 4 1.4e6 9.4e5 2.8e6 5.0e5 0 59e–1 17e–1 13e+0 4.5e5

1e−3 0 22e–2 60e–4 10e–1 1.1e5 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f14 in 5-D, N=15, mFE=500001 f14 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.1e3 1.0e3 1.1e3 1.1e3 15 8.0e3 7.7e3 8.4e3 8.0e3

1 15 1.7e3 1.6e3 1.9e3 1.7e3 15 1.6e4 1.5e4 1.6e4 1.6e4

1e−1 15 4.7e3 4.1e3 5.2e3 4.7e3 15 3.7e4 3.6e4 3.8e4 3.7e4

1e−3 15 1.9e4 1.9e4 2.0e4 1.9e4 15 1.2e5 1.2e5 1.2e5 1.2e5

1e−5 14 1.6e5 1.1e5 2.1e5 1.6e5 0 94e–6 56e–6 12e–5 1.8e6

1e−8 0 31e–7 51e–8 72e–7 4.5e5 . . . . .

f15 in 5-D, N=15, mFE=500001 f15 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 7.7e3 7.0e3 8.5e3 7.7e3 0 34e+0 22e+0 47e+0 2.5e5

1 5 1.2e6 8.0e5 2.3e6 3.8e5 . . . . .

1e−1 1 7.3e6 3.5e6 >7e6 5.0e5 . . . . .

1e−3 1 7.3e6 3.5e6 >7e6 5.0e5 . . . . .

1e−5 1 7.3e6 3.6e6 >7e6 5.0e5 . . . . .

1e−8 1 7.3e6 3.5e6 >7e6 5.0e5 . . . . .

f16 in 5-D, N=15, mFE=499983 f16 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.4e3 1.3e3 1.5e3 1.4e3 15 2.1e4 1.9e4 2.2e4 2.1e4

1 14 4.5e4 9.7e3 8.7e4 4.5e4 12 5.8e5 2.5e5 9.8e5 4.0e5

1e−1 11 2.0e5 1.0e5 3.4e5 1.1e5 3 8.1e6 4.9e6 2.4e7 2.0e6

1e−3 7 6.0e5 4.0e5 9.3e5 3.0e5 0 58e–2 25e–3 12e–1 1.8e6

1e−5 7 6.1e5 4.1e5 9.5e5 3.0e5 . . . . .

1e−8 7 6.6e5 4.3e5 1.1e6 3.1e5 . . . . .

f17 in 5-D, N=15, mFE=500001 f17 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 8.7e2 7.0e2 1.0e3 8.7e2 15 5.9e3 5.7e3 6.2e3 5.9e3

1 15 3.2e3 2.9e3 3.5e3 3.2e3 15 2.6e4 2.5e4 2.6e4 2.6e4

1e−1 15 1.3e4 1.2e4 1.4e4 1.3e4 15 7.7e4 7.3e4 8.2e4 7.7e4

1e−3 14 7.1e4 3.6e4 1.1e5 6.8e4 3 8.2e6 4.9e6 2.5e7 2.0e6

1e−5 12 1.8e5 1.2e5 2.6e5 1.7e5 0 11e–3 55e–5 46e–3 4.5e5

1e−8 10 3.4e5 2.3e5 4.9e5 2.1e5 . . . . .

f18 in 5-D, N=15, mFE=500001 f18 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.8e3 1.7e3 2.0e3 1.8e3 15 1.3e4 1.2e4 1.4e4 1.3e4

1 15 8.9e3 8.0e3 9.8e3 8.9e3 12 5.7e5 2.6e5 8.9e5 5.5e5

1e−1 14 5.7e4 2.2e4 9.9e4 5.6e4 5 4.1e6 2.7e6 7.5e6 1.6e6

1e−3 4 1.4e6 9.4e5 2.8e6 5.0e5 0 38e–2 35e–3 14e–1 4.5e5

1e−5 2 3.3e6 1.8e6 >7e6 5.0e5 . . . . .

1e−8 1 7.1e6 3.3e6 >7e6 5.0e5 . . . . .

f19 in 5-D, N=15, mFE=500001 f19 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.0e3 8.8e2 1.1e3 1.0e3 15 6.2e3 6.0e3 6.4e3 6.2e3

1 15 7.2e3 6.1e3 8.3e3 7.2e3 10 1.4e6 8.7e5 2.0e6 8.6e5

1e−1 2 3.3e6 1.8e6 >7e6 5.0e5 0 94e–2 71e–2 12e–1 1.8e6

1e−3 0 18e–2 99e–3 30e–2 4.5e5 . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

f20 in 5-D, N=15, mFE=500001 f20 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.3e3 1.2e3 1.3e3 1.3e3 15 9.6e3 9.1e3 1.0e4 9.6e3

1 15 7.2e3 6.4e3 8.1e3 7.2e3 15 4.6e4 4.4e4 4.8e4 4.6e4

1e−1 8 5.3e5 3.7e5 7.8e5 3.3e5 0 30e–2 18e–2 47e–2 1.1e6

1e−3 8 5.4e5 3.8e5 7.9e5 3.4e5 . . . . .

1e−5 8 5.5e5 3.9e5 8.0e5 3.4e5 . . . . .

1e−8 8 5.6e5 4.0e5 8.3e5 3.5e5 . . . . .

f21 in 5-D, N=15, mFE=500001 f21 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.4e3 1.3e3 1.5e3 1.4e3 9 1.4e6 9.6e5 1.8e6 1.3e6

1 9 3.8e5 2.3e5 5.8e5 2.2e5 0 67e–1 20e–1 32e+0 2.0e5

1e−1 8 4.9e5 3.1e5 7.5e5 2.7e5 . . . . .

1e−3 8 4.9e5 3.2e5 7.7e5 2.7e5 . . . . .

1e−5 8 4.9e5 3.2e5 7.6e5 2.7e5 . . . . .

1e−8 8 5.0e5 3.3e5 8.0e5 2.8e5 . . . . .

f22 in 5-D, N=15, mFE=500001 f22 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.3e4 1.5e3 6.5e4 3.3e4 10 1.1e6 5.5e5 1.8e6 4.6e5

1 10 4.1e5 2.7e5 6.2e5 2.4e5 1 2.8e7 1.3e7 >3e7 2.0e6

1e−1 5 1.2e6 7.8e5 2.3e6 3.5e5 0 51e–1 20e–1 43e+0 2.0e5

1e−3 5 1.2e6 7.9e5 2.3e6 3.5e5 . . . . .

1e−5 5 1.2e6 7.8e5 2.3e6 3.5e5 . . . . .

1e−8 5 1.2e6 7.9e5 2.3e6 3.6e5 . . . . .

f23 in 5-D, N=15, mFE=500001 f23 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.0e1 2.4e1 5.8e1 4.0e1 15 7.4e1 3.6e1 1.2e2 7.4e1

1 15 1.2e4 9.7e3 1.4e4 1.2e4 15 6.7e4 5.8e4 7.6e4 6.7e4

1e−1 9 3.6e5 2.2e5 5.5e5 2.4e5 11 8.6e5 4.8e5 1.3e6 6.5e5

1e−3 6 8.0e5 5.0e5 1.4e6 2.8e5 0 59e–3 35e–3 16e–2 1.4e6

1e−5 5 1.1e6 6.7e5 2.1e6 3.3e5 . . . . .

1e−8 5 1.1e6 6.9e5 2.1e6 3.4e5 . . . . .

f24 in 5-D, N=15, mFE=500001 f24 in 20-D, N=15, mFE=2.00e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 14 7.6e4 3.2e4 1.3e5 7.5e4 0 46e+0 29e+0 71e+0 2.8e5

1 0 70e–1 24e–1 87e–1 7.1e4 . . . . .

1e−1 . . . . . . . . . .

1e−3 . . . . . . . . . .

1e−5 . . . . . . . . . .

1e−8 . . . . . . . . . .

Table 1: Shown are, for a given target difference to the optimal function value ∆f : the number of successful
trials (#); the expected running time to surpass fopt +∆f (ERT, see Figure 3); the 10%-tile and 90%-tile of the
bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was
successful, as last entry the median number of function evaluations to reach the best function value (RTsucc).
If fopt + ∆f was never reached, figures in italics denote the best achieved ∆f-value of the median trial and
the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum
of number of function evaluations executed in one trial. See Figure 3 for the names of functions.
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Figure 4: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left) or ∆f . Left subplots: ECDF of the running time (number of function evaluations), divided by
search space dimension D, to fall below fopt +∆f with ∆f = 10k, where k is the first value in the legend. Right
subplots: ECDF of the best achieved ∆f divided by 10k (upper left lines in continuation of the left subplot),
and best achieved ∆f divided by 10−8 for running times of D, 10 D, 100 D . . . function evaluations (from right
to left cycling black-cyan-magenta). Top row: all results from all functions; second row: separable functions;
third row: misc. moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions
with adequate structure; last row: multi-modal functions with weak structure. The legends indicate the
number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D
and DIM denote search space dimension, and ∆f and Df denote the difference to the optimal function value.
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