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ABSTRACT
Variable Neighbourhood Search is a metaheuristic combining
three components: generation, improvement, and shaking
components. In this paper, we design a continuous Variable
Neighbourhood Search algorithm based on three specialised

Evolutionary Algorithms, which play the role of each afore-
mentioned component: 1) an EA specialised in generating a
good starting point as generation component, 2) an EA spe-
cialised in exploiting local information as improvement com-
ponent, 3) and another EA specialised in providing local di-
versity as shaking component. Experiments are carried out
on the noiseless Black-Box Optimisation Benchmark 2009
testbed.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: OptimizationGlobal Opti-
mization, Unconstrained Optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms
Algorithms

Keywords
Benchmarking, Black-box optimization, Evolutionary com-
putation, Hybrid metaheuristics, Variable neighbourhood
search, Specialised evolutionary algorithms

1. INTRODUCTION
Metaheuristics (MHs) [12] are a family of search and opti-

misation algorithms based on extending basic heuristic meth-
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ods by including them into an iterative framework augment-
ing their exploration capabilities. MHs coordinate subor-

dinate components (such as probability distributions, tabu
lists or genetic operators among others) with the aim of per-
forming an effective and efficient process in searching for the
global optimum of a problem.

Over the last years, a large number of search algorithms
were reported that do not purely follow the concepts of one
single classical MH, but they attempt to obtain the best from
a set of MHs that perform together and complement each
other to produce a profitable synergy from their combina-
tion. These approaches are commonly referred to as hybrid

MHs [26].
Evolutionary Algorithms (EAs) [5] are stochastic search

methods that mimic the metaphor of natural biological evo-
lution. EAs rely on the concept of a population of individu-
als, which undergo probabilistic operators to evolve toward
increasingly better fitness values of the individuals.

A novel method to build hybrid MHs, recently introduced
in [23], concerns the incorporation of specialised EAs into
classical MHs, replacing determinate components, but pre-
serving the essence of the original MH as much as possible.
The idea is to build customised EAs playing the same role
as particular MH components, but more effectively, i.e., evo-

lutionary MH components. In this way, a classical MH is
transformed into an integrative hybrid MH (because one of
its components is another MH). In the literature, we find
some proposals that follow this idea: In [1] and [9], two EAs
are applied to perform local search processes within a multi-
start MH; and in [22, 23], an evolutionary ILS-perturbation
technique is presented (ILS is for Iterated Local Search).

Variable Neighbourhood Search (VNS) [25] is a MH that
exploits systematically the idea of neighbourhood change
(from a given set of neighbourhood structures Nk, k =
1, . . . , kmax), both in the descent to local minima and in
the escape from the valleys which contain them. It mainly
consists of the following three components, which work on a
single candidate solution, the current solution (sc) (see Fig.
1):

1. Generation component: Firstly, a method is executed
to generate s

c within the search space.

2. Improvement component: Secondly, s
c is refined, usu-

ally by a local search method.
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Figure 1: General VNS model / VNS based on spe-
cialised EAs

3. Shaking component: Then, shaking is performed to es-
cape from the valley where s

c lies. It selects a random
solution in the kth neighbourhood of s

c , which be-
comes a new starting solution for improvement com-
ponent. At the beginning of the run, and every time
last improvement process improved the best found so-
lution, k is set to one; otherwise, k is set to k + 1.

In this study, we design a continuous VNS model based
on three specialised EAs, which play the role of each VNS
component. The algorithm is benchmarked on the noiseless
Black-Box Optimization Benchmark 2009 testbed [13].

In Sect. 2, we describe the proposed VNS model. In
Sect. 3, we present the experimental results. In Sect. 4, CPU
timing experiment is shown. Conclusions are presented in
Sect. 5.

2. VNS BASED ON SPECIALISED EAS
In this study, we design a continuous VNS model based

on three specialised EAs, which play the role of each VNS
component (see Fig. 1):

1. Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [16, 17] generates initial s
c (Sect. 2.1).

2. Continuous Local EA improves s
c (Sect. 2.2).

3. Micro Cross-generational elitist sel., Heterogeneous re-

combination, and Cataclysmic mutation (µCHC) per-
forms shaking to scape from the valley where s

c lies,
according to kth neighbourhood (Sect. 2.3).

Adaptation of parameter k is performed the same way
general VNS model does. However, in order to avoid
frequent, but too small improvements when tackling
continuous optimisation problems, our algorithm will
set k to one only if the improvement is superior to a
given threshold (1e − 8). Otherwise, k is set to k + 1.

Neighbourhoods structures are defined by using metric ρ:

Nk(sc) = {s | rk−1 ≤ ρ(sc , s) ≤ rk} (1)

where rk is the radius of Nk(sc) monotonically nondecreas-
ing with k. Hereafter, we will always consider the following
distance metric because of computational reasons:

ρ(x, y) =
n

X

i=1

|xi − yi| (2)

Figure 2: Continuous Local EA

Stop condition is reached when k surpasses kmax (in our
case, kmax is set to 20). At this point, as it is suggested in
[13], the algorithm performs a restart. In this way, exploit-
ing larger number of function evaluations may increase the
chance to achieve better function values or solve the function
up to the final target. In our case, a restart means that VNS
is run once again from the CMA-ES execution, generating a
new s

c .

2.1 CMA-ES as Generator Component
CMA-ES [16, 17] was originally introduced to improve

the local performances of evolution strategies, however, it
even reveals competitive global search performances [15]. In
CMA-ES, not only is the step size of the mutation operator
adjusted at each generation, but so too is the step direction
in the multidimensional problem space, i.e., not only is there
a mutation strength per dimension but their combined up-
date is controlled by a covariance matrix whose elements are
updated as the search proceeds.

In this work, we apply CMA-ES to obtain a good point
in the design space from which the algorithm carries out
its search process. We have applied the C code, available
at http://www.lri.fr/∼hansen/cmaes_inmatlab.html with the
suggested parameter values from a random solution.

2.2 Continuous Local EA as
Improvement Component

In this work, we propose to apply Continuous Local EA as
the improvement component of VNS. It is an EA based on
the principles of Binary Local Genetic Algorithm [11], which
obtained promising results in efficacy and efficiency against
classical improvement methods.

Continuous Local EA is a steady-state real-coded genetic

algorithm [18] that inserts one single new member into the
population (Pop) in each iteration. It uses a replacement
method in order to force a member of the current popula-
tion to perish and to make room for the new offspring. It
is important to know that the selected replacement method
favours the acquisition of information about the search space.
Then, the algorithm exploits local information around s

c ,
provided by the individuals in Pop close to it, to orientate
the improvement process.

Let’s suppose that Continuous Local EA is to improve the
given s

c . Then, following steps are carried out (see Fig. 2):

• Mate selection: A solution from Pop is selected as
s

mate by means of nearest improving solution selec-

tion method (Sect. 2.2.1).

• Crossover : s
mate and s

c are crossed over by means of
parent-centric BLX-α, creating offspring z (Sec. 2.2.2).
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• Acceptance and replacement : If z is accepted (Sect.
2.2.3), it replaces s

c and is inserted into the popu-
lation forcing the individual with lowest information
contribution to perish (Sect. 2.2.4).

All these steps are repeated until a maximun number of
iterations without improving the best visited s

c is reached
(we stop the run after 100 iterations without improving best
s

c). At last, the best found s
c is returned.

An important aspect when using Continuous Local EA in
the proposed VNS model is that Pop undergoes initialisation
only once, at the beginning of the run, and not at every
invocation to improve s

c . In this way, the algorithm may
gather up valuable information about the search space and
its optima, and employ accumulated search experience from
previous refinements to enhance future ones.

2.2.1 Nearest Improving Solution Selection
Assortative mating is the natural occurrence of mating

between individuals of similar phenotype more or less often
than expected by chance. Mating between individuals with
similar phenotype more often is called positive assortative
mating and less often is called negative assortative mating.
Fernandes et al. [7] implement these ideas to design two
mating selection mechanisms.

We introduce a new assortative mating mechanism to be
used in Continuous Local EA, nearest improving solution

selection. Its idea is to select the individual in Pop that
provides valuable information of the search space (location
and fitness value) for the task of locally improving s

c . On
the one hand, this mechanism dismisses individuals worse
than s

c , because they reduce chances for improving s
c . On

the other hand, nearest solution is selected because it pro-
vides more information about the search space region where
s

c is located. We also include a distance threshold to avoid
choosing a solution too similar to s

c .
Therefore, first parent is always s

c , then, second parent
is the individual in Pop most similar to s

c (at phenotypic
level) fulfilling two conditions: 1) it has a better fitness value
than s

c and 2) similarity between both solutions is above a
given threshold. Mating threshold has been initially set to
1e − 2. Then, after every VNS restart, it is set to half its
value to perform a more precise search.

An important remark is that this selection mechanism
may return no mate for s

c . It occurs when the mechanism
has dismissed all solutions in Pop because they are either
worse than s

c , either their distances to s
c are under mating

threshold. Crossover is not performed in this case. Offspring
is generated by perturbing s

c instead (Sect. 2.2.2).

2.2.2 PBX-α Crossover Operator
PBX-α [24] is an instance of parent-centric crossover op-

erators, which have arisen as a meaningful and efficient way
of solving real-parameter optimisation problems [4, 10].

Given s
c= (sc

1 · · · s
c

n) and s
mate= (smate

1 · · · smate

n ), PBX-
α generates offspring z= (z1 · · · zn), where zi is a random
(uniform) number from interval [sc

i −I ·α, sc

i +I ·α], with I =
|sc

i − smate

i |. Parameter α is initially set to 0.5. Then, after
every VNS restart, it is set to 0.5/loge(number of restarts+
1) for a more precise search.

As mentioned before, crossover operation occurs when
mate selection returns a solution from Pop. Otherwise, off-
spring is generated by adding a normal random vector to s

c ,

whose standard deviation is the product of the current val-
ues of aforementioned parameters α and mating threshold.

2.2.3 Acceptance Criterion
Once offspring z has been generated either by PBX-α or

perturbation, Continuous Local EA decides which solution,
between z and s

c , becomes the new s
c . It follows a similar

idea to the ones behind Simulated Annealing [20] and Nois-

ing Methods [2] to overcome rugged landscapes and local
optima. In particular, it always accepts z if it is better than
a specific computed bound. At the beginning, that bound
is set equal to the fitness value of s

c , only allowing improv-
ing offspring. Then, every time a new best s

c is found, the
bound is computed as the average of the fitness of the new
best s

c and the old bound. This simple mechanism provides
some selection pressure on the search process that also lets
the algorithm to accept uphill moves, and overcome small
local optima.

2.2.4 Lowest Information Contribution Replacement
One of the objectives of Continuous Local EA is to gather

up valuable information about the search space and its op-
tima, to enhance future refinements. To carry out this ob-
jective, Pop should maintain a set of good solutions properly
spread over the search space. The problem of maintaining
such a set of solutions recalls the problem of attaining a good
set of non-dominated solutions in multi-objective problems
[3]. In [21], Kukkonen and Deb propose a method for prun-
ing of non-dominated solutions in many-objective problems.
The basic idea is to eliminate the most crowded members of
a non-dominated set one by one, and update the crowding
information of the remaining members after each removal.

In this work, we propose a similar method for updating
Pop of Continuous Local EA, when solving mono-objective
problems. The mechanism firstly inserts the new offspring
in Pop, then, it removes the most crowded solution, keeping
population size constant (we use |Pop| = 100). To deter-
mine the solution to be removed, everyone in Pop holds a
pointer to its nearest solution as well as the distance be-
tween them, at phenotypic level. Since, according to this
definition, there are always, at least, two solutions holding
the minimum distance, the worst of them is the one to be re-
moved. Pointers and distances are updated every time Pop
changes, i.e., when inserting the new solution and when re-
moving the most crowded one. Notice that the best found
solution is never removed.

2.3 µCHC as Shaking Component
In this work, we propose µCHC as the shaking component

of VNS. µCHC was firstly presented as an evolutionary ILS-

perturbation technique for binary-coded problems [22, 23].
The role of µCHC is to receive s

c , provide local diversity,
and generate a solution that is then considered as starting
point for the next improvement process (see Fig. 3). The
reason for choosing CHC, as the base model, is that it suit-
ably combines powerful diversification mechanisms with an
elitist selection strategy. The filtering of high diversity by
means of high selective pressure favours the creation of useful

diversity : many dissimilar solutions are produced during the
run and only the best ones are conserved in the population,
allowing diverse and promising solutions to be maintained.
From our point of view, this behaviour is desirable for an
EA assuming the work of a shaking operator.
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Figure 3: µCHC as shaking module

2.3.1 µCHC Model
We have conceived µCHC to be an effective explorer in the

neighbourhood of s
c to perform shaking process, because it

provides local diversity. At the beginning, s
c is used to cre-

ate its initial population (Sect. 2.3.2). Then, it is performed
throughout a predetermined number of fitness function eval-
uations. The best reached individual is then considered as
starting point for the next improvement process (see Fig. 3).

The main components of the algorithm are:

• Population size: µCHC manages a population with
few individuals (|Pop| = 5), and thus, it may be seen
as micro EA. In standard VNS models, the number of
evaluations required by the shaking mechanism is very
low as compared with the one for the improvement
method. With the aim of preserving, as far as possible,
the essence of VNS, we have considered an EA with a
low sized population; for being able to work adequately
under the requirement of spending few evaluations.

• Number of evaluations: In particular, the number of
evaluations assigned to µCHC for a particular invoca-
tion will be a fixed proportion (pevals), of the num-
ber of evaluations consumed by the previously per-
formed improvement method (Continuous Local EA).
It is worth noting that pevals should be set to a low
value. We will use pevals equals to 0.5.

• Elitist selection: Current population is merged with
offspring population obtained from it and the best |Pop|
individuals are selected for the new population.

• Incest prevention mechanism: Before mating, Ham-
ming distance between the corresponding Gray-coding
strings of paired individuals (with 20 bits per variable)
is calculated. Only paired individuals whose distance
exceed a difference threshold d are allowed to undergo
crossover operation. Aforementioned threshold is ini-
tialised to L/4 (with L being the number of bits coding
a potential solution). If no offspring is obtained in one
generation, difference threshold is decremented by one.

• BLX-α crossover operator : Paired individuals allowed
to produce offspring undergo BLX-α crossover oper-
ator [6], producing one offspring. Given y

1 and y
2,

BLX-α generates offspring z, where zi is a random
(uniform) number from [ymin − I · α, ymax + I · α] in-
terval, with ymin = min(y1

i , y2
i ), ymax = max(y1

i , y2
i ),

and I = |y1
i − y2

i |. This parameter α is set to 0.5.

• Mating with s
c: µCHC incorporates the strategy of re-

combining s
c with another solution [19]. In addition to

Figure 4: Shape of probability distribution for ini-
tialisation

the typical recombination phase of CHC, our algorithm
mates s

c with a member of Pop (selected at random)
and, if they are finally crossed over (attending on the
incest prevention mechanism), the resulting offspring
will be introduced into the offspring population.

• Cataclysmic mutation: µCHC, as CHC, uses no mu-
tation in the classical sense of the concept, but in-
stead, it goes through a process of cataclysmic muta-
tion when the population has converged. The differ-
ence threshold is considered to measure the stagnation
of the search, which happens when it has dropped to
one. Then, the population is reinitialised with individ-
uals generated by perturbing s

c attending to the kth
neighbourhood structure (Sect. 2.3.2).

2.3.2 Initialisation and Cataclysmic Mutation
Every individual in the initial µCHC population is gen-

erated by perturbing s
c according to a relaxed idea of the

given neighbourhood structure Nk (see equation 1). In par-
ticular, each individual is generated by adding a vector of
random values from the following equation (see Fig. 4):

N(0, 1) · rangei/kmax ± k · rangei/kmax (3)

where N(0, 1) is a normal random value with mean 0 and
variance 1, rangei is the range of ith variable domain, kmax

is the maximum number of neighbourhood structures VNS
manages, and k is the current neighbourhood index; ± is
chosen according to the sign of the random value.

Cataclysmic mutation fills the population with individu-
als created by the same way as initial population is built,
but preserving the best performing individual found in the
previous generation. After applying cataclysmic mutation,
the difference threshold is set to: σ · (1−σ) ·L, with L being
the number of bits coding a potential solution of the problem
(20 bits per variable) and σ is the average of the minimal
radius of neighbourhoods Nk and Nk+1 ((2k + 1)/(2kmax)).

3. RESULTS
Results from experiments according to [13] on the bench-

mark functions given in [8, 14] are presented in Figures 5
and 6 and in Table 1.

Individual experiments were run with a maximum and
adaptive time budget equal to the available time (from 2009-
04-07 to 2009-04-16) divided by the number of remaining
experiments (initially, 5dims · 24funcs · 15runs). Crafting

effort [13] was 0 because all the functions where approached
with the very same parameter setting.

4. CPU TIMING EXPERIMENT
The continuous Variable Neighbourhood Search based on

specialised Evolutionary Algorithms was run with a maxi-
mum of 105 · D function evaluations and restarted until 30

2290



2 3 5 10 20 40
0

1

2

3

4
1 Sphere

 +1
 +0
 -1
 -2
 -3
 -5
 -8

2 3 5 10 20 40
0

1

2

3

4

5
2 Ellipsoid separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8 12
3 Rastrigin separable

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

10
1

4 Skew Rastrigin-Bueche separable

2 3 5 10 20 40

0

1

2

3
5 Linear slope

2 3 5 10 20 40
0

1

2

3

4

5
6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8 10
7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5
8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

5
9 Rosenbrock rotated

2 3 5 10 20 40
0

1

2

3

4

5
10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

5
11 Discus

2 3 5 10 20 40
0

1

2

3

4

5
12 Bent cigar

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
12

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

5
14 Sum of different powers

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

10

14

1

15 Rastrigin

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
3

16 Weierstrass

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

10
17 Schaffer F7, condition 10

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

10
18 Schaffer F7, condition 1000

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

10

12

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

10
20 Schwefel x*sin(x)

2 3 5 10 20 40
0

1

2

3

4

5

6
21 Gallagher 101 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
1322 Gallagher 21 peaks

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9
2

23 Katsuuras

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

9

10

12

24 Lunacek bi-Rastrigin

 +1
 +0
 -1
 -2
 -3
 -5
 -8

Figure 5: Expected Running Time (ERT, •) to reach fopt + ∆f and median number of function evaluations of
successful trials (+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the exponent is given in the legend of f1

and f24) versus dimension in log-log presentation. The ERT(∆f) equals to #FEs(∆f) divided by the number
of successful trials, where a trial is successful if fopt + ∆f was surpassed during the trial. The #FEs(∆f) are
the total number of function evaluations while fopt +∆f was not surpassed during the trial from all respective
trials (successful and unsuccessful), and fopt denotes the optimal function value. Crosses (×) indicate the total
number of function evaluations #FEs(−∞). Numbers above ERT-symbols indicate the number of successful
trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and
quadratic scaling.
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f1 in 5-D, N=15, mFE=966 f1 in 20-D, N=15, mFE=3030

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 8.1e1 6.5e1 9.7e1 8.1e1 15 4.5e2 4.3e2 4.6e2 4.5e2

1 15 2.2e2 2.1e2 2.3e2 2.2e2 15 7.2e2 7.1e2 7.4e2 7.2e2

1e−1 15 3.1e2 3.0e2 3.2e2 3.1e2 15 9.9e2 9.7e2 1.0e3 9.9e2

1e−3 15 4.7e2 4.6e2 4.8e2 4.7e2 15 1.5e3 1.5e3 1.6e3 1.5e3

1e−5 15 6.1e2 5.9e2 6.2e2 6.1e2 15 2.1e3 2.0e3 2.1e3 2.1e3

1e−8 15 8.6e2 8.5e2 8.8e2 8.6e2 15 2.8e3 2.8e3 2.9e3 2.8e3

f2 in 5-D, N=15, mFE=5430 f2 in 20-D, N=15, mFE=91014

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.5e3 1.4e3 1.6e3 1.5e3 15 2.8e4 2.0e4 3.6e4 2.8e4

1 15 1.7e3 1.7e3 1.8e3 1.7e3 15 3.2e4 2.3e4 4.0e4 3.2e4

1e−1 15 2.1e3 1.9e3 2.3e3 2.1e3 15 3.4e4 2.6e4 4.2e4 3.4e4

1e−3 15 2.3e3 2.0e3 2.5e3 2.3e3 15 3.8e4 2.9e4 4.7e4 3.8e4

1e−5 15 2.4e3 2.2e3 2.7e3 2.4e3 15 3.8e4 3.0e4 4.8e4 3.8e4

1e−8 15 2.7e3 2.4e3 2.9e3 2.7e3 15 3.9e4 3.1e4 4.8e4 3.9e4

f3 in 5-D, N=15, mFE=206561 f3 in 20-D, N=15, mFE=6.54e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.8e3 1.1e3 2.5e3 1.8e3 15 4.2e4 3.5e4 4.9e4 4.2e4

1 15 8.5e3 7.3e3 9.7e3 8.5e3 15 2.6e6 9.8e5 4.5e6 2.6e6

1e−1 15 1.8e4 1.5e4 2.1e4 1.8e4 15 3.7e6 1.7e6 6.0e6 3.7e6

1e−3 15 2.0e4 1.7e4 2.3e4 2.0e4 15 4.3e6 2.4e6 6.5e6 4.3e6

1e−5 15 3.7e4 3.0e4 4.4e4 3.7e4 15 4.8e6 2.9e6 6.8e6 4.8e6

1e−8 15 1.3e5 1.1e5 1.4e5 1.3e5 12 4.4e7 3.2e7 6.0e7 3.2e7

f4 in 5-D, N=15, mFE=854182 f4 in 20-D, N=15, mFE=7.37e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.0e3 1.3e3 2.7e3 2.0e3 15 1.3e5 7.6e4 1.8e5 1.3e5

1 15 2.6e4 2.1e4 3.1e4 2.6e4 4 2.1e8 1.2e8 4.8e8 3.4e7

1e−1 15 6.7e4 4.8e4 8.6e4 6.7e4 1 1.0e9 4.6e8 >1e9 7.2e7

1e−3 15 7.1e4 5.3e4 9.0e4 7.1e4 0 20e–1 99e–2 30e–1 2.8e7

1e−5 15 1.0e5 8.7e4 1.2e5 1.0e5 . . . . .

1e−8 15 4.2e5 3.6e5 4.8e5 4.2e5 . . . . .

f5 in 5-D, N=15, mFE=190 f5 in 20-D, N=15, mFE=414

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.3e2 1.3e2 1.4e2 1.3e2 15 2.7e2 2.7e2 2.8e2 2.7e2

1 15 1.5e2 1.4e2 1.6e2 1.5e2 15 3.1e2 2.9e2 3.3e2 3.1e2

1e−1 15 1.5e2 1.5e2 1.6e2 1.5e2 15 3.2e2 3.0e2 3.3e2 3.2e2

1e−3 15 1.5e2 1.5e2 1.6e2 1.5e2 15 3.2e2 3.0e2 3.3e2 3.2e2

1e−5 15 1.5e2 1.5e2 1.6e2 1.5e2 15 3.2e2 3.0e2 3.3e2 3.2e2

1e−8 15 1.5e2 1.5e2 1.6e2 1.5e2 15 3.2e2 3.0e2 3.3e2 3.2e2

f6 in 5-D, N=15, mFE=2246 f6 in 20-D, N=15, mFE=12270

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.2e2 3.9e2 4.5e2 4.2e2 15 2.4e3 2.3e3 2.5e3 2.4e3

1 15 5.8e2 5.6e2 6.1e2 5.8e2 15 3.4e3 3.2e3 3.5e3 3.4e3

1e−1 15 8.1e2 7.8e2 8.3e2 8.1e2 15 4.2e3 4.0e3 4.3e3 4.2e3

1e−3 15 1.2e3 1.2e3 1.2e3 1.2e3 15 6.1e3 5.9e3 6.3e3 6.1e3

1e−5 15 1.5e3 1.5e3 1.6e3 1.5e3 15 7.8e3 7.7e3 8.0e3 7.8e3

1e−8 15 2.1e3 2.0e3 2.1e3 2.1e3 15 1.1e4 1.0e4 1.1e4 1.1e4

f7 in 5-D, N=15, mFE=37605 f7 in 20-D, N=15, mFE=7.47e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.6e2 2.3e2 2.9e2 2.6e2 15 7.2e3 4.0e3 1.1e4 7.2e3

1 15 5.0e2 4.1e2 6.1e2 5.0e2 15 3.3e5 2.7e5 4.0e5 3.3e5

1e−1 15 8.0e3 4.6e3 1.2e4 8.0e3 15 6.8e5 5.6e5 8.1e5 6.8e5

1e−3 15 1.2e4 8.7e3 1.6e4 1.2e4 10 4.0e7 2.3e7 5.9e7 3.1e7

1e−5 15 1.2e4 8.8e3 1.6e4 1.2e4 10 4.0e7 2.3e7 6.0e7 3.1e7

1e−8 15 1.2e4 8.9e3 1.6e4 1.2e4 10 4.0e7 2.3e7 5.9e7 3.1e7

f8 in 5-D, N=15, mFE=162037 f8 in 20-D, N=15, mFE=62407

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.7e2 3.4e2 4.0e2 3.7e2 15 1.2e4 1.1e4 1.3e4 1.2e4

1 15 1.8e3 1.1e3 2.5e3 1.8e3 15 2.3e4 2.1e4 2.7e4 2.3e4

1e−1 15 2.6e3 1.9e3 3.3e3 2.6e3 15 2.6e4 2.3e4 2.9e4 2.6e4

1e−3 15 1.8e4 2.6e3 3.4e4 1.8e4 15 2.7e4 2.4e4 3.0e4 2.7e4

1e−5 15 1.9e4 2.8e3 3.4e4 1.9e4 15 2.8e4 2.5e4 3.1e4 2.8e4

1e−8 15 2.0e4 3.1e3 3.5e4 2.0e4 15 2.9e4 2.6e4 3.2e4 2.9e4

f9 in 5-D, N=15, mFE=11736 f9 in 20-D, N=15, mFE=119802

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.7e2 3.5e2 4.0e2 3.7e2 15 1.2e4 1.1e4 1.3e4 1.2e4

1 15 2.3e3 1.2e3 3.4e3 2.3e3 15 2.5e4 1.9e4 3.1e4 2.5e4

1e−1 15 3.0e3 2.0e3 4.0e3 3.0e3 15 2.8e4 2.2e4 3.6e4 2.8e4

1e−3 15 3.4e3 2.4e3 4.5e3 3.4e3 15 3.0e4 2.3e4 3.7e4 3.0e4

1e−5 15 3.6e3 2.6e3 4.7e3 3.6e3 15 3.1e4 2.4e4 3.8e4 3.1e4

1e−8 15 3.8e3 2.9e3 5.0e3 3.8e3 15 3.2e4 2.5e4 3.9e4 3.2e4

f10 in 5-D, N=15, mFE=4134 f10 in 20-D, N=15, mFE=93294

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.6e3 1.4e3 1.8e3 1.6e3 15 3.6e4 2.6e4 4.5e4 3.6e4

1 15 1.8e3 1.6e3 2.0e3 1.8e3 15 4.1e4 3.1e4 5.2e4 4.1e4

1e−1 15 2.0e3 1.8e3 2.1e3 2.0e3 15 4.5e4 3.5e4 5.5e4 4.5e4

1e−3 15 2.2e3 2.0e3 2.3e3 2.2e3 15 4.6e4 3.6e4 5.7e4 4.6e4

1e−5 15 2.3e3 2.2e3 2.5e3 2.3e3 15 4.7e4 3.6e4 5.8e4 4.7e4

1e−8 15 2.6e3 2.4e3 2.7e3 2.6e3 15 4.8e4 3.8e4 5.9e4 4.8e4

f11 in 5-D, N=15, mFE=3694 f11 in 20-D, N=15, mFE=85662

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.5e3 1.5e3 1.6e3 1.5e3 15 1.2e4 1.2e4 1.3e4 1.2e4

1 15 1.8e3 1.7e3 1.8e3 1.8e3 15 1.4e4 1.2e4 1.5e4 1.4e4

1e−1 15 1.9e3 1.8e3 2.0e3 1.9e3 15 1.5e4 1.3e4 1.7e4 1.5e4

1e−3 15 2.1e3 2.0e3 2.2e3 2.1e3 15 1.7e4 1.4e4 2.0e4 1.7e4

1e−5 15 2.3e3 2.2e3 2.4e3 2.3e3 15 1.9e4 1.5e4 2.4e4 1.9e4

1e−8 15 2.6e3 2.5e3 2.7e3 2.6e3 15 2.1e4 1.6e4 2.6e4 2.1e4

f12 in 5-D, N=15, mFE=11566 f12 in 20-D, N=15, mFE=142554

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.0e3 1.6e3 2.5e3 2.0e3 15 6.1e3 3.9e3 8.4e3 6.1e3

1 15 3.2e3 2.6e3 3.8e3 3.2e3 15 1.1e4 8.0e3 1.5e4 1.1e4

1e−1 15 3.7e3 2.9e3 4.5e3 3.7e3 15 1.8e4 1.5e4 2.2e4 1.8e4

1e−3 15 4.3e3 3.4e3 5.2e3 4.3e3 15 3.4e4 2.5e4 4.5e4 3.4e4

1e−5 15 5.0e3 4.0e3 6.1e3 5.0e3 15 5.1e4 3.6e4 6.6e4 5.1e4

1e−8 15 5.6e3 4.5e3 6.8e3 5.6e3 15 6.2e4 4.7e4 7.8e4 6.2e4

f13 in 5-D, N=15, mFE=41766 f13 in 20-D, N=15, mFE=1.54e8

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 6.3e2 5.4e2 7.2e2 6.3e2 15 2.8e3 1.8e3 3.7e3 2.8e3

1 15 1.1e3 9.6e2 1.2e3 1.1e3 15 1.1e5 1.1e4 2.0e5 1.1e5

1e−1 15 1.7e3 1.5e3 1.8e3 1.7e3 15 3.3e5 1.6e5 5.1e5 3.3e5

1e−3 15 2.4e3 2.3e3 2.6e3 2.4e3 15 2.4e6 1.6e6 3.3e6 2.4e6

1e−5 15 3.2e3 3.1e3 3.4e3 3.2e3 15 1.3e7 9.1e6 1.7e7 1.3e7

1e−8 15 7.6e3 4.5e3 1.1e4 7.6e3 12 1.1e8 8.1e7 1.4e8 7.9e7

f14 in 5-D, N=15, mFE=5558 f14 in 20-D, N=15, mFE=32178

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.3e1 2.6e1 4.0e1 3.3e1 15 4.8e2 4.4e2 5.4e2 4.8e2

1 15 2.3e2 2.1e2 2.4e2 2.3e2 15 9.3e2 8.8e2 9.8e2 9.3e2

1e−1 15 3.1e2 2.9e2 3.4e2 3.1e2 15 1.3e3 1.3e3 1.4e3 1.3e3

1e−3 15 7.4e2 6.9e2 7.9e2 7.4e2 15 4.7e3 4.5e3 4.9e3 4.7e3

1e−5 15 1.8e3 1.6e3 2.0e3 1.8e3 15 1.3e4 1.2e4 1.3e4 1.3e4

1e−8 15 3.0e3 2.8e3 3.3e3 3.0e3 15 2.7e4 2.6e4 2.8e4 2.7e4

f15 in 5-D, N=15, mFE=1.08e8 f15 in 20-D, N=15, mFE=1.26e8

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.2e3 8.9e2 1.6e3 1.2e3 15 9.4e6 5.6e6 1.4e7 9.4e6

1 15 5.5e4 4.1e4 6.9e4 5.5e4 0 60e–1 40e–1 90e–1 6.3e7

1e−1 14 1.3e7 3.5e6 2.4e7 1.3e7 . . . . .

1e−3 14 1.4e7 3.4e6 2.4e7 1.4e7 . . . . .

1e−5 14 1.4e7 4.5e6 2.5e7 1.4e7 . . . . .

1e−8 14 1.4e7 4.6e6 2.5e7 1.4e7 . . . . .

f16 in 5-D, N=15, mFE=3.09e6 f16 in 20-D, N=15, mFE=5.85e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.4e2 2.6e2 4.2e2 3.4e2 15 4.9e3 2.7e3 7.3e3 4.9e3

1 15 7.3e3 5.1e3 9.5e3 7.3e3 15 2.5e5 1.7e5 3.2e5 2.5e5

1e−1 15 3.1e4 2.0e4 4.2e4 3.1e4 13 3.9e7 3.0e7 4.8e7 3.4e7

1e−3 15 1.2e5 7.5e4 1.7e5 1.2e5 0 72e–3 41e–3 12e–2 4.5e7

1e−5 15 3.9e5 1.7e5 6.3e5 3.9e5 . . . . .

1e−8 15 5.8e5 3.3e5 8.5e5 5.8e5 . . . . .

f17 in 5-D, N=15, mFE=2.71e6 f17 in 20-D, N=15, mFE=8.73e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.4e1 2.9e1 3.9e1 3.4e1 15 3.3e2 3.1e2 3.5e2 3.3e2

1 15 3.5e2 3.1e2 3.9e2 3.5e2 15 1.2e3 1.1e3 1.3e3 1.2e3

1e−1 15 4.3e3 2.0e3 6.7e3 4.3e3 15 5.9e3 2.3e3 9.5e3 5.9e3

1e−3 15 2.9e4 1.7e4 4.3e4 2.9e4 15 1.1e6 7.3e5 1.4e6 1.1e6

1e−5 15 1.1e5 8.1e4 1.5e5 1.1e5 0 10e–5 40e–6 12e–5 5.6e7

1e−8 15 7.6e5 5.4e5 9.8e5 7.6e5 . . . . .

f18 in 5-D, N=15, mFE=5.12e7 f18 in 20-D, N=15, mFE=8.71e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 2.3e2 2.1e2 2.5e2 2.3e2 15 7.9e2 7.3e2 8.4e2 7.9e2

1 15 1.8e3 4.8e2 3.2e3 1.8e3 15 4.0e3 2.1e3 5.9e3 4.0e3

1e−1 15 1.4e4 6.4e3 2.3e4 1.4e4 15 2.8e5 2.0e5 3.6e5 2.8e5

1e−3 15 2.4e5 1.7e5 3.1e5 2.4e5 0 40e–4 19e–4 75e–4 3.5e7

1e−5 15 3.2e6 2.4e6 4.1e6 3.2e6 . . . . .

1e−8 15 1.6e7 1.1e7 2.1e7 1.6e7 . . . . .

f19 in 5-D, N=15, mFE=4.42e7 f19 in 20-D, N=15, mFE=1.18e8

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 5.5e1 3.9e1 7.3e1 5.5e1 15 3.3e2 3.1e2 3.4e2 3.3e2

1 15 7.6e3 2.4e3 1.3e4 7.6e3 15 8.2e4 3.2e4 1.4e5 8.2e4

1e−1 15 3.2e5 2.1e5 4.3e5 3.2e5 0 21e–2 14e–2 26e–2 5.0e7

1e−3 15 9.1e6 6.6e6 1.2e7 9.1e6 . . . . .

1e−5 14 1.6e7 1.1e7 2.2e7 1.3e7 . . . . .

1e−8 12 3.6e7 3.0e7 4.6e7 2.8e7 . . . . .

f20 in 5-D, N=15, mFE=2.70e6 f20 in 20-D, N=15, mFE=2.08e8

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 1.7e2 1.6e2 1.8e2 1.7e2 15 5.8e2 5.6e2 6.0e2 5.8e2

1 15 6.7e3 5.4e3 7.9e3 6.7e3 15 5.1e4 4.6e4 5.7e4 5.1e4

1e−1 15 1.6e5 1.2e5 2.1e5 1.6e5 0 30e–2 18e–2 35e–2 3.2e7

1e−3 15 2.3e5 1.5e5 3.3e5 2.3e5 . . . . .

1e−5 15 2.5e5 1.5e5 3.5e5 2.5e5 . . . . .

1e−8 15 5.5e5 3.3e5 7.9e5 5.5e5 . . . . .

f21 in 5-D, N=15, mFE=143012 f21 in 20-D, N=15, mFE=2.14e6

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 9.7e1 7.7e1 1.2e2 9.7e1 15 6.0e3 2.4e3 9.8e3 6.0e3

1 15 8.7e3 3.2e3 1.5e4 8.7e3 15 3.6e5 1.9e5 5.6e5 3.6e5

1e−1 15 1.1e4 5.5e3 1.7e4 1.1e4 15 4.1e5 2.3e5 6.2e5 4.1e5

1e−3 15 1.2e4 6.0e3 1.8e4 1.2e4 15 4.2e5 2.3e5 6.3e5 4.2e5

1e−5 15 1.4e4 6.1e3 2.3e4 1.4e4 15 4.2e5 2.4e5 6.2e5 4.2e5

1e−8 15 1.6e4 6.3e3 2.7e4 1.6e4 15 4.4e5 2.4e5 6.5e5 4.4e5

f22 in 5-D, N=15, mFE=64941 f22 in 20-D, N=15, mFE=1.99e8

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 4.1e2 1.7e2 6.5e2 4.1e2 15 6.7e3 3.2e3 1.0e4 6.7e3

1 15 6.0e3 4.4e3 7.6e3 6.0e3 15 3.7e5 2.1e5 5.7e5 3.7e5

1e−1 15 1.6e4 1.3e4 2.0e4 1.6e4 15 3.0e7 1.6e7 4.6e7 3.0e7

1e−3 15 1.8e4 1.4e4 2.2e4 1.8e4 15 3.0e7 1.6e7 4.5e7 3.0e7

1e−5 15 2.0e4 1.5e4 2.4e4 2.0e4 15 3.0e7 1.6e7 4.5e7 3.0e7

1e−8 15 2.3e4 1.9e4 2.8e4 2.3e4 13 8.7e7 6.0e7 1.2e8 8.2e7

f23 in 5-D, N=15, mFE=2.97e6 f23 in 20-D, N=15, mFE=4.62e7

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 3.0e0 2.5e0 3.5e0 3.0e0 15 3.2e0 2.7e0 3.7e0 3.2e0

1 15 4.9e3 3.7e3 6.2e3 4.9e3 15 4.1e4 3.1e4 5.1e4 4.1e4

1e−1 15 2.1e5 1.4e5 2.9e5 2.1e5 15 6.8e5 5.1e5 8.5e5 6.8e5

1e−3 15 7.4e5 4.6e5 1.0e6 7.4e5 0 23e–3 13e–3 34e–3 1.8e7

1e−5 15 8.3e5 5.4e5 1.1e6 8.3e5 . . . . .

1e−8 15 8.3e5 5.4e5 1.1e6 8.3e5 . . . . .

f24 in 5-D, N=15, mFE=2.19e8 f24 in 20-D, N=15, mFE=2.06e8

∆f # ERT 10% 90% RTsucc # ERT 10% 90% RTsucc
10 15 5.3e3 3.7e3 7.1e3 5.3e3 13 9.0e7 6.4e7 1.2e8 8.3e7

1 15 1.1e7 2.0e6 1.9e7 1.1e7 0 88e–1 64e–1 10e+0 1.0e8

1e−1 12 8.6e7 6.1e7 1.2e8 6.3e7 . . . . .

1e−3 4 4.4e8 2.8e8 9.4e8 1.2e8 . . . . .

1e−5 0 69e–4 11e–5 15e–2 8.9e7 . . . . .

1e−8 . . . . . . . . . .

Table 1: Shown are, for a given target difference to the optimal function value ∆f : the number of successful
trials (#); the expected running time to surpass fopt +∆f (ERT, see Figure 5); the 10%-tile and 90%-tile of the
bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was
successful, as last entry the median number of function evaluations to reach the best function value (RTsucc).
If fopt + ∆f was never reached, figures in italics denote the best achieved ∆f-value of the median trial and
the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum
of number of function evaluations executed in one trial. See Figure 5 for the names of functions.
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Figure 6: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left) or ∆f . Left subplots: ECDF of the running time (number of function evaluations), divided by
search space dimension D, to fall below fopt +∆f with ∆f = 10k, where k is the first value in the legend. Right
subplots: ECDF of the best achieved ∆f divided by 10k (upper left lines in continuation of the left subplot),
and best achieved ∆f divided by 10−8 for running times of D, 10 D, 100 D . . . function evaluations (from right
to left cycling black-cyan-magenta). Top row: all results from all functions; second row: separable functions;
third row: misc. moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions
with adequate structure; last row: multi-modal functions with weak structure. The legends indicate the
number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D
and DIM denote search space dimension, and ∆f and Df denote the difference to the optimal function value.
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seconds has passed (according to Figure 2 in [13]). The ex-
periment has been conducted with an Intel(R) Core(TM)2
Quad CPU Q9300 2.5GHz under Fedora release 10 (Cam-
bridge) using the C-code provided and optimisation level 2.
The time per function evaluation was 2; 1.5; 1.4; 1.2; 1.7; 3
times 10−5 seconds in dimensions 2; 3; 5; 10; 20; 40 respec-
tively.

5. CONCLUSIONS
We have presented a continuous VNS model based on

three specialised EAs: 1) CMA-ES as an EA specialised in
generating a good starting point, as generation component,
2) Continuous Local EA, specialised in exploiting local infor-
mation, as improvement component, and 3) µCHC, which
provides local diversity, as shaking component. Experiments
have been carried out on the noiseless Black-Box Optimiza-
tion Benchmark 2009 testbed.
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