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ABSTRACT

Memetic algorithms with continuous local search methods
have arisen as effective tools to address the difficulty of ob-
taining reliable solutions of high precision for complex con-
tinuous optimisation problems. There exists a group of con-
tinuous search algorithms that stand out as brilliant local
search optimisers. Several of them, like CMA-ES, often re-
quire a high number of evaluations to adapt its parameters.
Unfortunately, this feature makes difficult to use them to
create memetic algorithms.

In this work, we show a memetic algorithm that applies
CMA-ES to refine the solutions, assigning to each individ-
ual a local search intensity that depends on its features, by
chaining different local search applications.

Experiments are carried out on the noise free Black-Box
Optimization Benchmarking BBOB’2009 test suite.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: OptimizationGlobal Opti-
mization, Unconstrained Optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems
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1. INTRODUCTION

It is well known that the hybridisation of evolutionary
algorithms (EAs) with other techniques can greatly improve
the search efficiency [3, 4]. EAs that have been hybridised
with local search (LS) techniques are often called memetic
algorithms (MAs) [17, 18, 15]. One commonly MA scheme
improves the new created solutions using an LS method,
with the aim of exploiting the best search regions gathered
during the global sampling done by the EA. This allows us
to design MAs for continuous optimization (MACO) that
obtain high accurate solutions for these problems [12, 21,
13].

Nowadays, there are powerful metaheuristics available as
LS algorithms that can achieve very good results by the
adaptation of several explicit strategy parameters to guide
the search. This adaptation allows them to increase the
likelihood of producing more effective solutions, at the cost
of requiring a substantial number of evaluations (high LS
intensity). We call intense continuous LS algorithms to this
kind of LS procedures.

In particular, we consider the Covariance Matriz Adap-
tation Evolution Strategy (CMA-ES) model [11]. It can be
seen as an intense continuous LS algorithm because, as noted
by [2]: “CMA-ES may require a substantial number of time
steps for the adaptation’.

Since CMA-ES is extremely good at detecting and exploit-
ing local structure, it turns out to be a particularly reliable
and highly competitive EA for local optimisation. In fact,
very powerful multi-start LS metaheuristics have been cre-
ated using this algorithm[19, 6]. Unfortunately, as the other
intense continuous LS methods, the requirement of a high
intensity make not easy to create MACO using it.

In this work, we show a MACO model, MA with LS
Chains (MA-LS-Chain) [16] that employs the concept of LS
chain to adjust the LS intensity, assigning to each individ-
ual a local search intensity that depends on its features, by
chaining different local search applications. In our model, an
individual resulting from an LS invocation may later become
initial point of a subsequent LS application, which will adopt
the final strategy parameter values achieved by the former
as its initial ones. In this way, the continuous LS method
may adaptively fit its strategy parameters to the particular
features of the search zones, increasing the LS effort over the
most promising solutions, and regions.



The paper is set up as follows. In Section 2, we describe
in detail the presented algorithm. In Section 3, we present
the experimental section, using the Black-Box Optimiza-
tion Benchmarking for Noiseless Function (BBOB’2009). Fi-
nally, in Section 5, we provide several conclusions.

2. MA-LS-CHAIN: MACO THAT HANDLES
LS CHAINS

In this section, we describe MA-LS-Chain, MACO ap-
proach proposed in [16] that employs the concept of LS chain
to adjust the LS intensity assigned to the intense continuous
LS method. In particular, this MACO handles LS chains,
throughout the evolution, with the objective of allowing the
continuous LS algorithm to act more intensely in the most
promising areas represented in the EA population. In this
way, the LS method may adaptively fit its strategy param-
eters to the particular features of these zones.

2.1 Steady-State MAs

In steady-state GAs [20] usually only or two offspring are
produced in each generation. Parents are selected to produce
offspring and then a decision is made to select which indi-
viduals in the population will be deleted in order to make
room to new offspring. Steady-state GAs are overlapping
systems because parents and offspring compete for survival.
A widely used replacement strategy is to replace the worst
individual only if the new individual is better. We will call
this strategy the standard replacement strategy.

Although steady-state GAs are less common than genera-
tional GAs, Land [14] recommended their use for the design
of steady-state MAs (steady-state GAs plus LS method) be-
cause they may be more stable (as the best solutions do not
get replaced until the newly generated solutions become su-
perior) and they allow the results of LS to be maintained in
the population.

2.2 CMA-ES Algorithm

The covariance matriz adaptation evolution strategy (CMA-
ES) [11, 10] is an optimization algorithm originally intro-
duced to improve the LS performances of evolution strate-
gies. Even though CMA-ES even reveals competitive global
search performances [9], it has exhibited effective abilities for
the local tuning of solutions. At the 2005 Congress of Fvo-
lutionary Computation, a multi-start LS metaheuristic using
this method [1] was one of the winners of the real-parameter
optimisation competition [19, 6]. Thus, investigating the be-
haviour of CMA-ES as LS component for MACOs deserves
much attention.

Any evolution strategy that uses intermediate recombina-
tion can be interpreted as an LS strategy [11]. Thus, since
CMA-ES is extremely good at detecting and exploiting lo-
cal structure, it turns out to be a particularly reliable and
highly competitive EA for local optimisation [1].

In CMA-ES, both the step size and the step direction,defined
by a covariance matrix, are adjusted at each generation. To
do that, this algorithm generates a population of X offspring
by sampling a multivariate normal distribution:

JJiNN(m,O'QC) =m+oN;(0,C) fori=1,---, ],

where the mean vector m represents the favourite solution
at present, the so-called step-size o controls the step length,

2256

and the covariance matrix C' determines the shape of the
distribution ellipsoid. Then, the u best offspring are used
to recalculate the mean vector, o and m and the covariance
matrix C, following equations that may be found in [11] and
[9]. The default strategy parameters are given in [9]. Only
the initial m and o parameters have to be set depending on
the problem.

In this paper, the initial m value is the initial solution,
and we consider the initial o as the half of distance to the
most close solution. We have applied the code available in
http://www.lri.fr/“hansen/cmaes_inmatlab.html.

2.3 Local Search Chains

In steady-state MAs, individuals improved by the LS in-
vocations may reside in the population during a long time.
This circumstance allows these individuals to become start-
ing points of subsequent LS invocations. In [16], Molina et
al. propose to chain an LS algorithm invocation and the
next one as follows:

The final configuration reached by the former (strat-
egy parameter values, internal variables, etc.) is
used as initial configuration for the next applica-
tion.

In this way, the LS algorithm may continue under the
same conditions achieved when the LS operation was halted,
providing an uninterrupted connection between successive LS
invocations, i.e., forming a LS chain.

Two important aspects that were taken into account for
the management of LS chains are:

e Every time the LS algorithm is applied to refine a par-
ticular chromosome, a fixed LS intensity should be con-
sidered for it, which will be called LS intensity stretch
(Ist'r)~

In this way, an LS chain formed throughout ngpp LS
applications and started from solution sg will return
the same solution as the application of the continuous
LS algorithm to so employing napp - Isir fitness function
evaluations.

e After the LS operation, the parameters that define the
current state of the LS processing are stored along with
the final individual reached (in the steady-state GA
population). When this individual is selected to be
improved, the initial values for the parameters of the
LS algorithm will be directly available.

2.4 MA-LS-Chain : A MACO that Handles
LS Chains

MA-LS-Chain [16] is a MACO model that handles the LS
chains (see Figure 1), with the following main features:

1. It is a steady-state MA model.

2. It ensures that a fixed and predetermined local/global
search ratio, r1,¢, is always kept. rz,q is defined as
the percentage of evaluations spent doing LS from the
total assigned to the algorithm’s run. With this pol-
icy, we easily stabilise this ratio, which has a strong
influence on the final MACO behavior. Without this
strategy, the application of intense continuous LS al-
gorithms may induce the MACO to prefer super ex-
ploitation.



3. It favours the enlargement of those LS chains that are
showing promising fitness improvements in the best
current search areas represented in the steady-state
GA population. In addition, it encourages the activa-
tion of innovative LS chains with the aim of refining
unexploited zones, whenever the current best ones may
not offer profitability. The criterion to choose the indi-
viduals that should undergo LS is specifically designed
to manage the LS chains in this way (Steps 3 and 4).

1. Generate the initial population.

Perform the steady-state GA throughout nj,.. evalua-
tions.

3. Build the set St s with those individuals that potentially
may be refined by LS.

4. Pick the best individual in Spg (Let’s cpg to be this
individual).

5. if cp g belongs to an existing LS chain then

Initialise the LS operator with the LS state stored to-

gether with crg.

7. else

8. Initialise the LS operator with the default LS state.

9. Apply the LS algorithm to ¢y s with an LS intensity of Is¢r

(Let’s ¢ ¢ to be the resulting individual).
10. Replace cpg by cj o in the steady-state GA population.
11. Store the final LS state along with c} 4.

12. If (not termination-condition) go to step 2.

Figure 1: Pseudocode algorithm for MA-LS-Chain

MA-LS-Chain defines the following relation between the
steady-state GA and the LS method (Step 2): every nyfrec
number of evaluations of the steady-state GA, apply the con-
tinuous LS algorithm to a selected chromosome, crs, in the
steady-state GA population.
1-rr/a

(1)

Nfrec = Tsr
TL/G

Since we assume a fixed é ratio, 71/G, Nfrec must be
automatically calculated. The njr.. value is obtained by
Equation 1, where ns¢» is the LS intensity stretch (Section
2.3).

The following mechanism is performed to select crs (Steps
3 and 4):

1. Build the set of individuals in the steady-state GA
population, Sps that fulfils:

(a) They have never been optimised by the LS algo-
rithm, or

(b) They previously underwent LS, obtaining a fit-
ness function improvement greater than 07" (a
parameter of our algorithm).

2. If |Srs| # 0, then apply the continuous LS algorithm
to the best individual in this set. On other case, the
population of the steady-state MA is restarted ran-
domly (keeping the best individual).
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With this mechanism, when the steady-state GA finds
a new best individual, it will be refined immediately. Fur-
thermore, the best performing individual in the steady-state
GA population will always undergo LS whenever the fitness
improvement obtained by a previous LS application to this
individual is greater than a 67" threshold. In our experi-

ments, 874" is the threshold value, 1078.

3. EXPERIMENTAL PROCEDURE

Results from experiments according to [7] on the bench-
mark functions given in [5, 8] are presented in Figures 2 and
3 and in Table 1.

4. CPU TIME REQUIREMENTS

For the timing experiment, the MACO was run with a
maximum of 10° - D function evaluations several times, un-
til the . The experiments have been conducted with an
Intel Xeon(R) CPU, 3000 under Suse Version 10.1, using
the gcc version 4.1.2. The time per function evaluations
was 8,09;9,9;13;18;28 times 10° — 6 seconds in dimensions
2;3;5;10;20 respectively.

5. CONCLUSIONS

We have presented an algorithm, MA-LS-Chain that ap-
plies the CMA-ES algorithm to refine solutions, creating LS
Chains. In MA-LS-Chain, the same individual can be im-
proved several times by CMA-ES. An individual resulting
from an LS invocation may later become initial point of a
subsequent LS application, continuing the local search. Us-
ing this idea, MA-LS-Chain focus the LS search around the
most promising solutions, and regions. Experiments have
been carried out on the noise free BBOB 2009 test.
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Figure 2: Expected Running Time (ERT, ®) to reach fopt + Af and median number of function evaluations of
successful trials (4), shown for Af =10,1,107*,1072,107%,107%,10"® (the exponent is given in the legend of f;
and f24) versus dimension in log-log presentation. The ERT(Af) equals to #FEs(Af) divided by the number
of successful trials, where a trial is successful if fo,x + Af was surpassed during the trial. The #FEs(Af) are
the total number of function evaluations while f,,; + Af was not surpassed during the trial from all respective
trials (successful and unsuccessful), and f.,+ denotes the optimal function value. Crosses (x) indicate the total
number of function evaluations #FEs(—occ). Numbers above ERT-symbols indicate the number of successful
trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and
quadratic scaling.
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f1 in 5-D,N=15,mFE=2617 | f1 in 20-D, N=15, mFE=10666 f2 in 5-D, N=15, mFE=7004 | f2 in 20-D, N=15, mFE=169936
Af |# ERT 10% 90% RTsucc|# BERT 10% 90% RTsucc Af |# ERT 10%  90% RTsucc|# ERT 10% 90%  RTsucc
10 |15 8.6el 7.2el 9.9el 8.6el |15 8.9e2 8.4e2 9.4e2 8.9e2 10 |15 1.1e3 9.6e2 1.2e3 1.le3 |15 5.7e3 5.6e3 5.9e3  5.7e3
1 |15 3.1e2 2.9e2 3.3e2 3.1e2 |15 2.2e3 2.1e3 2.3e3 2.2e3 1 |15 1.4e3 1.3e3 1.6e3 1.4e3 |15 7.2e3 7.0e3 7.5e3  7.2e3
le—1|15 5.7e2 5.5¢2 5.9¢2 5.7e2 |15 3.3e3 3.2e3 3.5e3 3.3e3 le—1|15 2.0e3 1.8e3 2.1e3 2.0e3 |15 8.8e3 8.7e3 9.0e3  8.8e3
le—3|15 9.1e2 8.6e2 9.7e2 9.1e2 |15 5.3e3 5.1e3 5.4e3 5.3e3 le—3|15 2.9e3 2.6e3 3.1e3 2.9e3 |15 1.2e4 1.2e4 1.3e4  1.2e4
le—5|15 1.4e3 1.3e3 1.6e3 1.4e3 |15 6.9e3 6.7e3 7.le3 6.9e3 le—5|15 3.7e3 3.4e3 4.0e3 3.7e3 |15 1.7e4 1.6ed 1.8ed  1.7ed
le—8|15 1.9¢3 1.8e3 1.9¢3 1.9e3 |15 9.1e3 8.8e¢3 9.4e3 9.1e3 le—8|15 5.1e3 4.5¢3 5.6e3 5.1e3 |15 3.2e4 2.1ed 4.2¢4  3.2¢d
f3 in 5-D, N=15, mFE=125000 | f3 in 20-D, N=15, mFE=2000000 f4 in 5-D, N=15, mFE=125000 | f4 in 20-D, N=15, mFE=2000000
Af |# ERT 10% 90% RTgucc |# ERT 10% 90%  RTsucc Af |# ERT 10% 90% RTsucc |# ERT 10% 90%  RTsycc
10 |15 7.3e2 6.062 8.5¢2 7.3¢2 |15 3.6c4 2.7c4 4.5¢d 3.6ed T0 |15 1.3e3 1.1e3 1.6e3 1.3e3 |15 2.56¢5 2.1e¢5 3.0e5 2.5¢5
1 |15 1.0e4 6.1e3 1.5e4 1.0ed |15 7.3e5 6.2e5 8.3e5 7.3e5 1 |14 5.8e4 4.4e4 T.led 5.led 0 30e-1 20e-1 40e-1 1.4¢6
le—1|14 5.2¢4 3.5e4 6.9e4 4.6ed |14 1.2e¢6 1.0¢6 1.4¢6 1.1e6 le—1| 5 3.0e5 2.5e5 3.3e5  1.2e5 . . .
le—3|14 5.2e4 3.5e4 6.8e4 4.6ed |14 1.2e¢6 1.1e¢6 1.4¢6 1.1e6 le—3| 5 3.0e5 2.5e5 3.4e5  1.2e5
le—5|14 5.3e4 3.6e4 7.0e4 4.7ed |14 1.2e6 1.0e6 1.4¢6 1.1e6 le—5| 5 3.0e5 2.6e5 3.4e5  1.2e5
le—8|14 5.3e4 3.7e4 7.0ed 4.7ed |14 1.2e6 1.1e6 1.4¢6 1.1e6 le—8| 5 3.0e5 2.6e5 3.4e5  1.2e5 . . . . .
f5 in 5-D, N=15, mFE=786 | f5 in 20-D, N=15, mFE=2506 f6 in 5-D, N=15, mFE=5962 | fg in 20-D, N=15, mFE=58182
Af |# ERT 10% 90% RTgucc|# ERT 10% 90% RTsucc Af |# ERT 10%  90% RTsucc|# ERT 10% 90% RTsucc
10 |15 5.362 5.0e2 5.5e2 5.3e2 |15 1.7e3 1.6e3 1.7e¢3 1.7e3 10 |15 5.562 4.662 6.3e2 b5.5e2 |15 9.7e3 9.4e3 1.0ed 9.7e3
1 |15 6.9¢2 6.7e2 7.1e2 6.9e2 |15 1.8e3 1.8e3 1.8e3 1.8e3 1 |15 1.4e3 1.2e3 1.6e3 1.4e3 |15 1.6e4 1.5¢4 1.6ed 1.6e4
le—1[15 7.0e2 6.9e2 7.2e2 7.0e2 |15 1.8e3 1.8e3 1.9e3 1.8e3 le—1|15 2.2e3 2.1e3 2.4e3 2.2e3 |15 2.0ed 1.9¢4 2.1ed 2.0ed
le—3|15 7.1e2 6.9e2 7.2¢2 7.le2 |15 1.9e3 1.8e3 1.9e3 1.9e3 le—3|15 3.3e3 3.1e3 3.5e3 3.3e3 |15 2.6e4 2.5¢4 2.8cd 2.6ed
le—5|15 7.1e2 6.9¢2 7.2¢2 7.le2 |15 1.9e3 1.8e3 1.9e3 1.9¢3 le—5[15 4.2¢3 4.0e3 4.5e3 4.2e3 |15 3.2e4 3.0e4 3.4e4 3.2e4
le—8|15 7.1e2 6.9e¢2 7.2¢2 7.le2 |15 1.9e3 1.8e3 1.9e3 1.9e3 le—8|15 5.3¢3 5.1e3 5.5e3 5.3e3 |15 4.0e4 3.7ed4 4.3e4 4.0ed
f7 in 5-D, N=15, mFE=125000 | f7 in 20-D, N=15, mFE=2000000 f8 in 5-D, N=15, mFE=7788 | fg8 in 20-D, N=15, mFE=243967
Af |# ERT 10% 90% RTsucc |# ERT 10% 90%  RTsycc Af |# ERT 10% 90% RTsycc|# ERT 10% 90% RTsucc
10 |15 2.0e2 1.7e2 2.2¢2 2.0e2 |15 5.8e¢3 5.1e3 6.7¢3 5.8¢3 T0 |15 6.4¢2 6.162 6.8¢2 6.4¢2 |15 2.7¢4 2.0e4 3.3c4  2.7cd
1 |15 1.0e3 9.2¢2 1.2e3 1.0e3 [15 5.1e5 3.3e5 7.leb 5.1e5 1 |15 2.0e3 1.7e3 2.2e3 2.0e3 |15 4.8e4 3.3e4 6.4ed4  4.8¢d
le—1[14 1.5e4 3.8e3 2.7ed  1.2e4 7 3.4e6 3.0e6 3.8¢6 1.4¢6 le—1[15 3.2e3 3.0e3 3.5e3 3.2e3 |15 5.3e4 3.8e4 6.8ed4  5.3ed
le—3|14 3.8¢4 2.6e4 5.led  3.2e4 4 6.4e6 5.7¢6 7.0e6 1.6¢6 le—3[15 4.2e3 4.0e3 4.4e3 4.2e3 |15 5.Ted 4.3ed4 7.3ed  5.7ed
le—5[14 3.8e4 2.7e4 5.led  3.2e4 4 6.4e6 5.7¢6 7.0e6 1.6¢6 le—5[15 4.7e3 4.4e3 4.9e3 4.7e3 |15 5.9e4 4.4ed T.4ed  5.9ed
le—8|14 3.8e4 2.6e4 5.2e4  3.2e4 4 6.4¢6 5.Te6 7.0e6 1.6¢6 le—8|15 5.3e3 5.0e3 5.7e3 5.3e3 |15 6.le4 4.6e4 T.6e4  6.led
f9 in 5-D, N=15, mFE=10571 | fg in 20-D, N=15, mFE=273853 f10 in 5-D,N=15mFE=9909 | f10 in 20-D, N=15, mFE=438454
Af |# ERT 10% 90% RTguce | # ERT 10% 90% RTsucc Af |# ERT 10% 90% RTgucc|# BRT 10% 90%  RTsyucc
10 |15 6.1e2 5.8¢2 6.4e2 6.1e2 |15 2.9ed4 2.4ed 3.4ed  2.9ed T0 |15 3.1e3 2.7¢3 3.6e3 3.1e3 |15 8.3¢4 6.2¢4 1.1eb 8.3cd
1 |15 2.6e3 2.3e3 2.9e3 2.6e3 |15 7.8e4 6.0e4 9.7ed  7.8¢4 1 |15 4.7e3 4.2e3 5.2e3 4.7e3 |15 1.1e5 7.7ed4 1.5e5 1.1e5
le—1|15 3.7e3 3.4e3 4.0e3 3.7e3 |15 8.9¢4 6.8e4 1.1e5  8.9e4d le—1[15 5.0e3 4.5e3 5.5e3 5.0e3 [15 1.1e5 8.1ed 1.5e5 1.1e5
le—3|15 5.1e3 4.6e3 5.8e3 5.1e3 |15 1.l1e5 8.0ed 1.3e5 1.leb le—3[15 5.5¢3 5.0e3 6.0e3 5.5e3 [15 1.2e5 7.9¢4 1.5e5 1.2e5
le—5|15 5.4e3 4.8e3 6.1e3 5.4e3 |15 1.1e5 8.4ed 1.3e¢5 1.1eb le—5[15 5.8¢3 5.3e3 6.3e3 5.8e3 [15 1.2e5 8.4¢d 1.6e5 1.2e5
le—8|15 6.1e3 5.5¢3 6.8¢3 6.1e3 |15 1.1e5 8.7ed 1.4e¢5 1.1eb le—8|15 6.3¢3 5.9e3 6.7e3 6.3e3 |15 1.2¢5 8.5¢4 1.6e5 1.2¢5
f11 in 5-D,N=15,mFE=8853 | f11 in 20-D, N=15, mFE=248083 f12 in 5-D,N=15,mFE=19902 | f12 in 20-D, N=15, mFE=2000000
Af |# ERT 10% 90% RTsycc|# BERT 10% 90%  RTsyce Af |# ERT 10% 90% RTgucc |# BERT 10% 90% RTsuce
10 |15 2.1e3 1.7e3 2.5e3 2.1e3 |15 6.3ed4 5.led 7.7¢d 6.3ed 10 |15 1.2e3 1.0e3 1.3e3 1.2e3 |15 7.7e3 7.5e3 8.0e3 7.7e3
1 |15 3.8e3 3.5e3 4.2¢3 3.8e3 |15 7.7ed 6.4ed 9.led 7.7Ted 1 |15 3.5e3 2.7e3 4.2e3 3.5e3 |15 1.9ed4 1.led 2.7ed 1.9e4
le—1[15 5.1e3 4.8e3 5.4e3 5.le3 [15 9.led 7.9e4 1.0e5 9.1led le—1[15 5.8e3 5.0e3 6.6e3 5.8e3 |15 3.6e5 1.9¢5 5.3e5 3.6e5
le—3[15 5.7e3 5.4e3 6.1e3 5.7e3 [15 1.l1e5 9.3e4 1.2e5 1.1e5 le—3 |15 7.2e3 6.2e3 8.3e3 7.2e3 |14 6.2e5 3.8e5 8.8e5 4.8e5
le—5[15 6.1e3 5.7e3 6.5e3 6.le3 [15 1.l1e5 9.6e4 1.3e5 1.1e5 le—5[15 8.8e3 7.4e3 1.0e4 8.8e3 |14 6.3e5 3.9e5 8.6e5 4.9e5
le—8|15 6.7e3 6.3e3 7.0e3 6.7e3 |15 1.2e5 1.0e5 1.3e5 1.2e5 le—8|15 1.0e4 8.6e3 1.2e4 1.0e4 |14 6.5¢5 4.0e5 8.9e5 5.0e5
f18 in 5-D,N=15mFE=29911 | f13 in 20-D, N=15, mFE=2000000 f14 in 5-D,N=15mFE=10859 | f14 in 20-D, N=15, mFE=258021
Af | # ERT 10% 90% RTsucc | # ERT 10%  90% RTsuce Af |# ERT 10% 90% RTgucc |# BERT 10% 90%  RTsycc
T0 |15 1.1e3 8.8e2 1.3e3 1.1e3 |15 6.9e3 6.7e3 7.1e3 6.9e3 10 |15 2.0el 1.5el 2.5el 2.0el |15 5.7e2 5.2e2 6.3e2 5.7e2
1 |15 4.1e3 3.1e3 5.1e3 4.le3 |13 8.0e5 5.0e5 1.1e6 6.5¢5 1 |15 3.0e2 2.6e2 3.362 3.0e2 |15 2.6e3 2.4e3 2.7e3 2.6e3
le—1|15 5.9e3 5.1e3 6.7e3 5.9e3 |10 1.9¢6 1.5¢6 2.3¢6 1.1¢6 le—1[15 6.4e2 5.6e2 7.2e2 6.4e2 |15 4.1e3 3.9¢3 4.3e3 4.1e3
le—3|15 6.7e3 5.9¢3 7.6e3 6.7e3 | 1 2.9e7 2.7¢7 3.0e7 6.5¢5 le—3[15 1.5¢3 1.4e3 1.7e3 1.5e3 |15 1.3ed 1.3¢4 l.ded 1.3e4
le—5|15 9.3e3 8.3e3 1.0ed 9.3e3 | 0 27e-3 22¢4 17e-1 1.1e6 le—5[15 4.0e3 3.5e3 4.5e3 4.0e3 |15 3.8ed 2.8¢4 4.8ed 3.8e4
le—8|15 1.3e4 1.led4 1.5e4 1.3e4 | . . . . . le—8|15 6.7¢3 6.2e3 7.3e3 6.7e3 |15 1.1e5 8.4ed 1.3e5 1.1e5
f15 in 5-D,N=15,mFE=125000 | f15 in 20-D, N=15, mFE=2000000 f16 in 5-D,N=15,mFE=125000 | f16 in 20-D, N=15, mFE=2000000
Af |# ERT 10% 90% RTsuce |# BERT 10% 90% RTsuce Af ERT 10% 90% RTguycc |# BERT 10% 90% RTsuce
T0 |15 1.4e3 1.0e3 1.7e3 1.4e3 |15 2.1eb 1.8¢b 2.5eb 2.1eb T0 |15 3.2e2 2.7¢2 3.8¢2 3.2¢2 |15 2.6e4 1.6¢4 3.8e4 2.6ed
1 |12 5.0e4 3.led4 7.led 4.7ed | O 60e-1 40e-1 80e-1 5.6e5 1 |15 5.0e3 3.5e3 6.8¢3 5.0e3 | 0 18e-1 121 27e-1 1.0e6
le—1[10 1.2e5 9.led 1.4e5 7.Ted . . . le—1[14 4.8¢4 3.4ed4 6.3e4 4.2e4
le—3[10 1.2e5 9.2e4 1.4e5 7.8e4 le—3| 6 2.7e5 2.4e5 2.9¢5 9.8e4
le—5[10 1.2e5 9.3e4 1.4e5 7.8e4 le—5| 3 5.9e5 5.6e5 6.2e5 1.0e5
le—8|10 1.2e5 9.5e4 1.4e5  7.8ed . . . . . le—8| 2 9.0e5 8.7e5 9.4e5  1.2e5 . . . . .
f17 in 5-D,N=15,mFE=125000 | f17 in 20-D, N=15, mFE=2000000 f18 in 5-D,N=15,mFE=125000 | f18 in 20-D, N=15, mFE=2000000
Af |# ERT 10% 90% RTsucc |# ERT 10%  90% RTsuce Af |# ERT 10% 90% RTsucc |# ERT 10%  90% RTsuce
T0 |15 2.0el 1.2el 2.8el  2.0el |15 2.2e2 1.9e2 2.5e2 2.2e2 T0 |15 2.6e2 2.2¢2 2.9e2 2.6e2 |15 2.2e3 2.0e3 2.4e3 2.2e3
1 |15 6.1e2 5.5¢2 6.7e2 6.1e2 |15 5.2e3 4.6e3 5.8e3 5.2e3 1 |15 1.9e3 1.7e3 2.0e3 1.9¢3 |15 1l.4e4 1.2e¢4 1.7ed 1.4ed
le—1|15 2.7e3 2.5e3 3.0e3 2.7e3 |15 3.led 1.3e4 5.0ed 3.led le—1[15 5.1e3 4.7e3 5.6e3 5.1e3 |15 5.1e5 3.2e5 7.2e5 5.1e5
le—3[13 3.4¢4 1.6e4 5.2¢4 3.3e4 |15 3.7e5 2.6¢5 4.8e5 3.7¢e5 le—3| 2 8.2¢5 7.0e5 9.4e5 1.2¢5 |2 1.4e7 1.3e7 1.5e7 2.0e6
le—5[13 4.6¢c4 3.led 6.4e4 4.5¢4 |7 3.3¢6 2.9¢6 3.7¢6 1.8¢6 le—5| 1 1.8¢6 1.7¢6 1.9¢6 1.2¢5 | 0 43e— 89e-5 7Tje-3 1.8¢6
le—8| 8 1.6e5 1.3e5 1.9e5 9.led |2 1.4e7 1.4e7 1.5e7 2.0e6 le—8| 0 15e-3 27e-6 66e-3 T7.9e4 . . . . .
f19 in 5-D,N=15,mFE=125000 | f19 in 20-D, N=15, mFE=2000000 f20 in 5-D, N=15, mFE=125000 | f20 in 20-D, N=15, mFE=2000000
Af |# ERT 10% 90% RTsuce |# BERT 10% 90% RTsuce Af |# ERT 10% 90% RTsucc |# ERT 10% 90% RTsuce
10 |15 3.2el 2.3el 4.3el  3.2el |15 2.8e2 2.5¢2 3.0e2 2.8¢2 10 |15 9.3el 7.8el 1.1e2 9.3el 15 7.7¢2 7.2¢2 8.1e2 7.7e2
1 |15 1.3e3 1.0e3 1.5e3 1.3e3 |15 2.9e4 2.3e4 3.Ted 2.9e4 1 |15 3.4e3 2.3e3 4.7e3 3.4e3 15 1.5e5 1.1e5 2.0e5 1.5e5
le—1|12 6.0e4 4.3e4 7.8e4 4.2e4 | 6 4.4e6 4.0e6 4.7e6 1.8¢6 le—1[14 5.4e4 4.0ed4 6.8e4 5.3e4 2 1.5e7 1.5e7 1.5e7 2.0e6
le—3| 0 473 80e4 17e-2 1.1e5 |0 1le 2 7ie-8 20e-2 1.3¢6 le—3[14 5.4e4 4.0ed4 6.9e4 5.4e4 0 2je-2 623 4j6e-2 1.6e6
le—5 . . . . B . . le—5|14 5.5e4 4.1e4 6.9e4 5.4e4 . . B .
le—8 . . . . . . . . le—8|14 5.5e4 4.0e4 7.0ed 5.5e4 . . . . .
f21 in 5-D, N=15, mFE=125000 | f21 in 20-D, N=15, mFE=2000000 f22 in 5-D, N=15, mFE=125000 | f22 in 20-D, N=15, mFE=2000000
Af |# ERT 10% 90%  RTsucc | # ERT 10% 90% RTsucc Af |# ERT 10% 90%  RTgsucc |# ERT 10% 90% RTsucc
10 |15 1.5e2 1.1e2 1.9e2 T.5e2 15 7.9e4 4.0ed 1.2¢5 7. 9ed 10 |15 2.362 1.8e2 2.8e2 2.3e2 15 1.8e3 1.4e3 2.0e3 1.8e3
1 |13 2.6e4 1.0e4 4.4ed 2.5e4 8 2.0e6 1.5¢6 2.6e6 9.4e5 1 |15 6.0e3 9.4e2 1.led 6.0e3 5 4.5¢6 3.7¢6 5.3¢6 1.5¢6
le—1|13 2.6e4 1.led 4.led 2.6e4 6 3.2¢6 2.5¢6 3.9¢6 1.1¢6 le—1[14 2.1e4 6.8e¢3 3.6ed 1.5¢4 0 20e-1 69e-2 5le—1 1.1e4
le—3|13 2.7ed4 1.2¢4 4.6e4 2.6ed 6 3.2¢6 2.5¢6 4.1¢6 1.1¢6 le—3[14 2.2e4 8.4e3 3.7ed 1.6e4 . . . .
le—5|13 2.7ed4 1.2¢4 4.6e4 2.7ed 6 3.2¢6 2.5¢6 3.9¢6 1.1¢6 le—5[14 2.3e4 9.2¢3 3.6ed 1.7¢4
le—8|13 2.8e4 1.2¢4 4.6e4 2.7ed 6 3.2¢6 2.6¢6 4.0e6 1.1¢6 le—8|14 2.3e4 9.6e3 3.Ted 1.7e4 . . . . .
f23 in 5-D, N=15, mFE=125000 | f23 in 20-D, N=15, mFE=2000000 f24 in 5-D, N=15, mFE=125000 | f24 in 20-D, N=29, mFE=2000000
Af |# ERT 10% 90% RTsyce |# ERT 10% 90% RTsuce Af |# ERT 10% 90% RTsyce |# ERT 10% 90% RTsuce
10 |15 7.9¢0 5.9¢0 9.8¢0 7.9e0 15 5.7e0 4.1e0 7.4e0 5.7¢0 T0 |15 3.4e3 2.6e3 4.3e3 3.4e3 1T 5.6e7 5.4e7 5.8e7 2.0e6
1 |15 1.3e3 1.0e3 1.5e3 1.3e3 15 1.le4 4.7e3 1.8e4 1.1ed 1 |0 52 1 5ie1 55e-1 6.3e4 0 25e+0 23e40 26e+0 1.4¢6
le—1|15 2.5e4 1.5e4 3.4ed 2.5e4 14 6.0e5 4.4e5 7.9e5 5.5e5 le—1
le—3| 9 1.le5 8.3ed4 1.4e5 6.9e4 0 61e-3 30e-3 80e-3 1.1e6 le—3
le—5| 9 1.1e5 8.3e4 1.4e5 6.9e4 . . . . le—5
le—8| 9 1.1e5 8.4e4 1.4¢5 7.0e4 le—8

Table 1: Shown are, for a given target difference to the optimal function value Af: the number of successful
trials (#); the expected running time to surpass fopt +Af (ERT, see Figure 2); the 10%-tile and 90%-tile of the
bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was
successful, as last entry the median number of function evaluations to reach the best function value (RTsucc)-
If fopt + Af was never reached, figures in italics denote the best achieved A f-value of the median trial and
the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum

of number of function evaluations executed in one trial. See Figure 2 for the names of functions.
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Figure 3: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running
time (left) or Af. Left subplots: ECDF of the running time (number of function evaluations), divided by
search space dimension D, to fall below fo,. +Af with Af = 10*, where k is the first value in the legend. Right
subplots: ECDF of the best achieved Af divided by 10* (upper left lines in continuation of the left subplot),
and best achieved Af divided by 107® for running times of D,10D,100D... function evaluations (from right
to left cycling black-cyan-magenta). Top row: all results from all functions; second row: separable functions;
third row: misc. moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions
with adequate structure; last row: multi-modal functions with weak structure. The legends indicate the
number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D
and DIM denote search space dimension, and Af and Df denote the difference to the optimal function value.
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