AMaLGaM IDEAs in Noiseless Black-Box Optimization Benchmarking

Peter A.N. Bosman Centre for Mathematics and Computer Science P.O. Box 94079 1090 GB Amsterdam The Netherlands Peter.Bosman@cwi.nl Jörn Grahl Johannes Gutenberg University Mainz Dept. of Information Systems & Business Administration Jakob Welder-Weg 9 D-55128 Mainz, Germany grahl@uni-mainz.de Dirk Thierens Utrecht University Dept. of Information and Computing Sciences P.O. Box 80089 3508 TB Utrecht The Netherlands Dirk.Thierens@cs.uu.nl

ABSTRACT

This paper describes the application of a Gaussian Estimation-of-Distribution (EDA) for real-valued optimization to the noiseless part of a benchmark introduced in 2009 called BBOB (Black-Box Optimization Benchmarking). Specifically, the EDA considered here is the recently introduced parameter-free version of the Adapted Maximum-Likelihood Gaussian Model Iterated Density-Estimation Evolutionary Algorithm (AMaLGaM-IDEA). Also the version with incremental model building (iAMaLGaM-IDEA) is considered.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: OptimizationGlobal Optimization, Unconstrained Optimization; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization, Evolutionary computation

1. METHOD

Estimation-of-distribution algorithms (EDAs) [7, 8] are an important strand of research on black-box optimization (BBO). EDAs attempt to automatically exploit features of a problem's structure by probabilistically modeling the search space based on previously evaluated solutions and generating new solutions by sampling the probabilistic model.

The general EDA procedure is as follows. A population \mathcal{P} of *n* solutions is maintained. Through selection, a vector \mathcal{S} is selected from \mathcal{P} . A probability distribution over the solution space is then estimated using \mathcal{S} as a data set. New

Copyright 2009 ACM 978-1-60558-505-5/09/07 ...\$5.00.

solutions are generated by sampling the estimated probability distribution. Finally, the newly generated samples are incorporated into the population and the process repeats until a termination criterion has been satisfied.

The EDA considered here is the Adapted Maximum-Likelihood Gaussian Model Iterated Density-Estimation Evolutionary Algorithm (AMaLGaM-IDEA, or AMaLGaM for short). In AMaLGaM, the probability distribution used is the normal, also known as the Gaussian, distribution. This EDA uses maximum-likelihood estimates for the mean and the covariance matrix, estimated from the selected solutions. It has a mechanism that scales up the covariance matrix when required to prevent premature convergence on slopes. It furthermore has a mechanism that anticipates the mean shift in the next generation to speed up descent (in case of minimization) along slopes. For a more extensive description, we refer the interested reader to the literature [1].

In addition to the above base procedure, recently a parameter-free version of AMaLGaM was introduced [3]. After experimental analysis, settings were proposed for all parameters. Guidelines were developed for the minimally required population size that allows unimodal problems to be solved. On multimodal problems a restart mechanism is required to increase the probability of success. The specific restart scheme considered increases the number of solutions upon each restart by alternating between two approaches: a single run with a larger population and more parallel runs. To maximize the joint global effect of the parallel runs, their locality is increased by starting them in separate regions that are obtained from clustering the search space first. When increasing the number of parallel runs, the subpopulation size is also increased slightly so as to increase the robustness of the more localized searches.

Distribution estimation in AMaLGaM is done anew from scratch each generation. Subsequent iterations however have much in common and therefore the required population size can be reduced by incremental learning, i.e. combining the distribution estimated from \boldsymbol{S} with the distribution used in the previous generation. In iAMaLGaM a memory-decay approach is taken to this end. On unimodal problems the required population size was found to indeed be significantly reduced while at the same time requiring less function evaluations to reach the same solution quality. Results on multimodal landscapes indicated however that if memory resources are not very important, a larger base–population size helps

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

GECCO'09, July 8-12, 2009, Montréal Québec, Canada.

in optimizing multimodal problems, thus favoring the nonincremental approach. For this reason we tested both AMaL-GaM and iAMaLGaM on the BBOB benchmark.

Next to the full covariance matrix, two other versions of AMaLGaM exist that reduce the number of distribution parameters to be estimated. One version uses Bayesian factorizations to select only the most important covariances while another version allows only variances. If only a few dependencies between problem variables exist, these methods outperform the use of the full covariance matrix in asymptotic complexity for the scalability in terms of required function evaluations and required time. These restrictions however also render the EDA non-rotationally invariant and therefore less generally applicable. For this reason and for the sake of space, we do not submit these variants to the BBOB benchmark here. A closer look at the differences with the full covariance matrix can be found in [3]; BBOB benchmarks for additional variants are given in [2].

For technical completeness, pseudo-code is presented below. A note on the pseudo-code: in iAMaLGaM, for $\hat{\Sigma}(0)$ a matrix with the ML variances on the diagonal and zeros off the diagonal is used. Also, $\hat{\mu}^{\text{Shift}}(t)$ is non–existent for t = 0and for t = 1 it is $\hat{\mu}(1) - \hat{\mu}(0)$. SDR stands for standarddeviation ratio, NIS stands for no-improvement stretch.

```
(i)AMaLGaM-Free
     1 s \leftarrow 0; n^{\text{Base}} \leftarrow 17 + 3D^{1.5} (iAMaLGaM: n^{\text{Base}} \leftarrow 10D^{0.5})
    2 \text{ do}
               if (s \mod 2) = 0 then n \leftarrow (1 + s/2)n^{\text{Base}}; p \leftarrow 2^{s/2}
    3
                   else n \leftarrow 2^{1+s/2} n^{\text{Base}}; p \leftarrow 1
    5
                    Run (i)AMaLGaM with population size n and p parallel runs,
    6
                  Starting from the clustering of np randomly generated solutions into p clusters and using \eta^{\text{DEC}} \leftarrow 0.9; \eta^{\text{INC}} \leftarrow 1/\eta^{\text{DEC}}; \theta^{\text{SDR}} \leftarrow 1; \tau \leftarrow 0.35; \alpha^{\text{AMS}} \leftarrow \frac{1}{2}\tau(n/(n-1)); \delta^{\text{AMS}} \leftarrow 2; NIS<sup>MAX</sup> \leftarrow 25 + D
                    s \leftarrow s + 1
     8 while optimum not found and max. eval. not reached
(i)AMaLGaM
  1 \hspace{0.1in} \eta^{\boldsymbol{\Sigma}} \leftarrow 1; \eta^{\text{Shift}} \leftarrow 1
            (iAMaLGaM: \eta^{\Sigma} \leftarrow 1 - e^{-1.1 \lfloor \tau n \rfloor^{1.2} / D^{1.6}}; \eta^{\text{Shift}} \leftarrow 1 - e^{-1.2 \lfloor \tau n \rfloor^{0.31} / D^{0.50}})
    2 c^{\text{Multiplier}} \leftarrow 1; n^{\text{AMS}} \leftarrow \alpha^{\text{AMS}}(n-1); \text{NIS} \leftarrow 0; t \leftarrow 0
  3 do
    4
                  \boldsymbol{\mathcal{S}} \leftarrow \text{the best } \lfloor \tau n \rfloor \text{ solutions in } \boldsymbol{\mathcal{P}} \text{ (truncation selection)}
                 \begin{split} \hat{\boldsymbol{\mu}}(t) &\leftarrow \frac{1}{|\boldsymbol{s}|} \sum_{i=0}^{|\boldsymbol{s}|-1} \boldsymbol{\mathcal{S}}_i \\ \hat{\boldsymbol{\Sigma}}(t) &\leftarrow (1-\eta^{\boldsymbol{\Sigma}}) \hat{\boldsymbol{\Sigma}}(t-1) + \eta^{\boldsymbol{\Sigma}} \frac{1}{|\boldsymbol{s}|} \sum_{i=0}^{|\boldsymbol{s}|-1} (\boldsymbol{\mathcal{S}}_i - \hat{\boldsymbol{\mu}}(t)) (\boldsymbol{\mathcal{S}}_i - \hat{\boldsymbol{\mu}}(t))^T \\ \hat{\boldsymbol{\mu}}^{\text{Shift}}(t) &\leftarrow (1-\eta^{\text{Shift}}) \hat{\boldsymbol{\mu}}^{\text{Shift}}(t-1) + \eta^{\text{Shift}} (\hat{\boldsymbol{\mu}}(t) - \hat{\boldsymbol{\mu}}(t-1)) \end{split}
   5
   6
    7
                  \hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}}(t); \hat{\boldsymbol{\Sigma}} \leftarrow c^{\text{Multiplier}} \hat{\boldsymbol{\Sigma}}(t); \boldsymbol{L}\boldsymbol{L}^* \leftarrow \text{Cholesky decomp. of } \hat{\boldsymbol{\Sigma}}
   8
  9
                  \boldsymbol{\mathcal{P}}_0 \leftarrow \text{the best solution in } \boldsymbol{\mathcal{S}}
                  \begin{array}{l} & \mathcal{N} \\ \mathcal{P}_{1...n-1} \leftarrow n-1 \text{ samples from } \mathcal{N}(\hat{\mu}, \hat{\Sigma}) = \hat{\mu} + L\mathcal{N}(\mathbf{0}, I) \\ & \text{for } n^{\text{AMS}} \text{ random solutions } \mathcal{P}_j \ (1 \leq j \leq n-1) \\ & \text{do } \mathcal{P}_j \leftarrow \mathcal{P}_j + \delta^{\text{AMS}} c^{\text{Multiplier}} \hat{\mu}^{\text{Shift}}(t) \end{array} 
10
11
12
                  if any \mathcal{P}_i better than \mathcal{P}_0 (1 \le i \le n-1)
13
14
                   then
15
                          NIS \leftarrow 0
                          if c^{\text{Multiplier}} < 1 then c^{\text{Multiplier}} \leftarrow 1
16
                          \boldsymbol{x}^{\text{avg-imp}} \leftarrow \text{average of all } \boldsymbol{\mathcal{P}}_i \text{ better than } \boldsymbol{\mathcal{P}}_0 \ (1 \leq i \leq n-1)
17
                          \begin{array}{l} \text{SDR} \leftarrow \max_{0 \leq i \leq D-1} \left\{ \left| \left( \boldsymbol{L}^{-1} (\boldsymbol{x}^{\text{avg-imp}} - \hat{\boldsymbol{\mu}}) \right)_i \right| \right\} \\ \text{if SDR} > \theta^{\text{SDR}} \text{ then } c^{\text{Multiplier}} \leftarrow \eta^{\text{INC}} c^{\text{Multiplier}} \end{array} 
18
19
20
                   else
                        if c^{\text{Multiplier}} \leq 1 then NIS \leftarrow NIS + 1
if (c^{\text{Multiplier}} > 1) or (NIS \geq NIS<sup>MAX</sup>)
then c^{\text{Multiplier}} \leftarrow \eta^{\text{DEC}} c^{\text{Multiplier}}
21
22
23
                          if (c^{\text{Multiplier}} < 1) and (\text{NIS} < \text{NIS}^{\text{MAX}}) then c^{\text{Multiplier}} \leftarrow 1
24
26
                   t \leftarrow t + 1
            while opt. not found, max. eval. not reached and c^{\text{Multiplier}} > 10^{-10}
27
```

2. PARAMETERS AND OTHER SETTINGS

For initialization, a uniform sampling in $[-5, 5]^D$ was used, where D denotes the dimension of the search space. The experiments according to [5] on the benchmark functions given in [4, 6] have been conducted using the provided C-code. The AMaLGaM implementation used is also in C. A maximum of $10^6 D$ function evaluations is allowed. No changes were made to parameter-free AMaLGaM as described in [3] and as outlined above. Therefore no parameter tuning was required and the crafting effort CrE [5] is zero.

3. CPU TIMING EXPERIMENT

For the timing experiment the full covariance matrix variant for both AMaLGaM and iAMaLGaM were run with a maximum of $10^6 D$ function evaluations and restarted until 30 seconds had passed (according to Figure 2 in [5]). The experiments have been conducted on an Intel Q6600 Core2Quad 2.4 GHz processor under Fedora Linux release 10 (Cambridge). In 2, 3, 5, 10, 20 and 40 dimensions, the time in 10^{-7} seconds per function evaluation was as follows:

	2	3	5	10	20	40
AMaLGaM	1.9	2.2	3.0	5.0	10	24
iAMaLGaM	1.9	2.3	3.0	5.3	11	29

4. RESULTS AND CONCLUSION

Results from experiments according to [5] on the benchmark functions given in [4, 6] are presented in Figures 1 and 2 and in Table 1 for AMaLGaM and in Figures 3 and 4 and in Table 2 for iAMaLGaM.

Problems with weak structure appear to be the hardest for (i)AMaLGaM. Even within 10^6D evaluations the optimum cannot be found within a desirable precision, especially for larger D. The difference between AMaLGaM and iAMaLGaM is not large which supports the design of the population-size reducing incremental-learning approach used. Consistent with earlier findings, the incremental approach is better on unimodal functions, whereas the nonincremental approach is (slightly) better on multimodal functions, most likely due to the larger base population-size.

5. **REFERENCES**

- [1] P. A. N. Bosman, J. Grahl, and D. Thierens. Enhancing the performance of maximum-likelihood Gaussian EDAs using anticipated mean shift. In G. Rudolph et al., editors, *Parallel Problem Solving from Nature — PPSN X*, pages 133–134, Berlin, 2008. Springer-Verlag.
- [2] P. A. N. Bosman, J. Grahl, and D. Thierens. A parameter-free Gaussian EDA called AMaLGaM-IDEA: algorithms and benchmarks. CWI technical report (*To Appear*), 2009.
- [3] P.A.N. Bosman. On emprical memory design, faster selection of Bayesian factorizations and parameter-free Gaussian EDAs. In G. Raidl et al., editors, *Proc. of the Genetic and Evolutionary Computation Conference — GECCO-2009*, New York, New York, 2009. ACM Press. (*To Appear*).
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.
- [7] J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea. Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms. Springer-Verlag, Berlin, 2006.
- [8] M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. Springer-Verlag, Berlin, 2006.

Figure 1: AMaLGaM: Expected Running Time (ERT, \bullet) to reach $f_{opt} + \Delta f$ and median number of function evaluations of successful trials (+), shown for $\Delta f = 10, 1, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-5}, 10^{-8}$ (the exponent is given in the legend of f_1 and f_{24}) versus dimension in log-log presentation. The ERT(Δf) equals to $\#FEs(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{opt} + \Delta f$ was surpassed during the trial. The $\#FEs(\Delta f)$ are the total number of function evaluations while $f_{opt} + \Delta f$ was not surpassed during the trial from all respective trials (successful and unsuccessful), and f_{opt} denotes the optimal function value. Crosses (×) indicate the total number of function evaluations $\#FEs(-\infty)$. Numbers above ERT-symbols indicate the number of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and quadratic scaling.

f_1 in 5-D, N=15, mFE=2108 f_1 in 20-D, N=15, mF	E=32945	$f_2 \text{ in 5-D, N} = 10\%$	=15, mFE=29	41 $\int f_2 in$	20-D , N=15, m	FE=46861
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{2.4e3}$ $\frac{\Delta f}{10}$	# ERI 10%	2 6.4 e2 5.9	$\frac{ucc}{e2}$ = $\frac{\#}{15}$ = 1.4	e4 1.3e4 1.4e4	1.4e4
1 15 2.0e2 1.8e2 2.1e2 2.0e2 15 5.7e3 5.2e3 6.2e3	5.7e3 1	15 8.7e2 8.0e	2 9.5e2 8.7	e2 15 1.7	e4 1.6e4 1.7e4	1.7e4
1e-1 15 5.5e2 5.5e2 5.7e2 5.5e2 15 8.5e3 7.9e5 9.2e5 1e-3 15 7.1e2 6.7e2 7.5e2 7.1e2 15 1.4e4 1.3e4 1.5e4	1.4e4 1e-1	15 1.1e3 1.0e	3 1.2e3 1.1 3 1.7e3 1.6	e3 15 1.9 e3 15 2.4	e4 1.8e4 2.0e4 e4 2.3e4 2.5e4	2.4e4
1e-5 15 1.1e3 1.0e3 1.1e3 1.1e3 15 1.9e4 1.8e4 2.0e4	1.9e4 le-5	15 1.9e3 1.8e	3 2.0 e3 1.9	e3 15 3.0	e4 2.9e4 3.1e4	3.0e4
$ f_3 \text{ in } 5\text{-D}, N=15, \text{mFE}=2.66e6 f_3 \text{ in } 20\text{-D}, N=15, \text{mFF}=2.66e6 f_3 \text{ in } 20\text{-D}, N=15, \text{mF}=2.66e6 f_3 \text{ in } 20\text{-D}, N=$	2.0e4 1e-8 E=2.00e7	f_4 in 5-D. N=	3 2.663 2.5 =15. mFE=5.	es 15 5.8 01e6 f 4 i	e4 5.6e4 5.9e4 n 20-D. N=15.	mFE=2.00e7
$\Delta f \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}} \# \text{ ERT } 10\% 90\%$	$RT_{succ} \Delta f$	# ERT 10%	90% RT	succ # E	CRT 10% 90	% RT _{succ}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4e5 10 5.6e5 1	15 4.7e3 2.3e 2 3 3e7 1 8e	3 7.1e3 4. 7 >7e7 5	7e3 0 1. 0e6	e+0 13 $e+0$ 15 e	+0 4.5e6
$1e^{-1} 15 7.9e5 5.2e5 1.1e6 7.9e5$. le-1	0 20e-1 99e-	2 30e-1 8.	9e5 .		
1e-3 15 8.5e5 5.6e5 1.1e6 8.5e5	. 1e-3		•			•
1e-8 15 8.7e5 5.8e5 1.2e6 8.7e5	. 10-0					
f_5 in 5-D, N=15, mFE=491 f_5 in 20-D, N=15, mF	E=4545	f_{6} in 5-D, N=	15, mFE=749	8 f6 in 2	0-D, N=15, mF	E=168697
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{111 \text{ succ}}{3.0 \text{ e3}}$ $\frac{\Delta f}{10}$	15 3.6e2 3.2e2	4.0e2 3.6e	$\frac{cc}{2}$ $\frac{\#}{15}$ $2.5e$	4 2.4e4 2.6e4	2.5 e4
1 15 2.8e2 2.6e2 3.1e2 2.8e2 15 3.2e3 3.0e3 3.4e3	3.2e3 1	15 9.1e2 8.3e2	1.0e3 9.1e	2 15 3.8e	4 3.7e4 4.0e4	3.8e4
1e-1 15 2.9e2 2.7e2 3.1e2 2.9e2 15 3.3e3 3.1e3 3.5e3 1e-3 15 2.9e2 2.7e2 3.1e2 2.9e2 15 3.3e3 3.0e3 3.5e3	3.3e3 le-1 3.3e3 le-3	15 1.0e3 1.5e3 15 3.0e3 2.8e3	3.3e3 3.0e	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 5.0e4 5.4e4 4 7.9e4 8.3e4	5.2e4 8.1e4
1e-5 15 2.9e2 2.7e2 3.1e2 2.9e2 15 3.3e3 3.1e3 3.5e3	3.3e3 le-5	15 4.4e3 4.2e3	4.7e3 4.4e	3 15 1.1e	5 1.1e5 1.1e5	1.1e5
$ f \tau in 5-D, N=15, mFE=14818 f \tau in 20-D, N=15, mF$	3.3 e3 le-8 E=21017	15 6.7e3 6.4e3	5.963 5.76 =15. mFE=54	3 15 1.5e 40 fs in	5 1.5e5 1.6e5 20-D. N=15. m	1.5e5 FE=116157
$\Delta f \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}} \# \text{ ERT } 10\% 90\%$	$RT_{succ} \Delta f$	# ERT 10%	90% RT _s	ucc # EF	T 10% 90%	RT _{succ}
10 15 1.3e2 1.0e2 1.6e2 1.3e2 15 4.9e3 4.4e3 5.4e3 1 15 3.2e2 2.8e2 3.8e2 3.2e2 15 8.8e3 8.2e3 9.4e3	4.9e3 10 8.8e3 1	15 3.8e2 3.4e	2 4.1e2 3.8 3 1.8e3 1.7	e2 15 4.0 e3 15 6.8	e4 3.9e4 4.1e4 e4 6.6e4 7.0e4	4.0e4 6.8e4
le-1 15 1.4e3 5.3e2 2.3e3 1.4e3 15 1.3e4 1.2e4 1.3e4	1.3e4 le-1	15 2.6e3 2.4e	3 2.8e3 2.6	e3 15 7.7	e4 7.5e4 7.8e4	7.7e4
1e-3 15 3.7e3 1.9e3 5.5e3 3.7e3 15 1.7e4 1.6e4 1.7e4 1e-5 15 3.7e3 1.9e3 5.5e3 3.7e3 15 1.7e4 1.6e4 1.7e4	1.7e4 le-3 1.7e4 le-5	15 3.3e3 3.1e	3 3.6e3 3.3 3 4.0e3 3.8	e3 15 8.6 e3 15 9.2	e4 8.5e4 8.8e4 e4 9.0e4 9.4e4	8.6e4 9.2e4
le-8 15 4.0e3 2.2e3 5.7e3 4.0e3 15 1.8e4 1.7e4 1.9e4	1.8e4 le-8	15 4.3e3 4.0e	3 4.5 e3 4.3	e3 15 1.0	e5 9.7e4 1.0e5	1.0e5
fg in 5-D, N=15, mFE=25268 fg in 20-D, N=15, mFE	=112465	f_{10} in 5-D, N	=15, mFE=3	382 f10 i	n 20-D, N=15,	mFE=46293
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{101 \text{ succ}}{3.8 \text{ e4}}$ $\frac{\Delta f}{10}$	15 6.8e2 6.1e	2 7.6e2 6.8	Se2 15 1.	3e4 1.3e4 1.4e	4 1.3e4
1 15 2.9e3 1.6e3 4.3e3 2.9e3 15 6.7e4 6.6e4 6.8e4	6.7e4 1	15 9.2e2 8.3e	2 1.0e3 9.1	2e2 15 1.	7e4 1.6e4 1.8e	4 1.7e4
1e-1 15 3.9e5 2.5e5 5.4e5 3.9e5 15 7.5e4 7.4e4 7.6e4 1e-3 15 4.8e3 3.4e3 6.4e3 4.8e3 15 8.4e4 8.2e4 8.5e4	8.4e4 le-1	15 1.2e3 1.1e 15 1.6e3 1.4e	3 1.7e3 1.0	5e3 15 2.	$6e4 \ 2.5e4 \ 2.7e$	4 2.6e4
1e-5 15 5.3e3 3.8e3 6.9e3 5.3e3 15 8.9e4 8.8e4 9.1e4	8.9e4 le-5	15 1.9e3 1.8e	3 2.0e3 1.9	e3 15 3.	2e4 3.0e4 3.3e	4 3.2e4
$ f_{11} $ in 5-D, N=15, mFE=2549 f_{11} in 20-D, N=15, mFE	9.7e4 1e-8	f_{12} in 5-D, N=	=15, mFE=19	$209 f_{12}$	in 20-D, $N=15$,	mFE=144557
Δf # ERT 10% 90% RT _{succ} # ERT 10% 90% F	Δf	# ERT 10%	90% RT _s	ucc # E	RT 10% 909	6 RT _{succ}
10 15 3.0e2 2.8e2 3.3e2 3.0e2 15 5.1e3 4.7e3 5.4e3 1 15 5.5e2 4.9e2 6.1e2 5.5e2 15 8.3e3 7.8e3 8.8e3	5.1e3 10 8.3e3 1	15 1.1e3 8.3e2 15 1.8e3 1.2e3	1.4e3 1.1 2.5e3 1.8	e3 15 2. e3 15 2.	0e4 1.9e4 2.1e 3e4 2.1e4 2.4e	e4 2.0 e4 e4 2.3 e4
1e-1 15 7.6e2 6.9e2 8.4e2 7.6e2 15 1.2e4 1.1e4 1.2e4	1.2e4 le-1	15 3.2e3 2.3e3	4.1e3 3.2	e3 15 3.	6e4 3.3e4 3.9e	e4 3.6 e4
1e-3 15 1.2e3 1.1e3 1.3e3 1.2e3 15 1.7e4 1.6e4 1.8e4 1e-5 15 1.5e3 1.4e3 1.6e3 1.5e3 15 2.3e4 2.1e4 2.4e4	1.7e4 le-3 2.3e4 le-5	15 4.9e3 3.8e3 15 6.6e3 5.3e3	6.0e3 4.9 8.0e3 6.6	e3 15 6. e3 15 9.	4e4 6.0e4 6.7e 5e4 9.1e4 9.8e	e4 6.4e4
1e-8 15 2.0e3 1.9e3 2.2e3 2.0e3 15 3.2e4 3.0e4 3.3e4	3.2e4 1e-8	15 8.3e3 6.8e3	9.9e3 8.3	e3 15 1.	2e5 1.2e5 1.3e	e5 1.2 e5
f_{13} in 5-D, N=15, mFE=4019 f_{13} in 20-D, N=15, mF	E=70149 BT Af	f14 in 5-D, N	=15, mFE=2	892 f14	in 20-D, N=15, BT 10% 90%	mFE=42885
$\frac{25}{10} \frac{1}{15} \frac{5}{5.5e2} \frac{4.9e2}{6.1e2} \frac{6.1e2}{5.5e2} \frac{5}{15} \frac{1}{1.2e4} \frac{1}{1.1e4} \frac{1}{1.3e4}$	1.2 e4 10	15 2.0e1 1.5e	1 2.6e1 2.	Del 15 1.	4e3 1.3e3 1.5e	e3 1.4e3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.6e4 1 2.2e4 le-1	15 1.9e2 1.7e	2 2.1e2 1.1 2 3 8e2 3	9e2 15 5. 5e2 15 9	3e3 4.8e3 5.8e	e3 5.3e3
$1e^{-1}$ 10 1.2e5 1.1e5 1.3e5 1.2e5 1.2e	3.1 e4 le-1	15 8.1e2 7.5e	2 8.7e2 8.	le2 15 1.	6e4 1.5e4 1.6e	e4 1.6e4
1e-5 15 2.5e3 2.4e3 2.7e3 2.5e3 15 4.2e4 4.2e4 4.3e4 $1e-8$ 15 3.5e3 3.4e3 3.6e3 3.5e3 15 5.8e4 5.7e4 5.9e4	4.2e4 1e-5 5.8e4 1e-8	15 1.3e3 1.2e	3 1.4e3 1.3	3e3 15 2.	3e4 2.2e4 2.5e	e4 2.3e4
f_{15} in 5-D, N=15, mFE=622081 f_{15} in 20-D, N=15, mFE	E=1.12e6	f_{16} in 5-D, N	i=15, mFE=2	55129 f1	6 in 20-D, N=1	15, mFE=2.48e6
Δf # ERT 10% 90% RT _{succ} # ERT 10% 90%	$\frac{\text{RT}_{\text{succ}}}{4.7}$	# ERT 10%	90% R	r _{succ} #	ERT 10% 9	0% RT _{succ}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.7e4 10 3.0e5 1	15 8.9e3 3.3e	2 4.662 3 3 1.5e4 8	.7e2 15 .9e3 15	9.1e4 6.3e4 1.	.2e5 9.1e4
1e-1 15 1.0e5 6.1e4 1.5e5 1.0e5 15 5.3e5 4.3e5 6.3e5	5.3e5 le-1	15 3.1e4 1.9e	4 4.3e4 3	.1e4 15	4.0e5 3.0e5 5.	1e5 4.0e5
10-5 15 1.005 0.104 1.505 1.005 15 5.405 4.505 0.405 10-5 15 1.005 6.204 1.505 1.005 15 5.605 4.605 6.605	5.6e5 le-5	15 5.104 5.10 15 6.404 4.30	4 7.264 5 4 8.7e4 6	.1e4 15 .4e4 15	1.2e6 9.7e5 1.	.5e6 1.2e6
le-8 15 1.1e5 6.4e4 1.5e5 1.1e5 15 5.8e5 4.8e5 6.8e5	5.8e5 le-8	15 6.5e4 4.4e	4 8.8e4 6	.5e4 15	1.3e6 1.0e6 1.	5e6 1.3e6
$\Delta f \mid \# \text{ ERT } 10\% \ 90\% \ \text{RT}_{\text{succ}} \mid \# \text{ERT } 10\% \ 90\%$	$\Delta = 611698$ RT _{succ} Δf	# ERT 10%	1=15, mFE=9 5 90% R1	$f_{1310} = f_{18}$	in 20-D, N=13 ERT 10% 90	5, mFE=1.45e6 0% RT _{succ}
10 15 2.0e1 1.2e1 2.9e1 2.0e1 15 8.6e2 7.1e2 1.0e3	8.6e2 10	15 1.6e2 1.4e	2 1.9e2 1	6e2 15 4	1.5e3 4.0e3 5.1	e3 4.5e3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0e3 1 1.7e4 le-1	15 6.5e2 5.7e 15 7.8e3 4.1e	2 7.4e2 6. 3 1.2e4 7.	8e3 15 1	2.0e4 1.1e4 1.3 2.0e4 1.9e4 2.1	1.2e4 1e4 2.0e4
1e-3 15 1.0e4 5.5e3 1.5e4 1.0e4 15 1.4e5 8.7e4 2.0e5	1.4e5 le-3	3 15 2.2e4 1.5e	4 3.0 e4 2	2 e4 15 1	.2e5 6.5e4 1.7	7e5 1.2e5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8e5 le-5 4.7e5 le-8	15 3.7e4 3.0e 15 3.9e4 3.2e	4 4.4e4 3. 4 4.7e4 3.	7e4 15 3 9e4 15 5	3.6e5 3.1e5 4.2 5.5e5 4.7e5 6.4	2e5 3.6e5 1e5 5.5e5
f19 in 5-D, N=15, mFE=1.35e6 f19 in 20-D, N=15, mFI	E=2.00e7	f20 in 5-D, N	=15, mFE=3	.04e6 f2	in 20-D , N=1	5, mFE = 2.00 e7
$\frac{\Delta f}{10} \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}} \# \text{ ERT } 10\% 90\%$	$\frac{\text{RT}_{\text{succ}}}{7.4e2}$ $\frac{\Delta f}{10}$	# ERT 10%	90% R1	Succ #	ERT 10% 9	0% RT _{succ}
1 15 1.1e3 8.9e2 1.4e3 1.1e3 15 3.4e4 3.2e4 3.5e4	3.4e4 1	15 2.4e4 1.6e	4 3.3e4 2	.4e4 15	4.1e6 3.5e6 4.	7e6 4.1e6
1e-1 15 8.8e4 5.7e4 1.2e5 8.8e4 14 2.6e6 2.7e5 5.3e6	1.6e6 le-1 2.0e7 le-3	15 9.2e5 6.3e	5 1.2e6 9	.2e5 0	68e-2 47e-2 77	7e-2 1.8e7
1e-5 15 5.1e5 4.0e5 6.3e5 5.1e5 5 5.5e7 3.8e7 9.3e7	2.0 e7 le-5	15 9.6e5 6.4e	5 1.3e6 9	.6e5 .		
e-8 15 5.1e5 4.0e5 6.3e5 5.1e5 5 5.5e7 3.7e7 9.3e7	2.0e7 le-8	15 9.7e5 6.6e	5 1.3e6 9	.7e5 .	 	 .5 mFE-2.00-7
$\Delta f \mid \# \text{ ERT } 10\% 90\% \text{ RT}_{\text{succ}} \mid \# \text{ ERT } 10\% 90\%$	$RT_{succ} \Delta f$	# ERT 10%	= 10, mr E = 2 90% R	$\Gamma_{\text{succ}} = \begin{bmatrix} f2\\ \# \end{bmatrix}$	ERT 10% 9	0% RT _{succ}
10 15 1.2e2 9.4e1 1.6e2 1.2e2 15 2.8e4 3.9e3 5.3e4	2.8e4 10	15 2.1e2 1.7e	2 2.6e2 2	.1e2 15	3.8e3 3.3e3 4.	.3e3 3.8e3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2e7 1e-1	15 7.4e3 3.5e 15 5.5e4 2.9e	5 1.2e4 7 4 8.3e4 5	.4e3 11 .5e4 0	69e-2 69e-2 2	0e-1 4.0e4
le-3 15 6.2e4 2.5e4 1.1e5 6.2e4 9 2.2e7 1.6e7 3.2e7	1.2e7 le-3	15 7.0e4 3.7e	4 1.0e5 7	.0e4 .	· ·	· ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.201 10-5	15 7.104 3.80	4 1.0e5 7	.1 e4 . .2 e4 .		
f23 in 5-D, N=15, mFE=98806 f23 in 20-D, N=15, mFE	1.2e7 le-8	15 7.2e4 3.7e	4 1.100 /			
	1.2e7 le-8	$f_{24} \text{ in } 5-D, N$	=15, mFE=5	.01e6 f24	in 20-D, N=1	5, mFE=2.00 e7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2e7 $1e-8=5.83e6\frac{RT_{succ}}{5.6e0} \Delta f10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=15, mFE=5 90% RT 3 7.9e3 5.	$\begin{array}{c cc} .01{ m e6} & f_{24} \\ \hline succ & \# \\ 3{ m e3} & 15 \end{array}$	in 20-D, $N=1$ ERT 10% 90 6.8e6 5.2e6 8.4	5, mFE=2.00e7 $0\% RT_{succ}$ 4e6 6.8e6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 1.2e7 & 1e-8 \\ = 5.83e6 \\ \hline RT_{succ} & \Delta f \\ \hline 5.6e0 & 10 \\ 3.7e4 & 1 \\ \hline 7.6e4 & 1 \end{array}$	$\begin{array}{c} 15 & 7.2e4 & 3.7e \\ f24 & in 5-D, N \\ \# & ERT & 10\% \\ 15 & 5.3e3 & 3.0e \\ 15 & 5.3e5 & 4.5e \\ 5 & 1.2 & 7.6e \\ \end{array}$	$ \begin{array}{c} =15, \text{ mFE} = 5\\ 90\% \text{ RT}\\ 3 \ 7.9 \text{ e3} \ 5.\\ 5 \ 6.1 \text{ e5} \ 5.\\ 2 \ 2.7 \end{array} $	$\begin{array}{c ccc} .01 e 6 & f 24 \\ \underline{succ} & \# \\ 3 e 3 & 15 \\ 3 e 5 & 2 \\ 0 e 6 & 0 \end{array}$	in 20-D, N=1 ERT 10% 90 5.8e6 5.2e6 8.4 1.4e8 7.4e7 > 3	$\begin{array}{ccc} 5, \text{ mFE}{=}2.00\text{e7} \\ 5, \text{ mFE}{=}2.00\text{e7} \\ 6, 8\text{e6} \\ 6.8\text{e6} \\ 3\text{e8} \\ 2.0\text{e7} \\ 6, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 1.2e7 & 1e-8\\ s=5.83e6\\ \overline{\mathrm{RT}_{\mathrm{succ}}} & \underline{\Delta f}\\ \overline{5.6e0} & 10\\ 3.7e4 & 1\\ 7.6e4 & 1e-1\\ 4.9e5 & 1e-3 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} =15, \text{ mFE}=5\\ 90\% \text{RT}\\ \hline 3 \ 7.9e3 5.\\ 5 \ 6.1e5 5.\\ 6 \ 2.3e7 4.\\ 7 \ >7e7 5. \end{array} $	$\begin{array}{c ccc} .01e6 & f_{24} \\ \underline{succ} & \# \\ 3e3 & 15 \\ 3e5 & 2 \\ 9e6 & 0 \\ 0e6 & . \\ \end{array}$	in 20-D, N=1 ERT 10% 90 6.8e6 5.2e6 8.4 1.4e8 7.4e7 > 32e-1 90e-2 37	$\begin{array}{cccc} 5, \text{ mFE}{=}2.00\text{e7} \\ 0\% & \text{RT}_{\text{succ}} \\ 4\text{e6} & 6.8\text{e6} \\ 3\text{e8} & 2.0\text{e7} \\ e^{-1} & 7.9\text{e6} \\ \cdot & \cdot \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \textbf{f24 in 5-D, N} \\ \textbf{f24 in 5-D, N} \\ \# & \text{ERT } 10\% \\ \textbf{15 } 5.3e5 \ 4.5ei \\ 5 \ 1.3e7 \ 9.0ei \\ 2 \ 3.6e7 \ 1.9e^i \\ 1 \ 7.2e7 \ 3.5e^i \\ 1 \ 7.2e7 \ 3.5e^i \\ \end{array} $	$ \begin{array}{c} = 15, \text{ mFE} = 5\\ = 00\% \text{RT}\\ 3 7.9 \text{ e3} 5.\\ 5 6.1 \text{ e5} 5.\\ 5 2.3 \text{ e7} 4.\\ 7 > 7 \text{ e7} 5.\\ 7 > 7 5.\\ 7 $	$\begin{array}{c ccccccccc} 0.01 & e6 & f 24 \\ \hline succ & \# & \\ 3 & e3 & 15 & \\ 3 & e5 & 2 & \\ 9 & e6 & 0 & \\ 0 & e6 & & \\ 0 & e6 & & \\ 0 & e6 & & \\ \end{array}$	in 20-D, N=1 ERT 10% 90 5.8e6 5.2e6 8.4 1.4e8 7.4e7 > 23e-1 90e-2 37	$\begin{array}{cccc} 5, \text{ mFE}{=}2.00\text{e7} \\ \hline 0\% & \text{RT}_{\text{succ}} \\ \hline 4e6 & 6.8e6 \\ \hline 3e8 & 2.0e7 \\ e{-1} & 7.9e6 \\ \cdot & \cdot \\ & \cdot & \cdot$

Table 1: AMaLGaM: Shown are, for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 2: AMaLGaM: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left) or Δf . Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 100D... function evaluations (from right to left cycling black-cyan-magenta). Top row: all results from all functions; second row: separable functions; third row: misc. moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions with adequate structure; last row: multi-modal functions with weak structure. The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value.

Figure 3: iAMaLGaM: Expected Running Time (ERT, \bullet) to reach $f_{opt} + \Delta f$ and median number of function evaluations of successful trials (+), shown for $\Delta f = 10, 1, 10^{-1}, 10^{-2}, 10^{-3}, 10^{-5}, 10^{-8}$ (the exponent is given in the legend of f_1 and f_{24}) versus dimension in log-log presentation. The ERT(Δf) equals to $\#FEs(\Delta f)$ divided by the number of successful trials, where a trial is successful if $f_{opt} + \Delta f$ was surpassed during the trial. The $\#FEs(\Delta f)$ are the total number of function evaluations while $f_{opt} + \Delta f$ was not surpassed during the trial from all respective trials (successful and unsuccessful), and f_{opt} denotes the optimal function value. Crosses (×) indicate the total number of function evaluations $\#FEs(-\infty)$. Numbers above ERT-symbols indicate the number of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid lines show linear and quadratic scaling.

f1 in 5-D, N=15, mFE=1198 f1	in 20-D, N=15, mFE=13503	1	f2 in 5-E	, N=15, mFI	E=2206	f2 in 20-D, N=	15, mFE=	=22791
Δf # ERT 10% 90% RT _{succ} #	ERT 10% 90% RT _{succ}	Δf	# ERT	10% 90%	RT _{succ}	# ERT 10%	90% R	Γ _{succ}
10 15 2.7e1 2.2e1 3.3e1 2.7e1 15 1 1 15 1.2e2 1.1e2 1.2e2 1.2e2 1.5e	1.2e3 1.1e3 1.2e3 1.2e3	10	15 5.2e2	4.7e2 5.8e2	5.2e2 1 7.1e2 1	15 8.6e3 8.3e3	8.8e3 8	.6e3
1 = 13 = 1.222 = 1.122 = 1.322 = 1.222 = 13 = 13 1e-1 = 15 = 2.3e2 = 2.2e2 = 2.3e2 = 15 = 3	3.8e3 3.8e3 3.8e3 3.8e3 3.8e3	1e - 1	15 7.1e2 15 8.8e2	8.1e2 9.5e2	8.8e2 1	15 1.2e4 1.1e4	1.1e4 1 1.2e4 1	.2e4
le-3 15 4.4e2 4.2e2 4.7e2 4.4e2 15 6	6.3e3 6.2e3 6.3e3 6.3e3	$1\mathrm{e}-3$	$15 \ 1.2 e3$	$1.1 \mathrm{e}3 1.2 \mathrm{e}3$	1.2e3 1	15 1.4 e4 1.4 e4	$1.4{ m e4}$ 1	.4e4
1e-5 15 6.8e2 6.5e2 7.0e2 6.8e2 15 8	8.8e3 8.8e3 8.9e3 8.8e3	1e - 5	15 1.4e3	1.3e3 1.5e3	1.4e3 1	15 1.7e4 1.6e4	1.7e4 1	.7e4
1e-8 15 1.0e5 9.7e2 1.0e5 1.0e5 15 15 15 15 15 15 15 15 15 15 15 15 15	1.364 1.364 1.364 1.364 1.364 1.364	ie-s	15 1.7es	1.0e5 1.8e5	1.7e3 1	15 2.164 2.064	2.164 2	
$\Delta f = 4$ ERT 10% 90% RT _{succ} # E	ERT 10% 90% RT_{succ}	Δf	# ERT	10% 90%	RT _{succ}	# ERT 10%	6 90%	RT _{succ}
10 15 9.8e2 4.4e2 1.5e3 9.8e2 15 1	.9e5 1.5e5 2.3e5 1.9e5	10	15 3.1e3	1.9e3 4.4e3	3.1 e3	0 13e+0 12e+	0 15e + 0	7.9e6
1 15 5.4e4 3.6e4 7.3e4 5.4e4 2 1	.3e8 7.1e7 > 3e8 2.0e7	1	$2 \ 3.4 \mathrm{e7}$	$1.7 \mathrm{e}7 > 7 \mathrm{e}7$	2.8e6			
1e-1 15 2.9e5 1.5e5 4.5e5 2.9e5 0 2	20e-1 99e-2 40e-1 6.3e6	1e - 1	$0 20e^{-1}$	99e-2 20e-1	7.1e5		•	
1e-5 15 3.1e5 1.6e5 4.7e5 3.1e5		1e-5 1e-5						
1e-8 15 3.1e5 1.6e5 4.9e5 3.1e5 .	1	$1\mathrm{e}-8$						
f_{5} in 5-D, N=15, mFE=232 f_{5}	5 in 20-D, N=15, mFE=689		f6 in 5-D	, N=15, mFE	=4600 f	6 in 20-D, N=	15, mFE=6	68285
Δf # ERT 10% 90% RT _{succ} #	ERT 10% 90% RT _{succ}	Δf	# ERT	10% 90%	RT _{succ} #	ERT 10%	90% RT	succ
10 15 7.1e1 6.2e1 7.9e1 7.1e1 15 1 15 1 1e2 9 4e1 1 2e2 1 1e2 15	4.0e2 3.7e2 4.3e2 4.0e2 4.6e2 4.3e2 4.8e2 4.6e2	10 1	15 2.4e2 2	2.1e2 2.7e2	2.4e2 13 5.0e2 11	5 7.0e3 6.8e3	7.2e3 7.	0e3
1e-1 15 1.2e2 1.0e2 1.3e2 1.2e2 15	4.6e2 4.4e2 4.8e2 4.6e2 1e	le-1	15 8.9e2 7	7.9e2 9.9e2	8.9e2 1	5 1.8e4 1.7e4	1.8e4 1.	.8e4
1e-3 15 1.2e2 1.0e2 1.3e2 1.2e2 15	4.6e2 4.4e2 4.8e2 4.6e2 1e	le-3 1	15 1.6e3 1	$1.5\mathrm{e}3$ $1.7\mathrm{e}3$	1.6e3 1	5 2.9 e4 2.7 e4	3.0e4 2.	9e4
1e-5 15 1.2e2 1.0e2 1.3e2 1.2e2 15	4.6e2 4.4e2 4.8e2 4.6e2 1e	le-5 1	15 2.3e3 2	2.1e3 2.4e3	2.3e3 1	5 4.0e4 3.8e4	4.2e4 4.	0e4
1e-8 15 1.2e2 1.0e2 1.3e2 1.2e2 15	4.6e2 4.4e2 4.8e2 4.6e2 16	1e-8 1	15 3.5e3 3	N-15 mFF	3.563 [1:	5 5.664 5.464	5.864 5. -15 mFF.	064
$\Delta f = 4$ ERT 10% 90% RT _{succ} # H	ERT 10% 90% RT_{succ}	Δf	# ERT	10% 90%	RTence	# ERT 10%	90% F	AT _{succ}
10 15 8.9e1 7.6e1 1.0e2 8.9e1 15 2	2.3e3 2.3e3 2.4e3 2.3e3	10 3	15 2.5e2 2	2.3e2 2.7e2	2.5 e2	15 1.7e4 1.6e4	$1.7{ m e4}$	1.7 e4
1 15 6.3e2 2.6e2 1.0e3 6.3e2 15 4	4.3e3 4.0e3 4.6e3 4.3e3	1	15 2.1e3	1.1e3 3.0e3	2.1e3	15 3.4e4 2.9e4	$4.0 \mathrm{e}4$	$3.4\mathrm{e4}$
1e-1 15 3.5e3 2.7e3 4.3e3 3.5e3 15 9	9.5e3 6.8e3 1.2e4 9.5e3 1	e-1	15 2.6e3 1	1.6e3 3.6e3	2.6e3	15 3.8e4 3.3e4	4.4e4	3.8e4
1e-5 15 5.8e3 4.5e3 7.5e3 5.8e3 15 2 1e-5 15 5.8e3 4.5e3 7.5e3 5.8e3 15 2	2.2e4 1.5e4 2.9e4 2.2e4 1 2.2e4 1.5e4 2.9e4 2.2e4 1	1e-5	15 3.0e5 . 15 3.3e3 9	2.1e3 4.0e3 2.4e3 4.4e3	3.0e3	15 4.2e4 3.7e4 15 4 5e4 3 9e4	4.7e4 5.0e4	4.2e4 4.5e4
1e-8 15 6.1e3 4.7e3 7.8e3 6.1e3 15 2	2.3e4 1.6e4 3.0e4 2.3e4 1	1e-8	15 3.7e3	2.7e3 4.7e3	3.7e3	15 4.9e4 4.3e4	5.4e4	4.9e4
f9 in 5-D, N=15, mFE=13398 f9 in	n 20-D, N=15, mFE=121138	i i	f10 in 5-	D , N=15, mF	E=2458	f10 in 20-D, 1	N = 15, mF	E=23694
Δf # ERT 10% 90% RT _{succ} # E	ERT 10% 90% RT _{succ}	Δf	# ERT	10% 90%	RT _{succ}	# ERT 10%	90%	RT _{succ}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.7e4 1.6e4 1.8e4 1.7e4	10	15 6.3e2	5.6e2 7.1e2	6.3e2	15 9.5e3 9.1e3	9.8e3	9.5e3
1 15 2.8e3 1.7e3 3.9e3 2.8e3 15 3. 1e-1 15 3.3e3 2.1e3 4.5e3 3.3e3 15 3.	.4e4 2.9e4 4.0e4 3.4e4 8e4 3.3e4 4.4e4 3.8e4 1	1e - 1	15 8.1e2 15 1.0e3	7.2e2 9.1e2 8.9e2 1.1e3	8.1e2 1.0e3	15 1.1e4 1.1e4 15 1.2e4 1.2e4	. 1.1e4 1 1 3 e4	1.1e4 1.2e4
1e-3 15 3.8e3 2.6e3 5.1e3 3.8e3 15 4.	.2e4 3.7e4 4.8e4 4.2e4 1	1e-3	15 1.3e3	1.2e3 1.4e3	1.3e3	15 1.5e4 1.5e4	1.5e4	1.5e4
1e-5 15 4.1e3 2.9e3 5.4e3 4.1e3 15 4.	.5e4 3.9e4 5.1e4 4.5e4 1	1e-5	$15 \ 1.5 \ e3$	1.4e3 1.6e3	1.5e3	15 1.8e4 1.7e4	1.8e4	1.8 e4
1e-8 15 4.5e3 3.3e3 5.8e3 4.5e3 15 4.	.9e4 4.3e4 5.5e4 4.9e4 1	1e-8	$15 \ 1.9 e3$	1.8e3 2.0e3	1.9e3	15 2.1e4 2.1e4	£ 2.2e4	2.1 e4
f_{11} in 5-D, N=15, mFE=2248 f_{11}	in 20-D, N=15, mFE=18491		f12 in 5-	D, N=15, mI	FE=7372	f_{12} in 20-D,	N=15, mF	E=67898
$\Delta f = \frac{\Delta f}{4} = \frac{2}{2} \frac{4}{2} \frac{10}{2} \frac{15}{4} \frac{10}{2} \frac{10}{2} \frac{15}{4} \frac{10}{2} 1$	4e3 4 2e3 4 7e3 4 4e3	$\frac{\Delta f}{10}$	# ERT	10% 90% 6.6e2 8.4e2	7 5 e2	# ERT 10%	90%	RI succ
1 15 7.8e2 6.9e2 8.6e2 7.8e2 15 6.	.0e3 5.7e3 6.3e3 6.0e3	1	15 1.1e3	1.0e3 1.3e3	1.1e3	15 1.3e4 1.0e4	4 1.5e4	1.3e4
1e-1 15 9.4e2 8.6e2 1.0e3 9.4e2 15 7.	.2e3 6.9e3 7.5e3 7.2e3	$1\mathrm{e}-1$	$15 \ 1.5 \mathrm{e3}$	$1.3 \mathrm{e}3 1.6 \mathrm{e}3$	1.5 e3	$15 \ 2.0 \ e4 \ 1.7 \ e4$	1 2.2e4	$2.0\mathrm{e4}$
1e-3 15 1.2e3 1.1e3 1.3e3 1.2e3 15 9.	.8e3 9.5e3 1.0e4 9.8e3	1e-3	15 2.2e3	1.9e3 2.4e3	2.2e3	15 3.2e4 3.0e4	4 3.5e4	3.2e4
1e-5 15 1.5e3 1.4e3 1.6e3 1.5e3 15 1. 1e-8 15 1.8e3 1.7e3 1.9e3 1.8e3 15 1	.2e4 1.2e4 1.3e4 1.2e4	1e - 5 1e - 8	15 2.8e3	2.4e3 3.1e3	2.8e3	15 4.4e4 4.2e4	1 4.7e4	4.4e4
f_{12} in 5-D N-15 mFE-3025 f12 i	in 20-D N=15 mEE=40034	16-0	f14 in 5-	D N=15 mF	3.063 FE-1975	f14 in 20-D	N = 15 mF	E-20254
$\Delta f = 4$ ERT 10% 90% RT _{succ} # E	ERT 10% 90% RT_{SUCC}	Δf	# ERT	10% 90%	RT _{succ}	# ERT 10%	90%	RT _{succ}
10 15 3.5e2 3.3e2 3.6e2 3.5e2 15 5.	.6e3 5.6e3 5.7e3 5.6e3	10	$15 \ 1.3 \mathrm{e1}$	9.9e0 1.7e1	1.3e1	15 7.9e2 7.5e2	8.4e2	7.9e2
1 15 5.8e2 5.5e2 6.0e2 5.8e2 15 8.	.4e3 8.2e3 8.5e3 8.4e3	1	15 1.1e2	9.7e1 1.2e2	1.1e2	15 2.2e3 2.2e3	3 2.3e3	2.2e3
1e-1 15 8.1e2 7.8e2 8.5e2 8.1e2 15 1.	.2e4 1.1e4 1.2e4 1.2e4 1.2e4	1e - 1	15 2.5e2	2.3e2 2.7e2	2.5e2	15 3.8e3 3.8e3	3 3.9e3	3.8e3
1e-5 15 1.8e3 1.7e3 1.8e3 1.8e3 1.8e3 15 2.	.4e4 2.4e4 2.5e4 2.4e4	1e - 5 1e - 5	15 9.1e2	8.6e2 9.6e2	9.1e2	15 1.1e4 1.1e4	4 1.2e4	1.1e4
1e-8 15 2.5e3 2.4e3 2.6e3 2.5e3 15 3.	.3e4 3.2e4 3.4e4 3.3e4	$1\mathrm{e}-8$	$15 \ 1.5 \mathrm{e3}$	$1.4 \mathrm{e}3 1.6 \mathrm{e}3$	$1.5\mathrm{e}3$	$15 \ 1.8 \mathrm{e4} \ 1.7 \mathrm{e4}$	1.8e4	$1.8 \mathrm{e4}$
f15 in 5-D, N=15, mFE=485369 f15 in	n 20-D , N=15, mFE=4.85e6		f16 in 5-	D, N=15, mI	FE=223478	f16 in 20-D	, N=15, n	aFE=1.58e7
Δf # ERT 10% 90% RT _{succ} # EF	RT 10% 90% RT _{succ}	Δf	# ERT	10% 90%	RT _{succ}	# ERT 10	<u>% 90%</u>	RTsucc
1 15 6.6e4 4.6e4 8.6e4 6.6e4 15 2.0	0e6 1.7e6 2.4e6 2.0e6	1	15 2.3e2 15 5.3e3	2.5e3 8.2e3	2.3e2 5.3e3	15 5.0e5 4.1	es 5.2es	4.6e4
1e-1 15 1.8e5 1.4e5 2.2e5 1.8e5 15 2.3	3e6 2.0e6 2.7e6 2.3e6	1e-1	15 1.5e4	1.1e4 1.9e4	1.5 e4	15 1.0e6 7.6	3e5 1.3e6	1.0e6
1e-3 15 1.8e5 1.4e5 2.3e5 1.8e5 15 2.4	4e6 2.0e6 2.7e6 2.4e6	$1\mathrm{e}-3$	$15 \ 6.1 \mathrm{e4}$	$4.7 \mathrm{e4}$ $7.6 \mathrm{e4}$	6.1 e4	15 5.4e6 4.1	.e6 6.7e6	5.4e6
le-5 15 1.8e5 1.4e5 2.3e5 1.8e5 15 2.4	4e6 2.0e6 2.7e6 2.4e6	1e - 5	15 7.5e4	5.7e4 9.6e4	7.5e4	15 5.6e6 4.3	e6 7.0e6	5.6e6
1e-8 15 1.8e5 1.4e5 2.3e5 1.8e5 15 2.4	4eb 2.1eb 2.8eb 2.4eb	1e-8	15 8.3e4	0.0e4 1.0e5	8.3e4	15 5.7e6 4.8	N 15	5.7eb
$\Delta f = \frac{117}{4} \text{ mm} - 5 m$	120-D, N=15, mr E=2.3766 RT 10% 90% RT _{succ}	Δf	$\frac{18}{4}$ ERT	J, N = 15, mr 10% 90%	RT _{succ}	# ERT 10	N = 15, m N = 90%	RTsucc
10 15 1.4e1 1.1e1 1.7e1 1.4e1 15 4.1	le2 3.3e2 4.8e2 4.1e2	10	15 1.1e2 9	9.6e1 1.2e2	1.1 e2	15 1.7e3 1.6	e3 1.8e3	1.7e3
1 15 2.5e2 2.1e2 2.9e2 2.5e2 15 3.0	0e3 2.9e3 3.1e3 3.0e3	1	15 3.8e2 3	3.6e2 4.0e2	3.8e2	15 4.9e3 4.7	e3 5.2e3	4.9e3
le-1 15 3.5e3 1.0e3 5.9e3 3.5e3 15 6.1	Le3 6.0e3 6.3e3 6.1e3 1	1e-1	15 5.6e3 3	3.5e3 7.7e3	5.6e3	15 4.6e4 2.4	e4 7.0e4	4.6e4
1e-5 15 1.1e4 1.1e4 2.5e4 1.1e4 10 1.5 1e-5 15 4.0e4 3.0e4 5.0e4 4.0e4 15 1.6	3e6 1.4e6 1.8e6 1.6e6 1	1e-5	15 3.4e4 2	2.6e4 4.2e4	3.4e4	15 2.1e6 1.9	e6 2.2e6	2.1e6
1e-8 15 5.4e4 4.4e4 6.5e4 5.4e4 15 1.9	9e6 1.8e6 2.0e6 1.9e6 1	1e-8	$15 \ 6.1 \mathrm{e4}$	4.9e4 7.2e4	$6.1 \mathrm{e4}$	15 2.7e6 2.3	e6 3.1e6	2.7e6
f_{19} in 5-D, N=15, mFE=3.20e6 f_{19} in	n 20-D , N=15, mFE=2.00e7		f20 in 5-	D, N=15, mI	FE=1.89e6	f20 in 20-D	, N=15, m	$_{1FE=2.00e7}$
Δf # ERT 10% 90% RT _{succ} # EF	RT 10% 90% RT _{succ}	Δf	# ERT	10% 90%	RT _{succ}	# ERT 10	<u>% 90%</u>	RT _{succ}
1 15 1 1e3 8 9e2 1 4e3 1 1e3 14 1 8	6e2 4.1e2 5.0e2 4.6e2 8e6 2.0e4 3.7e6 1.8e6	10	15 5.1e1 15 2.6e4	4.6e1 5.7e1 1 7e4 3 4e4	5.1ei 2.6e4	13 1 1e7 8 6	e3 1.2e3	1.1e3 9.4e6
1e-1 15 9.0e4 5.2e4 1.3e5 9.0e4 9 1.5	5e7 9.8e6 2.3e7 1.0e7	1e - 1	15 9.4e5	7.6e5 1.1e6	9.4e5	0 88e-2 61e	e-2 11e-1	1.0e7
1e-3 15 1.4e6 1.1e6 1.8e6 1.4e6 0 72e	e-3 40e-3 63e-2 4.5e6	$1\mathrm{e}-3$	$15 \ 9.7 \mathrm{e5}$	7.8e5 1.2e6	9.7e5			
1e-5 15 1.4e6 1.1e6 1.8e6 1.4e6 .		1e - 5	15 9.8e5	7.9e5 1.2e6	9.8e5		•	
f_{01} in 5-D N=15 mPF=216202		re-8	10 1.000	0.000 1.200 D N-15 T	1.Ueb 7E-333304		N-15 -	
$\Delta f = \begin{bmatrix} 121 & \text{m} & \text{s}-\text{D}, & \text{m}=15, & \text{m}FE=210292 \\ \# & \text{ERT} & 10\% & 90\% & \text{RT}_{\text{succ}} \end{bmatrix} = \begin{bmatrix} 121 & \text{m} \\ \# & \text{ERT} \end{bmatrix}$	RT 10% 90% RTauce	Δf	# ERT	ν , $n=15$, mi 10% 90%	н=333364 RTence	= 122 in 20-L = 4 ERT = 10	0% = 15, m	RTence
10 15 9.0e1 7.2e1 1.1e2 9.0e1 15 5.8	8e3 1.6e3 1.0e4 5.8e3	10	15 1.3e2	1.0e2 1.5e2	1.3e2	15 3.8e3 1.6	6.0e3	3.8e3
1 15 3.1e4 1.5e4 4.9e4 3.1e4 14 4.4	4e6 2.6e6 6.5e6 3.9e6	1	$15 \ 8.3 e3$	5.4e3 1.1e4	8.3e3	15 2.4e6 1.5	e6 3.4e6	$2.4{ m e6}$
1e-1 15 3.7e4 2.1e4 5.5e4 3.7e4 13 7.6	6e6 4.6e6 1.1e7 5.4e6	1e-1	15 3.8e4	1.5e4 6.4e4	3.8e4	0 69e-2 69	≥-2 69e-2	7.9e5
10-3 10 3.864 2.264 0.764 3.864 13 7.7 10-5 15 3.864 2.164 5.664 3.864 12 8 5	7e0 4.0e0 1.1e7 5.4e6 1 5e6 5.0e6 1.3e7 5.2e6	1e-3	15 4.2e4	1.7e4 6.9e4	4.2e4 4.2e4			
1e-8 15 3.9e4 2.2e4 5.8e4 3.9e4 12 8.6	6e6 4.9e6 1.3e7 5.3e6	1e-8	15 4.3e4	1.8e4 6.8e4	4.3 e4			
f23 in 5-D, N=15, mFE=158684 f23 in	in 20-D, N=15, mFE=6.43e6	i i	f24 in 5-	D , N=15, mI	FE=5.01e6	f24 in 20-D	, N=15, n	1FE=2.00e7
Δf # ERT 10% 90% RT _{succ} # EI	RT 10% 90% RT _{succ}	Δf	# ERT	10% 90%	RT _{succ}	# ERT 10	% 90%	RT _{succ}
10 15 7.7e0 4.7e0 1.1e1 7.7e0 15 6.0	UeU 4.3e0 7.7e0 6.0e0	10	15 5.1e3	3.5e3 6.8e3	5.1e3	15 3.8e6 3.2	e6 4.4e6	3.8e6
1 10 4.003 2.303 3.703 4.003 15 8.8 10-1 15 3.004 1.904 4.204 3.004 15 1 1	0e5 0.2e5 9.4e5 8.8e3 1e5 6.9e4 1.5e5 1.1e5	1e-1	10 4.7e5 5 1.4e7	9.2e6 2.5e7	4.7e5 4.2e6	0 21e-1 13e	:-1 <i>29e-1</i>	1.807
1e-3 15 3.7e4 2.6e4 4.9e4 3.7e4 15 2.5	5e6 2.0e6 3.1e6 2.5e6	1e-3	1 7.2e7	3.4e7 >7e7	5.0e6			
1e-5 15 3.8e4 2.6e4 5.1e4 3.8e4 15 2.7	7e6 2.2e6 3.2e6 2.7e6	$1\mathrm{e}-5$	$1 7.2 \mathrm{e7}$	$3.4{ m e7}$ >7 e7	5.0e6			
1e-8 15 4.0e4 2.8e4 5.2e4 4.0e4 15 2.7	7e6 2.2e6 3.3e6 2.7e6	1e-8	1 7.2 e7	$3.4{ m e7} > 7{ m e7}$	5.0e6	· · ·		

Table 2: iAMaLGaM: Shown are, for a given target difference to the optimal function value Δf : the number of successful trials (#); the expected running time to surpass $f_{opt} + \Delta f$ (ERT, see Figure 1); the 10%-tile and 90%-tile of the bootstrap distribution of ERT; the average number of function evaluations in successful trials or, if none was successful, as last entry the median number of function evaluations to reach the best function value (RT_{succ}). If $f_{opt} + \Delta f$ was never reached, figures in *italics* denote the best achieved Δf -value of the median trial and the 10% and 90%-tile trial. Furthermore, N denotes the number of trials, and mFE denotes the maximum of number of function evaluations executed in one trial. See Figure 1 for the names of functions.

Figure 4: iAMaLGaM: Empirical cumulative distribution functions (ECDFs), plotting the fraction of trials versus running time (left) or Δf . Left subplots: ECDF of the running time (number of function evaluations), divided by search space dimension D, to fall below $f_{opt} + \Delta f$ with $\Delta f = 10^k$, where k is the first value in the legend. Right subplots: ECDF of the best achieved Δf divided by 10^k (upper left lines in continuation of the left subplot), and best achieved Δf divided by 10^{-8} for running times of D, 10D, 100D... function evaluations (from right to left cycling black-cyan-magenta). Top row: all results from all functions; second row: separable functions; third row: misc. moderate functions; fourth row: ill-conditioned functions; fifth row: multi-modal functions with adequate structure; last row: multi-modal functions with weak structure. The legends indicate the number of functions that were solved in at least one trial. FEvals denotes number of function evaluations, D and DIM denote search space dimension, and Δf and Df denote the difference to the optimal function value.