
Direction Matters in High-Dimensional Optimisation

Cara MacNish, Member, IEEE, Xin Yao, Fellow, IEEE

Abstract— Directional biases are evident in many benchmark-
ing problems for real-valued global optimisation, as well as
many of the evolutionary and allied algorithms that have been
proposed for solving them. It has been shown that directional
biases make some kinds of problems easier to solve for similarly
biased algorithms, which can give a misleading view of algorithm
performance.

In this paper we study the effects of directional bias for high-
dimensional optimisation problems. We show that the impact of
directional bias is magnified as dimension increases, and can in
some cases lead to differences in performance of many orders of
magnitude.

We present a new version of the classical evolutionary pro-
gramming algorithm, which we call unbiased evolutionary pro-
gramming (UEP), and show that it has markedly improved per-
formance for high-dimensional optimisation.

I. INTRODUCTION

Many of the problems used to benchmark real-valued

global optimisation algorithms are subject to biases [1], which

may in turn give misleading results for the algorithms used

to solve them. An example that has shown significant per-

formance differences is directional bias, most commonly in

the form of axial bias, where features of a problem surface

are aligned with the Cartesian co-ordinate system in which

it is defined. Some solution algorithms are able to exploit

this alignment. It has been shown in [2], [3], for example,

that traditional bitstring encoded genetic algorithms show

improved performance on functions with axial biases, and that

performance deteriorates when the function is rotated with

respect to the co-ordinate system.

An extreme example of directional bias is problems that are

linearly separable. An n-dimensional function f : Rn �→ R
is linearly separable iff:

f(x1, . . . , xn) =

n∑
i=1

fi(xi)

for some fi (which may be non-linear), that is it can be

defined as a sum of functions of the individual variables.

More generally, a function can be defined as decomposable

or separable [4] iff:

arg min
x1,...,xn

f(x1, . . . , xn) =(
arg min

x1

f(x1, . . .), . . . , arg min
xn

f(. . . , xn)
)

The separability of a problem has a significant impact on

algorithm performance.

Cara MacNish is with the School of Computer Science & Soft-
ware Engineering, University of Western Australia, Nedlands 6009, Aus-
tralia (cara@csse.uwa.edu.au). Xin Yao is with the School of Com-
puter Science, University of Birmingham, Birmingham B15 2TT, U.K
(x.yao@cs.bham.ac.uk).

In this paper we study the effects of directional bias for

high-dimensional optimisation problems by examining vari-

ants of a classical evolutionary programming algorithm [5],

[6], [7]. Following [8] we are particularly interested in the

range 100 to 1000 dimensions, although many of the trends

in our results continue to higher dimensions.

We study two primary variants of the classical algorithm.

The first is designed to exploit separability, and demonstrate

that such high-dimensional problems can be beneficially re-

duced to a number of 1-dimensional problems. This highlights

the synergy gains that a more “generalist” algorithm needs to

make to outperform this reductionist approach.

The second is a new algorithm designed to evolve with-

out directional bias. We show that this leads to significant

performance improvements over the classical algorithm, in

some cases several orders of magnitude within the range of

dimensions studied.

In order to further elucidate the sizeable difference in

performance between the algorithms, we additionally exam-

ine three “intermediate” algorithms that share features of

the primary algorithms. We find, however, that the unbiased

algorithm continues to significantly outperform the others on

non-separable problems, and all but the reductionist algorithm

on separable problems, at high dimensions.

The algorithms studied in this paper are described in Sec-

tion II. The problem set used to study the algorithms is taken

from [8], and is briefly described in Section III. Section IV

summarises the main results of the study and discusses their

implications. The paper is concluded in Section V.

II. ALGORITHMS

In this paper we are concerned with bounded, constraint-

free, real-valued optimisation. A problem is a pair (S, f)
where S ⊆ Rn is a bounded set on Rn, and f : S �→ R is

an n-dimensional fitness function. Without loss of generality

we assume all problems are stated as minimisation problems.

Ideally our goal is to find a point xmin ∈ S such that f(xmin)
is a global minimum on S, that is

∀x ∈ S : f(xmin) ≤ f(x).

In practice, the goal of our algorithm will be to find the

smallest value (closest to xmin) that it can before reaching

a stopping criterion.

In the following we assume, as specified in [8], that the

stopping criterion for the algorithms is a specified maximum

number of fitness function evaluations, Emax.

Following common practice we will refer to a point x

as an individual, and a set of individuals as a population.

When we use information in an individual to generate a

new individual, we refer to this as mutation, with the former

2372

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

individual constituting the parent and the latter the offspring.

Choosing a new population from a set of parents and offspring

is known as selection.

A. Overview of the Algorithms

Our aim is to investigate the effects of directional biases

as they apply to high-dimensional problems, and to see how

they interact with properties of the optimisation landscapes,

in particular separability and modality. To achieve this we use

as our “standard” a simple and well-known evolutionary pro-

gramming algorithm which mutates real-valued vectors using

normally distributed random deviates [5], [6]. We will refer to

this as Classical Evolutionary Programming (CEP) after [7].

The CEP algorithm is also self-adaptive — as well as mutating

the objective variables it also mutates the standard deviations

which apply to them. Offspring are chosen using tournament

selection. The algorithm is provided in Subsection II-B.

Of the seven problems specified in [8], three are separa-

ble. Our second standard algorithm is designed to exploit

this property. Separability ensures that each of the variables

can be solved independently with the others fixed — if the

minimum is found for each independent variable then the

overall minimum has been determined. Other authors have

noted that such problems are more easily solved by certain

kinds of algorithms [2], [3]. However this issue is particularly

relevant to high-dimensional optimisation, since it allows us

to completely avoid the complexity brought about by the high-

dimensionality. We simply solve each variable in turn, while

arbitrarily fixing all the others. The trade-off is that we have

fewer evaluations available for each variable — assuming the

evaluations are shared equally between variables, each can be

allocated only Emax/n evaluations.

The algorithm, which we denote Independent Variable EP

(IVEP), is described in Subsection II-C. The IVEP algorithm

provides a good benchmark for the separable problems — for

an algorithm to beat it, it must be able to achieve some “syn-

ergy” between the variables that outweighs the complexity of

solving in higher dimensions. We expect this to be rare on

separable problems.

Our third primary algorithm is a new algorithm designed to

address the inherent axial bias of CEP. Like many evolutionary

approaches, CEP is based on a “genotype” that encodes the

information in an individual in terms of components (or unit

vectors) in the axial directions of a Cartesian co-ordinate

system. These values are mutated in axial directions and then

combined to give the “phenotype”. This has the effect of

biasing the phenotype. As a very simple example of this,

consider an individual (point) at the origin of a Cartesian co-

ordinate system. Assume we generate an offspring by adding a

uniformly distributed random deviate between 0 and 1 in each

co-ordinate direction. An equivalent way to say this is that we

multiply each axial unit vector, or versor (the genotypes), by

a random deviate and obtain an offspring by vector addition

(the phenotype). If the resulting offspring were to fall on one

of the axes, it would have a maximum displacement of 1 from

the parent. If, on the other hand, the offspring were to fall

on the diagonal between the axes, it would have a maximum

displacement of
√

2. It also follows that the density of points

falling along the diagonal is lower than that on the axis.

The directional biases become more extreme as dimension

increases. In the n-dimensional case the ratio of maximum

“step size” along the axes to maximum step size on the diago-

nal grows with
√

n. The issue of step size in high dimensions

is in fact a very interesting topic in its own right and includes

additional affects which we do not have space to address in

the present work.

To avoid the axial biases we construct an algorithm, called

Unbiased EP (UEP), in which the genotype mutations are

encoded as a magnitude and n − 1 angles, ensuring step

sizes in all directions are (on average) equal. The angles are

chosen from uniform distributions, ensuring that all directions

are selected with equal probability. The magnitude is mutated

with a Gaussian distribution. The algorithm is described in

Subsection II-D.

The algorithms in Subsections II-E to II-G are derivatives of

the three primary algorithms aimed at reducing the differences

between them and thereby isolating the causes of differences

in performance.

B. Classical Evolutionary Programming (CEP)

The classical evolutionary programming algorithm pro-

ceeds as follows:

1) Generate an initial population of p individuals, where

each individual is a pair of real-valued vectors (xi,σi),
i = 1, . . . , p. Each xi represents an n-dimensional

vector of objective variables. Each σi represents an n-

dimensional vector of standard deviations.

Choose each element xi(j) of xi, j = 1, . . . , n, ran-

domly from a uniform distribution between the problem

bounds. Set each element σi(j) of σ, j = 1, . . . , n, to

the value σinitial.

Set the maximum number of generations, kmax =
Emax/p, and the current generation, k = 1.

2) Evaluate the fitness score of each individual (xi,σi)
according to the fitness function f(xi).

3) Each parent (xi,σi) creates a single offspring (x′

i,σ
′

i)
as follows:

x′

i(j) =xi(j) + Nij(0, σi(j)) (1)

σ′

i(j) =σi(j)e
τ ′Ni(0,1)+τNij(0,1) (2)

where xi(j), x′

i(j), σi(j) and σ′

i(j) denote the j-th

components of vectors xi, x′

i, σi and σ′

i respectively.

N(μ, σ) denotes a normally distributed random number

with mean μ and standard deviation σ. Ni indicates that

the random number is generated anew for each value of

i, while Nij is generated anew for each value of i and j.

The factors τ and τ ′ are commonly set to (
√

2
√

n)−1

and (
√

2n)−1 [5], [6].

4) Calculate the fitness of each offspring (x′

i, σ′

i).
5) Conduct pairwise comparison over the union of parents

(xi, σi) and offspring (x′

i, σ′

i), i = 1, . . . , n. For

each individual, q opponents are chosen uniformly at

random from all the parents and offspring. For each

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2373

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

comparison, if the individual’s fitness is no smaller than

the opponent’s, it receives a “win”.

6) Select the p individuals out of (xi, σi) and (x′

i, σ′

i)
that have the most wins to be the parents of the next

generation.

7) Set k ← k + 1. Stop if the halting criterion (k = kmax)

is satisfied, otherwise go to Step 3.

C. Independent Variable EP (IVEP)

IVEP is designed as closely as possible to CEP, except that

it solves each variable separately. The algorithm simply calcu-

lates the number of evaluations available for each dimension,

and then uses CEP to solve for that dimension while mutations

in other dimensions are set to zero.

1) Generate an initial population of p individuals as per

CEP Step 1.

2) Evaluate the fitness of the initial population as per CEP

Step 2.

3) Set the current dimension, d = 1. Set the number of

generations per dimension, kd,max = Emax/p/n.

4) If d > n halt, otherwise set:

σ(i, j) =

{
σinitial j = d
0 otherwise

for i = 1, . . . , p, j = 1, . . . , n. Set k = 1.

5) Create a single offspring for each parent as per CEP

Step 3. (Note that only xd will be mutated due to the

zeros in σ.)

6) Calculate the fitness of each offspring (x′

i, σ′

i) as per

CEP Step 4.

7) Conduct pairwise comparison as per CEP Step 5.

8) Select the p best individuals for the next generation as

per CEP Step 6.

9) Set k ← k + 1. If k = kd,max set d ← d + 1 and go to

Step 4, otherwise continue from Step 6.

D. Unbiased EP (UEP)

UEP differs from CEP in the way that mutations are per-

formed. Rather than generating Gaussian deviates in axial

directions, a set of angles is randomly generated. These are

resolved into a direction vector in the co-ordinate system,

which is then multiplied by a Gaussian deviate.

1) Generate an initial population of p individuals, where

each individual is a triple (xi,φi, σi), i = 1, . . . , p. xi

represents an n-dimensional vector as in CEP, randomly

initialised in the same way. φ represents an (n − 1)-

dimensional vector of angles, initialised randomly from

a uniform distribution between 0 and 2π, and σi repre-

sents a standard deviation, initially set to to the value

σinitial.

Set the maximum number of generations, kmax =
Emax/p, and the current generation k = 1.

2) Evaluate the fitness score of each individual as per CEP

Step 2.

3) Create a set of p offset vectors, Δxi, i = 1, . . . , p, as

follows:

a) For each value of i, set prevSin = 1. Then for

each value of j, j = 1, . . . , n − 1, set:

Δxi(j) = cos(φi(j)) × prevSin

prevSin ← sin(φi(j)) × prevSin.

Finally set Δxi(n) = prevSin .

b) Randomly permute the elements of Δxi. This is

necessary because the above efficient method of

resolving angles into Cartesian components gener-

ates the co-ordinates in monotonically decreasing

order (and hence sets its reference frame accord-

ingly).

4) Each parent (xi,φi, σi) creates a single offspring

(x′

i,φ
′

i, σ
′

i) as follows:

x′

i(j) =xi(j) + Ni(0, σi)Δxi(j) (3)

φi(j)
′ =U(0, 2π) (4)

σ′

i =σie
(τ ′+τ)Ni(0,1) (5)

where U(a, b) denotes uniform random distribution be-

tween a and b.

5) Calculate the fitness of each offspring (x′

i, φ
′

i, σ
′) as per

CEP Step 4.

6) Conduct pairwise comparison as per CEP Step 5.

7) Select the p best individuals for the next generation as

per CEP Step 6.

8) Set k ← k + 1. Stop if the halting criterion (k = kmax)

is satisfied, otherwise go to Step 3.

E. Normalised CEP (CEPN)

CEPN is identical to CEP, except that the initial step size

is normalised against dimension. This makes the average step

size identical to UEP (which is independent of dimension),

ruling out average step size (prior to mutation) as a factor in

the comparison. Only the first step changes:

1) Generate 1000 points in n-dimensional space by choos-

ing each co-ordinate from N(0, 1). Calculate the mean

length μn of the vectors from the origin to each

of the 1000 points. Next generate 1000 points in 1-

dimensional space and calculate the average length μ1

from the origin to the points. Reset:

σinitial ← μ1

μn

σinitial.

Then continue as per CEP.

Note that the above can be efficiently approximated using

σinitial ← 1√
n

σinitial.

F. Normalised CEP with Limited Self-adaptation (CEPLS)

Another of the differences between CEP and UEP is that

whereas CEP maintains a separate self-adaptation parameter

σi(j) for each parameter xi(j), UEP mutates a single mag-

nitude, and therefore maintains a single adaptation parameter

σi, for each individual.

The separate adaptation approach used by CEP may have a

disadvantage in high dimensional space. Imagine a worst case

2374 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

scenario where a population is making its way down a valley

aligned with one axis, belonging to say the kth parameter.

This will have the effect of increasing σi(k) and reducing

(asymptotically towards zero) σi(j), j �= k, for all population

members (i = 1, . . . , p). Imagine the valley now turns in an

orthogonal direction k′. Since the σi(k
′) required for mutation

in the correct direction have tended to zero there is little scope

for progress. Meanwhile the σi(k) are obstructing progress

by unsuccessfully directing mutations up the valley walls,

leading to a reduction in population diversity. It may take

some time for the population to adjust to the new direction.

While this is an extreme example, it is possible to envisage

many scenarios of this kind.

The CEPLS algorithm addresses this issue by storing and

adapting a single mutation parameter for each individual in

the same way as UEP, in addition to normalising for step size.

The CEPLS algorithm is therefore identical to CEPN except

for two changes.

1) In Step 1 generate a population of pairs (xi, σi), where

xi and σi are as defined in Step 1 of UEP.

3) In Step 3, Equations 1 and 2 are replaced by:

x′

i(j) =xi(j) + Ni(0, σi)

σ′

i =σie
(τ ′+τ)Ni(0,1)

resembling Equations 3 and 5 in UEP Step 4.

G. Interleaved IVEP (IVEPI)

Our last algorithm attempts to bridge the gap between CEP

and IVEP and can be regarded as a derivative of either. It

proceeds by mutating the population in a single dimension in

each iteration, cycling through the dimensions.

From the perspective of IVEP we wish to see whether

we can improve performance, particularly on non-separable

functions such as Schwefel’s (see F2 in Section III), by

solving parameters in an interleaved fashion rather than one

after another. We expect IVEP to perform poorly on F2

since any 1-dimensional slice will be flat over much of the

parameter range. Solving in that dimension may therefore

result in setting the corresponding parameter anywhere in the

flat portion. This may in turn correspond to a poor starting

point in subsequent dimensions.

From the perspective of CEP this may help to ameliorate

some of the difficulties faced by CEP on multimodal separable

landscapes (in particular that the peaks are higher on diagonals

then in axial directions) that IVEP does not suffer from. The

downside is that it will not have access to the synergies that

can be obtained in some situations by modifying multiple

parameters at once.

The algorithm is identical to CEP with the following excep-

tions:

1) Set d = 0. Proceed as per CEP Step 1.

3) Set d ← (d mod n) + 1.

Each parent (xi,σi), i = 1, . . . , p, creates a single

offspring (x′

i,σ
′

i) as follows:

x′

i(d) =xi(d) + Ni(0, σi(d))

σ′

i(d) =σi(d)eτ ′Ni(0,1)+τN ′

i(0,1)

That is, both xi and σi are mutated only in the dth

dimension.

III. EXPERIMENTS

For comparison we tested the algorithms on the seven

functions specified in [8]. The first six are elementary mathe-

matical functions:

F1(x) =

n∑
i=1

z2
i + b1

F2(x) =
n

max
i=1

|zi| + b2

F3(x) =
n−1∑
i=1

(100(z2 − zi+1)
2 + (zi − 1)2) + b3

F4(x) =
n∑

i=1

(z2
i − 10 cos(2πzi) + 10) + b4

F5(x) =
n∑

i=1

z2
i

4000
−

n∏
i=1

cos(
zi√
i
) + 1 + b5

F6(x) = − 20 exp(−0.2

√√√√ 1

n

n∑
i=1

z2
i)

− exp(
1

n

n∑
i=1

cos(2πzi)) + 20 + e + b6

where the z = x−o, for some offset o, are “shifted” objective

variables, and b1, . . . , b6 are fixed biases. These are respec-

tively known as Sphere, Schwefel’s Problem 2.21, Rosen-

brock’s function, Rastrigin’s function, Griewank’s function

and Ackley’s function. The seventh is a fast fractal function,

“DoubleDip”, from the Fractal Function benchmarking suite

[1], [9]. Functions 1, 4 and 6 are separable. Function 7 is close

to separable in that each parameter is dependent only on one

of the n− 1 other parameters (different for each). For plots of

the functions see [8].

Following [8], all functions have been evaluated at 50n,

500n and 5000n function evaluations, averaged over 25 runs.

While [8] requires evaluation at 100, 500 and 1000 dimen-

sions, so that we can better see the trends in behaviour we

have evaluated all functions at 1, 2, 5, 10, 20, 50, 100, 200,

500 and 1000 dimensions. Convergence graphs have also been

obtained for 1000 dimensions averaged over 25 runs.

In line with [7] all experiments set the tournament size

q = 10, population size p = 100, and initialise the standard

deviation σinitial = 3.0.

IV. RESULTS AND DISCUSSION

Figures 1, 2 and 3 show the overall performance of each

algorithm on the test functions.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2375

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

(e) (f)

Fig. 1. Smallest error achieved versus dimension (measured at 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000 dimensions) for separable functions 1, 4 and 6,
averaged over 25 runs. Where CEPN is occluded it lies beneath CEPLS. In (a) IVEP lies beneath UEP. The truncated points in (b) can be effectively regarded
as zero to 64-bit floating point resolution.

It can be seen from the figures that Unbiased Evolution-

ary Programming outperforms CEP, normalised CEP, nor-

malised CEP with limited self-adaptation and interlaced IVEP

across all functions. UEP also outperforms IVEP on all non-

separable functions, with the exception of the near-separable

Function 7, and on the separable function F1. In some cases

the difference in performance is striking — for functions

1, 3 and 5, for example, the difference is many orders of

magnitude.

A second general point to notice is that performance at low

dimensions is a poor indicator of high-dimensional perfor-

mance. Most functions take at least 100 dimensions before

what appear to be longer term trends establish themselves,

with some such as F2 and F3 taking significantly longer.

This suggests that some algorithms rely on the constraints

implicit in low-dimensional problems, and the conclusions of

many works in the literature on global optimisation will not

generalise to higher dimensions.

A. Observations on Separable Problems

It is arguable whether separable problems should appear in

benchmarking problem sets for selecting algorithms designed

for real-world applications. First, it is unlikely that many

significant real-world problems have independent parameters.

Secondly, since the parameters are independent, we can sim-

ply solve each of them independently, transforming an n-

2376 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Smallest error achieved versus dimension (measured at 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000 dimensions) for non-separable functions 2, 3 and 5,
averaged over 25 runs. In (c) IVEP lies beneath UEP.

dimensional problem to n 1-dimensional problems.

From a theoretical point of view, however, they provide for

some interesting comparisons. In particular, it is interesting to

see whether generic solvers which do not take advantage of

the separability can outperform those that do, and if so, for

what kinds of problems.

Figure 1 (a) and (b) demonstrates that a generic solver

can indeed outperform the algorithms that solve each of the

dimensions independently. Although traditional CEP and its

derivatives cannot match the performance of IVEP for greater

than 5 dimensions, UEP outperforms IVEP by approximately

9 to 12 orders of magnitude from 10 to 1000 dimensions.

Looking at the more difficult multimodal problems in Fig-

ures 1 (c) to (f), however, we see that for dimensions above

about 10 even UEP is not able to outperform IVEP. This is as

we anticipated — the increase in complexity with dimension

for the more general algorithms outweighs the reduction in the

number of dimensions available to IVEP.

The same is true of the “near-separable” multimodal func-

tion F7 in Figure 3. For this function it is impossible for

IVEP to find the minimum, since 1-dimensional “slices” in

any axial direction will have distinct minima depending on

the value of another parameter. There is no order in which the

parameters can be solved that will lead to a global minimum.

Nevertheless IVEP outperforms the more general algorithms.

The error caused by small dependencies between the variables

is outweighed by the high-dimensional complexity that the

more general algorithms must deal with.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2377

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 3. Smallest error achieved versus dimension (measured at 1, 2, 5, 10, 20, 50, 100, 200, 500 and 1000 dimensions) for function 7, averaged over 25 runs.
Since the depth of the minimum for this function increases with dimension we have normalised against dimension. Results shown are for the parameter range
[-1 1] specified in [8]. Results for the intended range of the function, [0 1], are very similar.

There are at least two effects that we can conjecture come

into play. First, in order to outperform IVEP an algorithm

must be able to find synergies from improving multiple pa-

rameters at once. One way to look at this is that it must

be able to find “shortcuts” across the terrain compared with

algorithms that solve the parameters independently. For the

“sphere” problem (F1) this is relatively easy — it is just as

easy to descend towards the minimum down a diagonal as it

is along an axis. Heading down the diagonal however has the

potential to solve multiple parameters at once compared with

IVEP which solves only a single parameter at a time.

For multimodal functions, however, the picture changes.

For separable problems the peaks that must be traversed

between one minimum and the next will tend to be higher

on a diagonal than in an axial direction. This is certainly the

case for all linear separable problems, where the fitness can

be expressed as the sum of functions of the individual param-

eters. A clear example of this is Rastrigin’s function (F4). In

this case an unbiased algorithm will waste many evaluations

sampling regions that are subsequently selected out of the

population, compared with an algorithm such as IVEP which

will only sample along the “path of least resistance”.

The second but related issue is the way that probability

density functions change with increasing dimensions. As n
increases the number of evaluations that IVEP has available

for each 1-dimensional search decreases with 1
n

. The hyper-

volume over which a general algorithm must search however

increases exponentially. Intuitively therefore therefore we can

conjecture that the general algorithm search becomes sparse

at a faster rate, and the ability to adequately sample a specific

region (such as along the axes) decreases with increasing

dimension. More work is needed to verify this effect.

B. Observations on Non-separable Problems

For the non-separable problems in Figure 2 the algorithm

without directional bias, UEP, outperforms all others. This is

particularly evident in functions 3 and 5 where UEP outper-

forms the other algorithms by up to 10 orders of magnitude at

1000 dimensions.

Fig. 4. Semilogarithmic graph for F5 showing 95% confidence intervals.

The most remarkable result, however, is Function F5 in

Figure 2 (f). For this function, after approximately 10 di-

mensions, performance per number of evaluations (which,

recall, increases linearly with dimension) actually improves

with increasing dimensions. This is the only algorithm that

was able to exhibit a decreasing trend on any of the problems.

To confirm this result we took additional measurements

(these were carried out for all functions but there is not room

to include them all here). Figure 4 shows confidence intervals

for F5 for the three primary functions at the 95% level of

confidence. It shows a significant difference between UEP and

the other algorithms. Figure 5 shows convergence plots for F5

for 1000 dimensions. The plots indicate that all algorithms

are steadily improving over the 5 million evaluations. Apart

from IVEP which has the expected linear improvement as

it cycles through the variables, the algorithms approximate

decaying exponentials (linear in the semilogarithmic graph)

as expected. UEP however reduces error by a much larger

proportion of the remaining error on each iteration.

This stark contrast in performance was the main motivation

for the intermediate algorithms CEPN and CEPLS, which

2378 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

Fig. 5. Convergence plots for Function F5 for 1000 dimensions.

match CEP more closely to UEP by adjusting for initial step

size and maintaining step size for the whole population, thus

preventing progress in preferred directions diminishing step

size in others. Figures 1 to 3 show that adjusting for these

factors has little impact on the performance of CEP, in some

cases making the performance worse. To date, therefore, we

have not been able demonstrate an alternative explanation for

the exceptional improvement in performance of UEP relative

to CEP other than the choice of direction.

V. CONCLUSION

Many global optimisation algorithms are developed with

implicit biases, often brought about by the expedience of

specifying them in the Cartesian co-ordinate system which

we are most used to, without an extensive study of the im-

plications of those choices [10]. This paper demonstrates that

these implications are often masked at low dimensions, and

increase significantly as we extend the domain of application

to higher dimensions. This is shown vividly in results such as

Figure 2 (f), where our unbiased algorithm outperforms the

classical algorithm by many orders of magnitude.

Our results have been generated by developing an unbiased

evolutionary programming algorithm (in terms of mutation

direction) that is based on a classical EP algorithm. We

have attempted to control for other factors that may play a

part in the improved performance by examining intermediate

algorithms that adopt several aspects of UEP. While these have

failed to match UEP for performance, it should be cautioned

that these are not exhaustive, and further detailed studies are

needed to examine the relative behaviour of UEP in high-

dimensional spaces that lead to such a striking improvement

in performance.

Finally, it is worth noting that we are not claiming these

algorithms to be the best for high-dimensional optimisation,

and more recent alternatives such as [11] deserve further com-

parision. CEP is deliberately chosen as a simple standard in an

attempt to isolate the differences brought about by changes

to the mutation process. It is anticipated that the lessons

from this study will be applicable in other high-dimensional

optimisation algorithms.

ACKNOWLEDGMENT

The experimentation for this work was carried out while

the first author was on study leave at the Centre of Excellence

for Research in Computational Intelligence and Applications

(CERCIA) at the University of Birmingham, who’s support

she gratefully acknowledges.

REFERENCES

[1] C. MacNish, “Towards unbiased benchmarking of evolutionary and
hybrid algorithms for real-valued optimisation,” Connection Science,
vol. 19, no. 4, pp. 361–385, 2007.

[2] R. Salomon, “Re-evaluating genetic algorithm performance under coor-
dinate rotation of benchmark functions,” BioSystems, vol. 39, no. 3, pp.
263–278, 1996.

[3] A. Czarn, C. MacNish, K. Vijayan, and B. Turlach, “Statistical
exploratory analysis of genetic algorithms: The detrimentality of
crossover,” in Twentieth Australian Joint Conference on Artificial Intel-

ligence (AI07), ser. Lecture Notes in Artificial Intelligence. Springer,
2007, to appear.

[4] M. Schoenauer, “Bio-inspired continuous optimization: The coming
of age,” in IEEE Congress on Evolutionary Computation (CEC’07).
Invited Lecture, IEEE Press, 2007.

[5] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Trans. Neural Networks, vol. 5, pp. 3–14, 1994.

[6] T. Back and H. P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,” Evol. Comput., vol. 1, no. 1, pp. 1–23,
1993.

[7] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–
102, 1999.

[8] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen,
and Z. Yang, “Benchmark functions for the CEC’2008 special session
and competition on large scale global optimization,” Nature Inspired
Computation and Applications Laboratory, USTC, China, Tech. Rep.,
2007. [Online]. Available: http://nical.ustc.edu.cn/cec08ss.php

[9] B. Sendhoff, M. Roberts, and X. Yao, “Evolutionary computation
benchmarking repository,” IEEE Computational Intelligence Magazine,
vol. 1, no. 4, pp. 50–51, November 2006. [Online]. Available:
http://www.cs.bham.ac.uk/research/projects/ecb/

[10] T. Schnier and X. Yao, “Using multiple representations in evolutionary
algorithms,” in Proc. 2000 Congress on Evolutionary Computation.
IEEE Press, 2000, pp. 479–486.

[11] Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-
dimensional function optimization,” in Proc. of the IEEE Congress on

Evolutionary Computation (CEC’07). IEEE Press, 2007, pp. 3523–
3530.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2379

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 09:27 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

