
872

Real-Parameter Optimization Using the Mutation Step Co-evolution

Petr Po"sik
Faculty of Electrical Engineering, Department of Cybernetics

Czech Technical University in Prague
Technicka' 2, 166 27 Prague 6

Czech Republic
posik@labe.felk.cvut.cz

Abstract- An evolutionary algorithm for the optimiza-
tion of a function with real parameters is described in
this paper. It uses a cooperative co-evolution to breed
and reproduce successful mutation steps. The algo-
rithm described herein is then tested on a suite of 10D
and 30D reference optimization problems collected for
the Special Session on Real-Parameter Optimization of
the IEEE Congress on Evolutionary Computation 2005.
The results are of mixed quality (as expected), but reveal
several interesting aspects of this simple algorithm.

1 Introduction

The real-parameter optimization is an important issue in
many areas of human activities. To name a few applica-
tions, we need to optimize a vector of real parameters e.g.
when tuning a controller to have the optimal performance,
when prescribing a composition for a chemical substance so
that it has optimal characteristics, etc.

Many various algorithms were used to solve this task
ranging from simple hill-climbing to complex population-
based algorithms. This task is a typical application area for
evolutionary strategies (ES) [1]. They evolve not only the
solution vectors but also parameters of the distribution of
their mutation vector. Each individual has its own mutation
distribution. In the recent years, an evolutionary strategy
with covariance matrix adaptation (CMA-ES) [2] became
very popular as a very efficient tool for the real-parameter
optimization. A new population is created by several muta-
tions of the current point and after evaluation the offspring
population is used to update the current point and the co-
variance matrix. In this way, successful mutation steps are
reproduced.

The algorithm presented here could be described as an
evolutionary strategy. However, it does not use any covari-
ance matrix, rather it co-evolves [3] a population of muta-
tion steps that turned out to be successful in the previous
generations. This population is a substitute of the proba-
bilistic model (the variances or the covariance matrix) used
in ES. The new population is then created by mutating all
members of the old population, thus allowing the algorithm
to perform the search in several areas of the search space,
and not only in one area covered by the gaussian cloud (as
in the case of CMA-ES).

The behavior of the algorithm is also somewhat reminis-
cent of the particle swarm optimization algorithms (PSO,
see e.g. [4], pages 379-387). They also adapt the mutation
steps (the velocity vectors), but they use information from

each individual's history along with the global information.
The algorithm described in this paper does not take advan-
tage of the relation of individual particles and their velocity
vectors - the mutation steps are not 'owned' by the indi-
viduals.

This feature determines also the set of optimization prob-
lems this algorithm is well-suited for. The fitness landscape
must be of such a form that recently used successful mu-
tation step can be successful even for future mutations (i.e.
for other population members situated in different areas of
the search space). Such a condition is fulfilled for:

* unimodal function, or

* multimodal function which has the fitness landscapes
in the neighborhoods of all the local optima similar to
each other.

However, if these assumptions are broken it does not mean
that the algorithm is not able to solve the problem at hand.
In that case, only the advantage of the cooperation through
mutation step sharing vanishes and the strategy behaves
very much like a strategy with random mutations (the indi-
vidual mutation steps are not cooperating, but rather fight-
ing against each other).

The paper is organized as follows. Section 2 introduces
the algorithm, in Sec. 3 the results for IOD and 30D test
functions are presented, the discussion of results can be
found in Sec. 4 and Sec. 5 concludes the paper.

2 Algorithm

The algorithm presented here works with two populations.
The first one is the population of potential solutions of gen-
eration g, X(g) = [x(9): i e {1, .., Nx}]. This population
is evaluated by invoking the fitness function on individual
population members, f(x(P)). The second one is a popula-
tion of mutation steps (i.e. population of mutation vectors)
which turned out to be successful in previous generations,

-= g) j E {1, .., N6}]. For this population, the

fitness values are stored in an array f6(9) - [f39)]. The
evaluation of mutation steps is explained later.

2.1 Evolutionary Model

The algorithm can be shortly outlined as follows:

1. Initialize both populations

2. Evaluate the population of solutions

0-7803-9363-5/05/$20.00 ©2005 IEEE.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

873

3. Create a set of candidate solutions and related candi-
date mutation steps

4. Evaluate candidate solutions and mutation steps

5. Select better candidate solutions and mutation steps
to compete for survival

6. Replace worse population members by selected can-
didate solutions and mutation steps

7. If the termination criteria are not met, go to 3.

A detailed description of all the algorithm components is
presented in the next subsection.

2.2 Algorithm Components

The individual steps used in the above algorithm description
are not complex but need to be clarified.

Initialization. The population of solutions, X(, is ini-
tialized randomly in the whole search space. The mem-
bers of the population of successful mutation steps, AO(°),
are initialized to zero vectors. All these candidate mutation
steps are perturbed before using so that non-zero vectors
will emerge during the evolution.

One mutation step using the arithmetic crossover.
When generating new candidate solutions, one of them is
generated using crossover-like approach in the following
way. First, two parents, xpl and Xp2, are selected randomly
(i.e. with equal probabilities) from the population X(9). A
new candidate solution, xc, is randomly generated on the
line connecting the two parents:

X/ Xpl + r(xp2 - Xpl),

where r - U(O, 1). From both parents only the one closer
to the candidate xc is retained and used for calculation of
the resulting mutation step.

x'i_ xpl if (r < 05)
p XT1p2 if(r>0.5)

The resulting mutation step (created by crossover) is

d' = x'- x.

This operation can introduce useful vectors to the popula-
tion of mutation steps.

Creating the rest of candidate solutions. To create the
major part of the new candidate population, a mutation ap-
proach is used. For each of the first NX-1 population mem-
bers (i.e. i E {1, .., Nx- 1} now), mutation vector, 6i, is
randomly selected from the population of successful muta-
tion steps, A (9), and perturbed a bit. (A random vector with
the gaussian distribution with diagonal covariance matrix is
added to the d'. The diagonal elements of the covariance
matrix are a fraction, say 0.0001, of the range that is used
by the population of solutions in each of the dimensions.)
Then, two1 new candidate solutions, x' and x'', are created

lThe concept of generating two candidate solutions on the opposite
sides of the parental vector is important to preserve the mutation strategy
unbiased, regardless of the mutation steps population content.

on the opposite sides of the mutated vector, xi:

Xi = xi +

Xi = Xi-i

The generated vectors x' and x"' form two populations of
candidate vectors; the set of used mutation steps 3' forms a
population of candidate mutation steps. All these candidate
populations have to be evaluated.

Evaluation of candidate populations. The candidate
populations (along with the crossover candidate point, xc)
are evaluated via the given fitness function. This gives us
the fitness values f(xi), f(x'), and f(x,).

The candidate mutation steps are evaluated using their
success. The success of the mutation steps can be defined
(assuming a minimization problem) as

f6+i ff(xi) - f(xi),
f6-i ff(xi) - f(X/i)
f c= f(xP)-f(xC).

Selection of better offspring. Only better of the candi-
date vectors and mutation steps are selected to compete for
survival. Their worse siblings are thrown away.

if (f(x'i) < f(xi')) f 6i = 6+i
else x' x'

A6 = f6-i
Furthermore, we add to these offspring populations the

candidate created by crossover.

X'=X'UxC, A&=A'ujc

From now on, only x"'s and 5"s (along with their fitness
values) are considered to be offspring individuals.

Replacement in the population of potential solutions.
The offspring candidates x' compete for the survival with
their respective parents. The only exception is the candidate
xC created by crossover which competes with the last mem-
ber (unused for mutation) of the parent population X(g) and
not with its assigned parent. This feature greatly helps to
prevent the premature convergence.

if (f(xi) < f(x')) : xjg+l) = xi

else : xg+') = x'.

Now, we have the population X(9+l) which passes to the
next generation.

Replacement in the population of successful mutation
steps. First, fitness values of all the mutation steps in the old
population AO) are reduced by factor s, s c (0, 1).2

f = s f (g)

2Reducing the fitness of old successful mutation steps guarantees that
an early very successful mutation step can be replaced by a less successful,
but more recent mutation step. This allows for adaptation of the mutation
steps structure.

873

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

874

Then, the fitness of candidate mutation steps is normalized
in the following way:

f6 = fi -minf6i + 1

The population of old mutation steps is expanded with
the population of candidate mutation steps.

A' =A() UA'

f = f6' u f
Using truncation selection, the best N6 mutation steps

are selected.

IndicesOfBest = TruncSel(N6, f5)
f6(9+l) - f56(IndicesOfBest)
A (9+) =- A'(IndicesOfBest)

Closing the generation loop. Now we have the popu-
lation of solution vectors, X(9+l), along with their fitness
values, f (x(9+l)), and a population of successful mutation
steps, Ag±l), with their fitness values f6(9+l). The gener-
ation loop can be closed now by increasing the generation
counter, g = g + 1.

2.3 Handling Outliers

From the description of the algorithm, it is clear that some
of the newly generated points can get out of the bounding
hypercube. In the experiments, this bounding hypercube
was considered to be a hard bound, so that no points out-
side were evaluated. For each new individual it is checked
which components of the individual vector lie outside the
respective feasible interval, and these components are ran-
domly reinitialized to lie inside the hypercube. Only after
this correction the individual is evaluated and used in further
evolution.

2.4 Algorithm Restarting

During evolution, the algorithm can get to a state when it
does not generate any improving candidates. In that case
the algorithm is restarted.

Two conditions were used to trigger the reinitialization:

* if the current 'epoch' of the algorithm lasts at least
2000 evaluations and the population has not changed
for at least 1000 evaluations (the epoch is a time in-
terval between the last restart of the algorithm and the
current time), or

* if the maximal length of the edges of the hypercube
in which the population lives drops under 10-6.

Only the population of the solutions is reinitialized, the
population of mutation steps is left intact. (The effect of the
mutation steps population reinitialization was not studied.)

2.5 Parameters and Settings

The algorithm described above has several parameters
which have to be set. The population size is chosen to be

greater than the dimension of the search space. The possi-
ble outcomes of the arithmetic crossover then lie in the span
of the population members. The mutation step population
size is then selected to be greater than the size of the so-
lution population, so that it is ensured that some of the old
mutation steps always survive to the next generation.

Parameter Setting
Population Size Nx = D + 10
Mut. Step Pop. Size N6 = NX + 20
Mut. Step Fitness Shrinking Factor s = 0.9

The actual setting of individual parameters (including
the values used to restart the algorithm) is not based on any
theoretical foundations, but rather on an experience with the
algorithm behavior.

3 Results

The test functions, monitored statistics and experimental
methodology are described on the web page of the special
session on Real-Parameter Optimization at IEEE CEC 2005
or in the report [5]. The following subsections present the
results for IOD and 30D functions.

3.1 Error Values

Error values of the solutions found by the algorithm are pre-
sented in Tables 1, 2, and 3 for lOD, and in Tables 4, 5, and
6 for 30D.

3.2 Function Evaluations Needed

The number of function evaluations needed to achieve the
prescribed accuracy level is presented in Tables 7 and 8 for
IOD and 30D, respectively. The algorithm did not succeed
to find the global optima many times.

Best Median Worst Success Success
Problem 1st 7th 13th 19th 25th Mean StDev Rate Perf.

1 20231 21997 22653 23050 26471 22768 1442 100% 22768.00
2 23694 26092 27204 28783 32199 27372 2078 100% 27371.80
3 37281 40756 43213 46060 51442 43632 3504 100% 43632.00
4 39606 44421 46394 49180 56504 47374 4544 100% 47373.90

5-25 0%

Table 7: Number of FES needed to achieve the fixed accu-
racy level for lOD functions.

3.3 Convergence Graphs

Figures 1 to 5 show the evolution of median best-so-far
value.

3.4 Algorithm Complexity

All experiments were carried out on a Windows XP machine
with Pentium 4 3.4GHz CPU and 1GB of memory running
MATLAB 6.5. The statistics intended to describe the com-
plexity of the algorithm are presented in Table 9.

874

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

875

Statistics Problem
1 2 3 4 5 6 7 8 9

1st (Best) 1.74244e+003 1.34176e+003 1.03169e+007 3.59733e+003 6.81810e+003 3.80778e+007 1.09736e+002 2.03080e+001 4.07713e+001
7th 2.89964e+003 6.91557e+003 2.98089e+007 8.82131e+003 1.12434e+004 3.05664e+008 2.03044e+002 2.05654e+001 5.84886e+001
13th (Median) 4.58512e+003 1.03995e+004 4.99501e+007 1.27940e+004 1.20589e+004 4.62168e+008 2.88134e+002 2.06321e+001 7.25952e+001

o 19th 5.58373e+003 1.38592e+004 6.27097e+007 1.50421e+004 1.39125e+004 6.83332e+008 4.18599e+002 2.07206e+001 7.81214e+001
25 (Worst) 1.23127e+004 1.96094e+004 8.17758e+007 2.13608e+004 1.65921e+004 1.20924e+009 7.43769e+002 2.08834e+001 1.07150e+002
Mean 4.63379e+003 1.01453e+004 4.62843e+007 1.24473e+004 1.22236e+004 5.21158e+008 3.38103e+002 2.06296e+001 7.07834e+001
StDev 2.35143e+003 4.29043e+003 2.15951e+007 4.65688e+003 2.37356e+003 3.22928e+008 1.76834e+002 1.42644e-001 1.62906e+001
1st (Best) 8.98400e-003 1.00708e+000 3.0211 te+004 7.34117e+001 1.37076e+003 2.44546e+002 5.42645e-001 2.01482e+001 1.90382e+001
7th 4.49639e-002 1.09703e+001 5.15262e+004 2.26523e+002 2.57105e+003 9.03868e+002 6.95722e-001 2.03080e+00 3.01933e+001
13th (Median) 8.12789e-002 1.91089e+001 7.96698e+004 2.92138e+002 3.14566e+003 1.18951e+003 7.73232e-001 2.04102e+001 3.95902e+001
19th 1.57424e-001 3.10843e+001 1.61853e+005 4.87544e+002 4.04230e+003 2.17018e+003 8.49267e-001 2.04965e+001 4.8261 le+001

- 25 (Worst) 7.27320e-001 8.11175e+001 3.83038e+005 1.84173e+003 5.75940e+003 5.64389e+003 1.02289e+000 2.06022e+001 8.22299e+001
Mean 1.48892e-001 2.30971e+001 1.06814e+005 4.17592e+002 3.37417e+003 1.54209e+003 7.74451e-001 2.03956e+001 4.1 1505e+001
StDev 1.75433e-001 1.87258e+001 8.08775e+004 3.76288e+002 1.16148e+003 1.18650e+003 1.18514e-001 1.2241 1e-001 1.60039e+001
1st (Best) 4.59556e-009T 5.00478e-009T 5.66757e-009T 6.12619e-009T 9.16523e-002 1.2721 te+000 1.01700e-002 2.01391e+001 8.98780e+000
7th 8.66976e-009T 8.05613e-009T 7.81722e-009T 8.01867e-009T 7.01120e-001 8.05109e+000 2.75527e-002 2.02159e+001 1.30985e+001

| 13th (Median) 9.27599e-009T 9.15253e-009T 8.7582te-009T 8.66862e-009T 8.61175e-001 9.67686e+000 3.62197e-002 2.02847e+001 1.93937e+001
19th 9.65395e-009T 9.51059e-009T 9.46301e-009T 9.44232e-009T 1.90969e+000 1.40084e+001 5.16803e-002 2.03386e+001 2.49247e+00I

- 25 (Worst) 9.93379e-009T 9.99557e-009T 9.99751e-009T 9.90025e-009T 1.64876e+001 4.07603e+001 5.94898e-002 2.04092e+001 3.09298e+001
Mean 8.83358e-009T 8.59865e-009T 8.48558e-009T 8.54705e-009T 2.13319e+000 1.24633e+001 3.70507e-002 2.02745e+001 1.91946e+001
StDev 1.33317e-009T 1.36648e-009T 1.34518e-009T 9.85134e-O1OT 3.57362e+000 8.97498e+000 1.51060e-002 7.65884e-002 6.61912e+000

Table 1: Error values for lOD functions nr. 1 - 9

V
Statistics Problem

10 1 1 12 13 14 15 16 17
1st (Best) 5.80184e±001 8.12639e±000 2.34376e±004 6.30406e+000 3.66299e+000 3.48160e+002 2.58540e+002 3.67184e+002
7th 8.34984e+001 1.08348e+001 3.70031e+004 8.47696e+000 4.20523e+000 6.23096e+002 3.79627e+002 4.18935e+002
13th (Median) 9.12955e+001 1.14000e+001 5.19865e+004 9.55827e+000 4.29225e+000 6.65287e+002 4.05589e+002 4.52428e+002

8 19th 1.05037e+002 1.21489e+001 6.40195e+004 1.12953e+001 4.41822e+000 7.46938e+002 4.45467e+002 5.34589e+002
25 (Worst) 1.39114e+002 1.29686e+001 1.11289e+005 1.4131 1e+00t 4.57787e+000 8.94522e+002 5.00999e+002 5.89762e+002
Mean 9.37138e+001 1.12563e+001 5.39104e+004 1.00038e+001 4.28996e+000 6.74991e+002 4.07724e+002 4.67231e+002
StDev 2.08454e+001 1.19908e+000 2.29027e+004 2.1 1055e+000 2.04154e-001 1.13250e+002 5.96920e+001 6.57991e+001
Ist (Best) 1.84312e+001 7.05768e+000 7.88701e+002 1.13395e+000 3.55806e+000 2.02044e+002 1.53082e+002 2.40266e+002
7th 3.10792e+001 9.48647e+000 2.37503e+003 1.80171e+000 3.88298e+000 3.37415e+002 1.82735e+002 2.89874e+002

13th (Median) 4.03056e+001 1.03768e+001 4.63494e+003 2.15159e+000 4.07143e+000 3.96404e+002 2.44913e+002 2.98743e+002
19th 5.01230e+001 1.14371e+001 6.42196e+003 2.64539e+000 4.14020e+000 4.91121e+002 2.58992e+002 3.38652e+002

o
25 (Worst) 7.33024e+001 1.22901e+001 1.50636e+004 3.66858e+000 4.29082e+000 6.40715e+002 3.03331e+002 4.08258e+002
Mean 4.13712e+001 1.0161 1e+00t 5.03365e+003 2.22386e+000 4.01066e+000 4.21837e+002 2.34009e+002 3.12355e+002
StDev 1.42797e+001 1.38933e+000 3.49392e+003 6.39870e-001 2.02222e-001 1.14965e+002 4.76666e+001 4.17586e+001
1st (Best) 1.49815e+001 6.78285e+000 2.66206e+001 4.68998e-001 3.26001e+000 1.37254e+002 1.23367e+002 1.45125e+002
7th 1.99161e+001 8.47390e+000 9.46710e+001 7.88741e-001 3.59021e+000 2.22634e+002 1.55445e+002 1.92432e+002
13th (Median) 2.68732e+001 9.29237e+000 1.20325e+002 1.03498e+000 3.70433e+000 2.69885e+002 1.74730e+002 2.07081e+002
19th 3.18432e+001 9.65436e+000 2.05850e+002 1.37700e+000 3.82959e+000 3.34064e+002 1.8671 le+002 2.32234e+002

- 25 (Worst) 4.97850e+001 1.04512e+001 3.73240e+003 2.14617e+000 4.13566e+000 5.56476e+002 2.73042e+002 2.97348e+002
Mean 2.67652e+001 9.02888e+000 6.04531e+002 1.13652e+000 3.70647e+000 2.93771e+002 1.77178e+002 2.11816e+002
StDev 8.64571e+000 1.02016e+000 1.07364e+003 4.33100e-001 2.30358e-001 1.02074e+002 3.15727e+001 3.37456e+001

Table 2: Error values for lOD functions nr. 10 - 17

E
Statistics Problem

______________ ~18 19 20 21 22 23 24 25
1st (Best) 1.03254e+003 1.08809e+003 1.08326e+003 1.08529e+003 1.06926e+003 1.17765e+003 8.79258e+002 1.10784e+003
7th 1.14329e+003 1.14224e+003 1.13777e+003 1.31648e+003 1.13850e+003 1.32706e+003 1.24639e+003 1.26327e+003
13th (Median) 1.16573e+003 1.17500e+003 1.16325e+003 1.35489e+003 1.19282e+003 1.35561e+003 1.31553e+003 1.30950e+003

o 19th 1.20930e+003 1.21273e+003 1.18964e+003 1.38227e+003 1.26354e+003 1.3741 le+003 1.34789e+003 1.35509e+003
25 (Worst) 1.32844e+003 1.32021e+003 1.24930e+003 1.43718e+003 1.35507e+003 1.47321e+003 1.42444e+003 1.38206e+003
Mean 1.17403e+003 1.18306e+003 1.16577e+003 1.33887e+003 1.20158e+003 1.34369e+003 1.27518e+003 1.30033e+003
StDev 5.80399e+001 6.38609e+001 4.40212e+001 7.02220e+001 7.88999e+001 6.12655e+001 1.31362e+002 7.62397e+001
1st (Best) 8.38080e+002 6.86832e+002 6.74195e+002 6.18560e+002 7.89366e+002 7.76724e+002 4.48385e+002 2.08233e+002
7th 9.98985e+002 8.82196e+002 9.57563e+002 8.60739e+002 8.29700e+002 1.10894e+003 6.51169e+002 3.30106e+002
13th (Median) 1.02894e+003 1.01897e+003 1.01443e+003 1.05839e+003 8.57222e+002 1.18332e+003 1.01513e+003 8.09027e+002
1 9th 1.06171e+003 1.06401e+003 1.06869e+003 1.16840e+003 9.14158e+002 1.24657e+003 1.08516e+003 1.19094e+003
25 (Worst) 1.12350e+003 1.09100e+003 1.09636e+003 1.24093e+003 1.03431e+003 1.27784e+003 1.22871e+003 1.30760e+003
Mean 1.02498e+003 9.74082e+002 9.83288e+002 1.00131e+003 8.74189e+002 1.14814e+003 9.03192e+002 7.90339e+002
StDev 5.88449e+001 1.08049e+002 1.18424e+002 1.97355e+002 5.76192e+001 1.29841e+002 2.58744e+002 4.10564e+002
1st (Best) 8.00057e+002 5.00022e+002 5.00207e+002 2.00073e+002 3.00451e+002 4.25173e+002 2.00001e+002 2.00000e+002
7th 8.07439e+002 8.00360e+002 8.02507e+002 4.13784e+002 7.88431e+002 7.42505e+002 2.00036e+002 2.00003e+002
13th (Median) 9.0091 Ie+002 8.08026e+002 8.61724e+002 5.00342e+002 7.98964e+002 8.23041e+002 2.01404e+002 2.00020e+002
19th 9.75283e+002 9.32117e+002 9.91551e+002 9.43121e+002 8.04520e+002 9.70775e+002 2.92000e+002 2.01237e+002
25 (Worst) 1.03393e+003 1.02457e+003 1.03935e+003 1.13064e+003 8.45619e+002 1.09476e+003 1.09026e+003 8.49007e+002
Mean 9.01543e+002 8.44501e+002 8.62896e+002 6.34934e+002 7.78859e+002 8.34559e+002 3.13835e+002 2.57319e+002
StDev 8.70504e+001 1.33741e+002 1.47336e+002 3.00400e+002 1.01998e+002 1.64184e+002 2.19246e+002 1.55310e+002

Table 3: Error values for lOD functions nr. 18 - 25

875

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

876

Problemt Statistics_____ 1 2 3 4 5 6 7 8 9
1st (Best) 5.33585e+004 6.16494e+004 5.56986e+008 7.44209e+004 3.14520e+004 1.31495e+010 2.78878e+003 2.10999e+001 3.59050e+002
7th 5.94619e+004 7.66128e+004 9.72597e+008 1.02520e+005 3.63415e+004 3.14673e+010 3.85054e+003 2.11502e+001 4.02055e+002
13th (Median) 6.64496e+004 9.14726e+004 1.07867e+009 1.23692e+005 3.84696e+004 3.88747e+010 4.64674e+003 2.12153e+001 4.34512e+002

o 19th 7.28793e+004 1.06593e+005 1.44014e+009 1.39580e+005 3.95729e+004 4.15270e+010 5.57934e+003 2.12350e+001 4.60435e+002
25 (Worst) 8.59822e+004 1.43638e+005 1.89233e+009 1.97962e+005 4.39971e+004 7.28580e+010 7.85845e+003 2.12613e+001 5.07010e+002
Mean 6.68271e+004 9.26420e+004 1.19472e+009 1.22887e+005 3.77665e+004 3.81332e+010 4.80270e+003 2.11926e+001 4.31161e+002
StDev 8.85247e+003 2.04798e+004 3.38759e+008 2.87738e+004 3.16733e+003 1.25593e+010 1.37373e+003 5.36316e-002 4.04042e+001
1st (Best) 4.83026e+003 2.41472e+004 5.02534e+007 3.34219e+004 1.87195e+004 2.59226e+008 3.09827e+002 2.09694e+001 2.53693e+002
7th 6.26610e+003 2.92015e+004 9.09276e+007 4.40980e+004 2.29835e+004 8.58493e+008 4.68987e+002 2.09984e+001 2.82094e+002
13th (Median) 7.50153e+003 3.29036e+004 1.17449e+008 5.21934e+004 2.46946e+004 1.05542e+009 5.40753e+002 2.10489e+001 3.01453e+002
19th 8.91280e+003 3.48984e+004 1.45926e+008 5.97914e+004 2.62733e+004 1.51664e+009 6.64287e+002 2.10869e+001 3.09794e+002

- 25 (Worst) 1.27283e+004 4.74157e+004 2.28189e+008 7.20726e+004 3.13359e+004 2.37650e+009 8.95632e+002 2.11261e+001 3.27128e+002
Mean 7.78853e+003 3.27281e+004 1.24130e+008 5.18018e+004 2.45469e+004 1.18207e+009 5.70517e+002 2.10496e+001 2.96272e+002
StDev 2.03784e+003 5.49452e+003 4.56759e+007 1.02363e+004 2.93008e+003 5.42098e+008 1.45480e+002 5.01784e-002 1.92178e+001
1st (Best) 3.81564e-003 1.09078e+002 4.78335e+005 9.84148e+003 1.31734e+004 1.76593e+003 1.09451e+000 2.07860e+001 9.75062e+001
7th 8.46735e-002 2.34731e+002 1.05326e+006 1.66972e+004 1.42792e+004 3.96595e+003 1.38578e+000 2.09501e+001 1.32598e+002

o
13th (Median) 3.43043e-001 5.12535e+002 1.24714e+006 1.73931e+004 1.5171 le+004 9.71290e+003 2.03212e+000 2.09776e+001 1.39917e+002
19th 1.26075e+000 7.17709e+002 2.26181e+006 2.15464e+004 1.58729e+004 3.00221e+004 3.66481e+000 2.09907e+001 1.67014e+002

_ 25 (Worst) 3.41721e+001 1.51406e+003 3.98283e+006 3.51225e+004 1.92038e+004 8.40980e+004 7.65190e+000 2.10482e+001 2.89599e+002
Mean 2.59086e+000 5.50265e+002 1.73851e+006 1.93115e+004 1.51696e+004 1.90744e+004 2.70803e+000 2.09653e+001 1.52427e+002
StDev 7.12183e+000 3.70340e+002 9.70251e+005 5.19592e+003 1.32832e+003 2.20840e+004 1.78370e+000 5.43384e-002 3.98847e+001
1st (Best) 8.29107e-009T 8.80385e-009T 2.59134e-003 8.39365e+002 6.93788e+003 7.71753e+001 7.36657e-007 2.07233e+001 9.16293e+001
7th 4.78684e-003 5.13011e-007 2.27437e-001 2.53832e+003 7.54526e+003 1.54362e+002 1.01986e-003 2.08895e+001 1.13906e+002

o
13th (Median) 1.22952e-002 6.94963e-004 3.05088e+000 4.39145e+003 8.12566e+003 3.13523e+002 1.06204e-002 2.09109e+001 1.33577e+002
19th 9.35114e-002 4.23037e-002 1.45479e+002 5.31771e+003 9.39549e+003 1.28986e+003 3.77824e-002 2.09398e+001 1.39457e+002

e 25 (Worst) 1.17818e+001 7.56331e+000 6.72351e+003 1.26939e+004 9.94298e+003 6.14261e+003 9.89521e-001 2.09976e+001 1.83245e+002
Mean 7.96501e-001 4.40181e-001 3.67138e+002 4.79776e+003 8.34362e+003 1.21108e+003 1.41199e-001 2.09003e+001 1.31352e+002
StDev 2.49062e+000 1.52079e+000 1.34529e+003 3.43707e+003 1.04132e+003 1.83401e+003 2.83291e-001 6.82016e-002 2.38778e+001

Table 4: Error values for 30D functions nr. 1 - 9

Statistics Problem
___________ 10 1 1 12 13 14 15 16 17
1st (Best) 5.75127e+002 4.10244e+001 1.23489e+006 9.68059e+001 1.38274e+001 8.85506e+002 7.57884e+002 8.19386e+002
7th 6.32923e+002 4.40339e+001 1.53357e+006 1.89401e+002 1.40558e+001 1.09102e+003 9.16665e+002 1.00666e+003
13th (Median) 6.77973e+002 4.49563e+001 1.63304e+006 2.64859e+002 1.41140e+001 1.13270e+003 9.53444e+002 1.10126e+003

o 19th 7.25612e+002 4.57573e+001 1.68616e+006 3.22076e+002 1.42168e+001 1.16385e+003 1.05617e+003 1.20258e+003
25 (Worst) 8.27592e+002 4.68403e+001 1.98498e+006 4.29839e+002 1.44380e+001 1.22201e+003 1.15200e+003 1.45879e+003
Mean 6.84078e+002 4.47948e+001 1.61242e+006 2.57756e+002 1.41079e+001 1.1183 1e+003 9.74924e+002 1.10242e+003
StDev 6.27582e+001 1.46126e+000 1.82697e+005 8.99537e+001 1.53017e-001 6.77495e+001 9.71689e+001 1.42540e+002
1st (Best) 3.60825e+002 3.62692e+001 2.28281e+005 2.72943e+001 1.34347e+001 5.71730e+002 4.57131e+002 4.29601e+002
7th 4.27560e+002 3.86685e+001 3.38787e+005 2.97526e+001 1.3671 le+001 6.45172e+002 5.39936e+002 6.48339e+002
13th (Median) 4.42273e+002 3.97414e+001 3.82449e+005 3.16659e+001 1.37825e+001 6.82604e+002 5.63908e+002 7.11482e+002
19th 4.51072e+002 4.15162e+001 4.37251e+005 3.30554e+001 1.39168e+001 7.44512e+002 5.88142e+002 7.53161e+002
25 (Worst) 4.78391e+002 4.38430e+001 6.2681 le+005 3.85523e+001 1.41314e+001 8.16676e+002 6.46716e+002 8.48293e+002
Mean 4.36965e+002 4.01154e+001 3.92326e+005 3.20681e+001 1.37979e+001 6.95428e+002 5.61405e+002 6.95798e+002
StDev 2.94274e+001 1.89426e+000 8.37716e+004 3.00627e+000 1.76060e-001 6.45442e+001 4.02557e+001 9.91744e+001
1st (Best) 1.70538e+002 3.41254e+001 7.03442e+004 6.73160e+000 1.28458e+001 3.02807e+002 2.85371e+002 3.73665e+002
7th 2.19633e+002 3.77702e+001 1.00889e+005 9.47320e+000 1.35499e+001 4.55661e+002 3.62355e+002 5.04463e+002

o 13th (Median) 2.47865e+002 3.82237e+001 2.26197e+005 1.08902e+001 1.36589e+001 5.12774e+002 4.08973e+002 5.35252e+002
19th 2.73380e+002 3.95855e+001 2.57257e+005 1.19978e+001 1.36868e+001 5.58757e+002 4.56105e+002 5.59479e+002

o 25 (Worst) 3.02847e+002 4.28446e+001 3.23785e+005 1.82203e+001 1.39086e+001 6.31450e+002 5.24023e+002 6.62797e+002

Mean 2.44953e+002 3.87279e+001 2.02033e+005 1.10128e+001 1.36055e+001 4.97591e+002 4.05638e+002 5.30783e+002
StDev 3.47914e+001 1.96431e+000 8.09392e+004 2.71396e+000 2.00245e-001 8.88457e+001 6.40851e+001 6.41770e+001
1st (Best) 1.69471e+002 3.41254e+001 1.34641e+004 5.19963e+000 1.24592e+001 2.96856e+002 2.76942e+002 3.03003e+002
7th 2.01319e+002 3.72753e+001 2.25021e+004 7.63531e+000 1.31763e+001 4.03419e+002 3.60970e+002 4.33356e+002

8 13th (Median) 2.35159e+002 3.77020e+001 8.52881e+004 8.89197e+000 1.33247e+001 4.14009e+002 3.87778e+002 4.64531e+002
19th 2.56069e+002 3.84652e+001 1.73916e+005 1.02407e+001 1.34390e+001 4.31006e+002 4.13802e+002 4.76037e+002

8 25 (Worst) 2.91180e+002 4.16462e+001 2.19283e+005 1.68078e+001 1.36077e+001 4.76033e+002 4.43476e+002 5.53928e+002
Mean 2.32350e+002 3.77005e+001 1.01431e+005 9.01956e+000 1.32465e+001 4.10633e+002 3.81230e+002 4.54394e+002
StDev 3.50595e+001 1.52712e+000 7.22294e+004 2.27836e+000 2.92312e-001 4.36705e+001 4.53817e+001 5.65009e+001

Table 5: Error values for 30D functions nr. 10 - 17

876

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

877

Z ~~~~~~~~~~~~~~~~~Problem(
Statistics___________ 18 19 20 21 22 23 24 25

1st (Best) 1.23666e+003 1.17935e+003 1.16585e+003 1.35494e+003 1.46455e+003 1.37025e+003 1.42107e+003 1.47573e+003
7th 1.29718e+003 1.27221e+003 1.30709e+003 1.40953e+003 1.55119e+003 1.40338e+003 1.45353e+003 1.52806e+003
13th (Median) 1.32700e+003 1.31885e+003 1.33340e+003 1.43067e+003 1.60022e+003 1.42717e+003 1.48809e+003 1.54105e+003
19th 1.36503e+003 1.34985e+003 1.36576e+003 1.45654e+003 1.75308e+003 1.45047e+003 1.51988e+003 1.61049e+003
25 (Worst) 1.41423e+003 1.39187e+003 1.40812e+003 1.52649e+003 1.80164e+003 1.50213e+003 1.53330e+003 1.67815e+003
Mean 1.32547e+003 1.30861e+003 1.32514e+003 1.43303e+003 1.63129e+003 1.43004e+003 1.48536e+003 1.56600e+003
StDev 4.50637e+001 5.20935e+001 5.59364e+001 4.38720e+001 1.08508e+002 3.36861e+001 3.45352e+001 5.68263e+001
1st (Best) 1.09302e+003 1.08503e+003 1.05010e+003 1.20237e+003 1.16384e+003 1.18491e+003 1.26737e+003 1.22469e+003
7th 1.14978e+003 1.12820e+003 1.13376e+003 1.23593e+003 1.22206e+003 1.24218e+003 1.30263e+003 1.27037e+003

8 13th (Median) 1.15825e+003 1.15120e+003 1.15738e+003 1.24344e+003 1.26344e+003 1.26125e+003 1.33074e+003 1.29400e+003
19th 1.17776e+003 1.17856e+003 1.18385e+003 1.25279e+003 1.28528e+003 1.27004e+003 1.34454e+003 1.31860e+003
25 (Worst) 1.20113e+003 1.23324e+003 1.26046e+003 1.27252e+003 1.35309e+003 1.30805e+003 1.36912e+003 1.33465e+003
Mean 1.15867e+003 1.14917e+003 1.15727e+003 1.24277e+003 1.25368e+003 1.25524e+003 1.32347e+003 1.29050e+003
StDev 2.82241e+001 3.59399e+001 4.06148e+001 1.63803e+001 5.15932e+001 2.44811e+001 2.94555e+001 3.10040e+001
1st (Best) 1.05314e+003 1.04688e+003 1.00394e+003 7.09488e+002 1.10225e+003 7.61800e+002 1.12689e+003 1.01888e+003
7th 1.09419e+003 1.08179e+003 1.08376e+003 8.51555e+002 1.15685e+003 1.05909e+003 1.18562e+003 1.19843e+003

o 13th (Median) 1.11078e+003 1.10311e+003 1.11391e+003 1.02293e+003 1.17449e+003 1.14070e+003 1.21227e+003 1.22657e+003
1l9th 1.13852e+003 1.12933e+003 1.13505e+003 1.13363e+003 1.23031e+003 1.19153e+003 1.27347e+003 1.25996e+003
25 (Worst) 1.18570e+003 1.15382e+003 1.17897e+003 1.21335e+003 1.27393e+003 1.22625e+003 1.33142e+003 1.28621e+003
Mean 1.11395e+003 1.10428e+003 1.10769e+003 9.93501e+002 1.18482e+003 1.101 13e+003 1.22603e+003 1.21726e+003
StDev 2.99895e+001 3.28115e+001 4.03304e+001 1.54068e+002 4.62375e+001 1.24592e+002 6.04944e+001 6.08417e+001
1st (Best) 1.01124e+003 1.00806e+003 9.82622e+002 5.00007e+002 1.10225e+003 6.07431e+002 7.60284e+002 5.41279e+002
7th 1.04077e+003 1.02565e+003 1.02942e+003 5.00041e+002 1.13801e+003 8.10644e+002 1.01706e+003 9.31473e+002
13th (Median) 1.05927e+003 1.03899e+003 1.05435e+003 5.01399e+002 1.15571e+003 8.58275e+002 1.11909e+003 1.06670e+003

g l9th 1.07456e+003 1.07309e+003 1.08253e+003 5.13591e+002 1.16777e+003 1.06339e+003 1.19072e+003 1.17221e+003
r 25 (Worst) 1.12623e+003 1.11415e+003 1.15573e+003 1.17799e+003 1.23031e+003 1.21690e+003 1.26739e+003 1.23334e+003

Mean 1.06085e+003 1.04894e+003 1.05874e+003 6.03521e+002 1.15535e+003 9.21673e+002 1.09659e+003 1.02670e+003
_StDev 3.02455e+001 2.97697e+001 4.32641e+001 2.18080e+002 2.94102e+001 1.81187e+002 1.20763e+002 1.91553e+002

Table 6: Error values for 30D functions nr. 18 - 25

Best Median Worst Success Success
Problem 1st 7th 13th 19th 25th Mean StDev Rate Perf.

1 144551 283820 45081 12% 1376410.00
2 231593 297819 289683 21070 32% 836747.00

3-6 0%
7 201810 258713 278210 33098 44% 569264.00

8-25 0%

Table 8: Number of FES needed to achieve the fixed accu-
racy level for 30D functions.

a

a- 10

m
0

(10
55

Dim: 30 Func: 1-5

-F 01
MF02

-F 03
-F 04
iF05

Dim: 30 Func: 6-10

-F 09

'5l 10 - X~-1

c 104

LL
U 106

4 o nx

Fu 10

102

0 0.5 1 1.5 2 2.5 3 3.5
No. of Evaluationsxlo

Figure 2: Convergence graph for 30D functions nr. 6- 10

Figure 1: Convergence graph for 30D functions nr. 1 - 5

877

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

878

107F

11c

a)
CLr 1 (

LL1
coU- 1 (
0I
(A,

4)c ii

a

la 1{a)

Dim: 30 Func: 11-15
I

e F 11
--F 12
--F 13
-F 14
--F 15

0 0.5 1 1.5 2 2.5 3 3.5
No. of Evaluations x t 5

Figure 3: Convergence graph for 30D functions nr. 11 - 15

Dim: 30 Func: 16-20

Dim TO TI T2 (T2-T1)/TO
10 2.0 22.1 15.5
30 1.3 1.6 16.8 11.7
50 1.7 17.0 11.8

Table 9: Measured times and algorithm complexity

The results presented in Tab. 9 may seem a bit strange
(the complexity drops with increasing dimensionality?), but
it can be explained by the MATLAB matrix functions. It
is much faster to evaluate a matrix with 30 rows than to
evaluate a one-row matrix 30 times. Thus, the evolution
of 30 dimensional population of size 40 is faster than the
evolution of 10 dimensional population of size 20, because
the evaluation (and population manipulation) functions are
executed less often.

4 Discussion and Improvement Suggestions

In this section, a few observations about the algorithm be-
havior when solving the benchmark functions are made.

F 16
-F 17
--F 18
-F 19

F20
- . 2

0000

1 0.5 1 1.5 2 2.5 3
No. of Evaluations

3.5
X l o'

Figure 4: Convergence graph for 30D functions nr. 16 - 20

Dim: 30 Func: 21-25

1.5 2 2.5
No. of Evaluations

eF-21
F 22
F 23
F 24
F 25

* The algorithm is able to handle problems with differ-
ent condition numbers. As can be seen from Tables 1
and 7, the algorithm solved the IOD versions of prob-
lems 1 - 3, but failed to solve the 30D versions (with
a few exceptions). This suggests that the perturba-
tion of the mutation steps alone is not able to adapt
them successfully in case of high-dimensional func-
tions. Introduction of a factor for mutation step short-
ening (or extension) along with an adaptation scheme
(based e.g. on the 1/5 rule) could greatly improve the
results.

* The influence of the noise in fitness can be observed
on pairs of functions 2-4 and 16-17. In the case of
lOD functions, the difference is minor, however, in
case of 30D, the algorithm succeeded only for prob-
lem 2 and the difference in behavior is substantial
(see Fig. 1); in case of the pair 16-17 the algorithm
did not find the global optimum. Thus, it is rather
worthless to say that the noise caused only slight de-
terioration of solution quality and that the algorithm
behaved similarly in both cases.

* The algorithm should be rotationally invariant. The
only component that depends on the rotation is the
procedure for handling the outliers. The differences
that can be seen in pairs 9-10 and 15-16 can be ac-
counted to that procedure.

* The influence of non-continuity of the fitness can be
observed on the pair 21-23 in Fig. 5. It slightly wors-

ens the results but the changes seem to be statistically
insignificant.

3 3.5
x 10'

Figure 5: Convergence graph for 30D functions nr. 21 - 25 * The effect of placing the global optimum on bounds is
questionable. There is not much difference between
the pair 18-20, see Fig. 4 (but the algorithm com-

pletely missed the optimum). Based on a relatively

878

ama)

U-

U-
0I
co

m
'a
500O

0)

0

a
X:

a)

in"

9nnn

-6D'

05- X --X-.

4.
0

3.
0

0
e e e e e e e

01- - t t iE..- t

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

879

poor performance on function 5, it can be stated that
the algorithm would not solve such problems very
well. This issue could probably be solved by using
a different procedure for handling outliers, namely
placing the outliers to the nearest boundaries (or to
consider the bounding hypercube to be only a soft
bound and allow the algorithm to evaluate the points
outside of it). The effect of such a modification must
be studied yet.

* Similarly, the influence of narrow global optimum
basin cannot be described, the algorithm did not
found it in either case.

* From the results and from the algorithm description it
can be stated that the fact that the initialization inter-
val does not contain the global optimum is not an is-
sue for this algorithm. It is able to 'enlarge' the search
area.

[2] N. Hansen and A. Ostermeier, "Completely derandom-
ized self-adaptation in evolution strategies," Evolution-
ary Computation, vol. 9, no. 2, pp. 159-195, 2001.

[3] J. Paredis, "Coevolutionary computation," Artificial
Life, vol. 2, no. 4, pp. 355-375, 1995.

[4] D. Come, M. Dorigo, and F. Glover, eds., New Ideas in
Optimization. McGraw-Hill, 1999.

[5] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-
P. Chen, A. Auger, and S. Tiwari, "Problem defini-
tions and evaluation criteria for the CEC 2005 Special
Session on Real-Parameter Optimization," tech. rep.,
Nanyang Technological University, Singapore, May
2005. http://www.ntu.edu.sg/home/epnsugan.

5 Conclusions

A very simple co-evolutionary approach for real-valued
optimization was presented in this paper. The algorithm
evolves two populations, one with the potential solutions
to the given problem, and the other with mutation steps that
proved to be successful in recent generations.

The algorithm has a pleasant behavior on the first uni-
modal functions, as expected. It can solve even high-
conditioned problems thanks to the sharing of successful
mutation steps. For the other problems, this feature is not
of much benefit, so that the algorithm mainly exploits the
local neighborhoods of the population members.

As a promising way of the algorithm improvement, the
adaptation of the overall control parameter affecting the mu-
tation step length is suggested. The perturbation of the pop-
ulation of mutation steps as presented here does not seem to
be sufficient. In the evolution of the mutation step popula-
tion, the crossover could be used which might also improve
the results.

The comparison of this really simple algorithm with
other, perhaps more complex and smart, optimization algo-
rithms which take part in this special session will be very
interesting and enriching.

Acknowledgments

The research of Petr Poslk was supported by the research
program No. MSM6840770012 "Transdisciplinary Re-
search in the Area of Biomedical Engineering II" of the
CTU in Prague, sponsored by the Ministry of Education,
Youth and Sports of the Czech Republic.

Bibliography

[1] T. Bick, D. B. Fogel, and Z. Michalewicz, eds., Evolu-
tionary Computation 1. IOP Publishing, 2000.

879

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on December 11, 2009 at 07:12 from IEEE Xplore. Restrictions apply.

