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Abstract

With the advent of extremely high-dimensional datasets, dimensionality reduction techniques are becoming mandatory. Of the
many techniques available, feature selection is of growing interest for its ability to identify both relevant features and frequently
repeated instances in huge datasets. We aim to demonstrate that standard feature selection methods can be parallelized in Big Data
platforms like Apache Spark so as to boost both performance and accuracy. We propose a distributed implementation of a generic
feature selection framework that includes a broad group of well-known information theory-based methods. Experimental results
for a broad set of real-world datasets show that our distributed framework is capable of rapidly dealing with ultra-high-dimensional
datasets as well as those with a huge number of samples, outperforming the sequential version in all the cases studied.
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I. INTRODUCTION

IN the last few decades, the dimensionality of datasets used for machine learning (ML) or data mining tasks has increased
significantly, representing an unprecedented challenge for researchers, given that existing algorithms do not always respond

in a suitably timely way to extremely high dimensionality. In fact, analyzing the datasets posted in the popular libSVM
Database [1], it can be observed that maximum data dimensionality was about 62 000 in the 1990s, but increased to some
16 million in the first decade of this century and has further increased to some 29 million in the current decade. In this new
scenario, existing learning methods need to be adapted so as to be able to deal with millions of features.

With the advent of very high-dimensional datasets, identifying relevant features has become paramount. Dimensionality
reduction techniques can be applied to reduce the dimensionality of the original data and even to improve learning performance
[2], [3], [4]. These dimensionality reduction techniques usually come in two flavors: feature selection (FS) and feature extraction.
Each approach has its own merits. Feature extraction techniques combine original features to yield a new set of features, whereas
FS techniques remove irrelevant and redundant features. Since FS maintains the original features, it is especially useful for
applications where the original features are important for model interpretation and knowledge extraction [5], [6]. For this
reason, this model was the focus of our research.

Existing FS methods are not expected to scale well when dealing with Big Data due to the fact that efficiency may
significantly deteriorate or that the FS approach may even become inapplicable [7]. Scalable distributed programming protocols
and frameworks have emerged in the last decade to manage the problem of Big Data. The first programming model developed
was MapReduce [8] along with its open-source implementation Apache Hadoop [9], [10]. More recently, Apache Spark [11],
[12] has been presented as a new distributed framework with a fast, general large-scale data processing engine that is popular
with ML researchers due to its suitability for iterative procedures.

Likewise, several libraries for approaching ML tasks in Big Data environments have emerged in recent years. The first
such library was Mahout [13], followed up by MLlib [14], built on the Spark system [12]. Thanks to Spark’s capacity for in-
memory computation that speeds up iterative processes, algorithms developed for this kind of platform have become pervasive
in the industry. Although several gold-standard algorithms for ML tasks have been redesigned to incorporate a distributed
implementation for Big Data technologies, this is not yet the case for FS algorithms. To date only a simple chi-squared
approach1 and a Random Forest improvement [15] have been proposed to deal with this problem.

This research aims to fill the existing gap by demonstrating that standard FS methods can be designed for Big Data platforms
that can be usefully applied to big datasets while boosting both performance and accuracy. We propose a new distributed design
for a FS generic framework based on information theory [16] that is implemented using the Apache Spark paradigm. To make
this adaptation feasible, a wide variety of techniques from the distributed environment have been used, including information

1http://spark.apache.org/docs/latest/mllib-feature-extraction.html#chisqselector
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caching, data partitioning and replication of relevant variables. Note that adapting this framework to Spark implies a major
challenge as it requires deep restructuring of classic algorithms.

To test the effectiveness of our framework, we applied it to a complete set of real-world datasets (up to O(107) features and
instances). The results point to competitive performance (in terms of generalization and efficiency) when dealing with datasets
that are huge in terms of both number of features and instances. As an illustrative example, we were able to select 100 features
in a dataset with 29× 106 features and 19× 106 instances in under 60 minutes (using a 432-core cluster).

The remainder of this paper is organized as follows: Section 2 provides some background information on FS, Big Data, the
MapReduce programming model and other frameworks. Section 3 describes the distributed framework we propose for FS in
Big Data. Section 4 presents and discusses the experiments carried out. Finally, Section 5 concludes the paper.

II. BACKGROUND

Below we briefly introduce FS, discuss the advent of Big Data and its implications and outline the particularities of
MapReduce and the models derived from this framework.

A. Feature selection

FS is a dimensionality reduction technique that tries to remove irrelevant and redundant features from original data. Its goal
is to obtain a subset of features that properly describes a given problem with minimum performance degradation in order to
obtain simpler and more accurate schemes [2].

We can formally define FS as follows: let ei be an instance ei = (ei1, . . . , ein, eiy), where eir corresponds to the r-th
feature value of the i-th sample and eiy corresponds to the value of the output class Y . Let us assume a training set D with
m examples, whose instances ei are formed by a set X of n characteristics or features, and a test set Dt. Sθ ⊆ X is this
defined as a subset of selected features yielded by an FS algorithm.

FS methods can be broadly categorized as [17]:
1) Wrapper methods, which use an evaluation function dependent on a learning algorithm [18]. They are aimed at

optimizing a predictor as part of the learning process.
2) Filtering methods, which use other selection techniques as separability measures or statistical dependences. They only

consider the general characteristics of the dataset, as they are independent of any predictor [19].
3) Embedded methods, which use a search procedure that is implicit in the classifier/regressor [20].
Filtering methods usually result in better generalization due to learning independence. Nevertheless, since they usually select

larger feature subsets, they sometimes require the application of a threshold. Regarding complexity, filters are normally less
costly than wrappers. When the number of features is large (especially the case of Big Data), filtering methods need to be
used as they are much faster than either of the other approaches.

B. Big Data: a two-sided coin

The Internet continues generating quintillions of bytes of data; in 2012, for example, 2.5 exabytes of data were created daily.
A solution for the problem of handling large collections of data is therefore becoming increasingly urgent [21]. Exceptional
technologies are now required to efficiently collect, maintain, transmit and process large datasets within tolerable time intervals.
Extracting relevant information from these collections of data is now one of the most important and complex challenges facing
data analytics research, especially since many knowledge extraction algorithms have been rendered obsolete in the face of such
vast amounts of data.

Big Data, a term coined to describe the exponential growth and availability of data nowadays, has becomes a problem
for classical data analytics. Gartner [22] referred to Big Data in terms of volume, velocity and variety, that is, the 3Vs, to
which a further 2Vs were subsequently added, namely, veracity and value. Information thus defined requires a radically new
approach to large-scale processing. An under-explored but no less important topic is Big Dimensionality in Big Data [23].
This phenomenon, also known as the “Curse of Big Dimensionality”, reflects the explosion of features and the combinatorial
impact of new large incoming datasets with thousands or even millions of features.

Data scientists have generally focused on only one aspect of Big Data, namely, the huge number of instances, while paying
less attention to the features aspect. Big Dimensionality, however, calls for new FS strategies and methods to deal with the
feature explosion problem, reflected in many of the best known dataset repositories in computational intelligence (like UCI or
libSVM [24], [1]), where the dimensionality of most of the newly added datasets is huge [23] (e.g. almost 30 million for the
KDD2010 dataset).

An additional problem is the myriad of feature types and their combinations that are becoming standard in many real-world
scenarios. For instance, multimedia content on the Internet, which represents about 60% of total traffic [25], is transmitted
in thousands of different formats (audio, video, images, etc.). Another example is natural language processing (NLP), where
multiple feature types such as words, n-gram templates, etc., are simultaneously used to produce comprehensible and reliable
models [26].
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Not all features in a problem, however, contribute equally to prediction models and results. FS is thus required, now more
than ever, to ensure fast and cost-effective learning and prediction. Isolating high-value features from a raw set of potentially
irrelevant, redundant and noisy features, while complying with measurement and storage requirements, is a key task in Big
Data research. Although some solutions exist that apply FS techniques to large-scale data [27], most of these solutions are
applied locally. For high-dimensional data, however, new distributed solutions are necessary.

C. Distributed programming models and frameworks: Apache Hadoop and Apache Spark

The MapReduce framework [8] emerged in 2003 as a revolutionary tool for handling Big Data. It was designed by Google
specifically to generate and process large-scale datasets by automatically processing data in a highly distributed way using
large clusters of computers. The framework is in charge of partitioning and managing data, recovering failures, scheduling
jobs and communicating, leaving the programmers with a transparent and scalable tool to easily execute tasks on distributed
systems.2

MapReduce is based on processing in two phases: mapping (Map) and reducing (Reduce). The Map function transforms
key-value pairs into sets of intermediate pairs. The Reduce function merges these intermediate pairs with a matching key, with
the master node splitting the data into chunks and distributing them across nodes for independent processing (in a divide-and-
conquer fashion). Each node next executes the Map function on a given input subset and notifies completion to the master node.
The master node then distributes the matching pairs across the nodes according to a key partitioning scheme that combines
pairs using the Reduce function to form the final output.

Apache Hadoop [9], [10] is an open-source implementation of MapReduce for reliable, scalable, distributed computing.
Despite being a popular open-source implementation of MapReduce, however, Hadoop is not suitable for certain applications,
including online or iterative computing, high inter-process communication paradigms or in-memory computing [29].

In recent years, Apache Spark has been included in the Hadoop ecosystem [11], [12] as a powerful framework that performs
faster distributed computing on Big Data. It does this by using in-memory primitives that allow it to perform 100 times faster
than Hadoop for certain applications. The fact that this platform allows user programs to load data into memory and to make
repeated queries means that it is particularly well suited for online and iterative processing (especially for ML algorithms).
Spark is also versatile in allowing several distributed programming models like Pregel and MapReduce to be implemented.

Spark is based on a distributed data structure called resilient distributed datasets (RDDs). RDDs are an immutable, partitioned
set of records that can be generated by either stored data or other RDDs. There are two types of operations for RDDs:
transformation, which creates a new RDD from another RDD, and action, which returns a record/value to the main program
after a set of operations is applied. Some examples of transformations are map (transform all records) and filter (select records),
whereas count (compute the number of records) and save (write output) are examples of actions. The main difference between
the two operations are when and how they are applied to data. Transformations, lazily applied, are annotated until an action
triggers execution of pending operations in a log called lineage, which removes the need for checkpoints while allowing lost
partitions to be easily recomputed from the log.

Users can also control other distributed features like persistence and data partitioning. For instance, users can cache a dataset
to memory for reuse in further iterations. RDDs can also be persisted on disk if we consider that re-execution may be more
costly than spilling to disk. Finally, placement of key-based data can be optimized by choosing between different Spark schemes
(range or hash) or even using our own partitioner.

Spark primitives extend MapReduce concepts in such a way as to offer much more complex operations that ease code
parallelization. For a full description of Spark operations, see [12]. Here we outline the most relevant operations for our
algorithm:
• mapPartitions: Like Map, this operation independently runs a function on each partition, for each of which an iterator

of tuples is fetched and another of the same type is generated.
• groupByKey: This operation (using a shuffle operation) groups tuples with the same key in a single vector of values.
• sortByKey: This operation is a distributed version of merge-sort.
• broadcast: This operation, normally used for large permanent variables (such as big hash tables), keeps a read-only copy

of a given variable on each node rather than shipping a copy to each task.
Note that groupByKey and sortByKey imply a complete redistribution of data across the network. This operation, known

as shuffling, is complex and costly and so should be avoided if at all possible.
Finally, created as a Spark subproject was a scalable ML library called MLlib [14], [30], composed of common learning

algorithms and statistical utilities. Its main functionalities include classification, regression, clustering, collaborative filtering,
optimization and dimensionality reduction (mostly feature extraction).

III. FEATURE SELECTION FILTERING FOR BIG DATA

An information theory-based framework that includes many common FS filtering algorithms has been proposed by Brown et
al. [16] that proves that algorithms like minimum redundancy-maximum relevance (mRMR) and other algorithms are special

2For a exhaustive review of MapReduce and similar programming frameworks, see [28].
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cases of conditional mutual information (CMI) when certain specific independence assumptions are made about both the class
and the features (further details below). Here we demonstrate that these criteria are not only a sound theoretical formulation,
but also fit well with modern Big Data platforms and allow us to distribute several FS methods and their complexity across a
cluster of machines.

We now describe how we redesigned this framework for a distributed paradigm. Our framework contains a generic imple-
mentation of several information theory-based FS methods – including mRMR, conditional mutual information maximization
(CMIM) and joint mutual information (JMI) – that, furthermore, have been designed to integrate in the Spark MLlib library.
The framework can also be extended with other criteria provided by the user as long as it complies with the guidelines proposed
by Brown et al. [16].

Below we first briefly present this framework and explain its adaptation to the Big Data environment. We then describe in
detail how the selection process and the underlying information theory operations were implemented in a distributed manner
using Spark primitives.

A. Information theory-based filter methods

Information measures tell us how much information has been acquired by the receiver when sent a message [31]. In predictive
learning, we associate the message with the output feature in classification.

A commonly used uncertainty function is mutual information (MI) [32], which measures the amount of information one
random variable contains about another, in other words, it expresses the reduction in the uncertainty of one random variable
due to knowledge of the other variable:

I(A;B) = H(A)−H(A|B)

=
∑
a∈A

∑
b∈B

p(a, b) log
p(a, b)

p(a)p(b)
.

(1)

where A and B are two random variables with marginal probability mass functions p(a) and p(b), respectively, p(a, b) is the
joint mass function and H is the entropy.

MI can likewise be conditioned to a third random variable. Thus, CMI is denoted as:

I(A;B|C) = H(A|C)−H(A|B,C)

=
∑
c∈C

p(c)
∑
a∈A

∑
b∈B

p(a, b, c) log
p(a, b, c)

p(a, c)p(b, c)
.

(2)

where C is a third random variable with marginal probability mass function p(c) and where p(a, c), p(b, c) and p(a, b, c) are
the joint mass functions.

Filtering methods are based on a quantitative criterion or index, also known as the relevance index or scoring. This index
measures the usefulness of each feature for a specific classification problem. Through the relevance of a feature for the
class (self-interaction), we can rank features and select the most relevant ones. However, features can also be ranked using a
more complex criterion such as whether it is more redundant than another feature (multi-interaction). For instance, redundant
features (variables that carry similar information) can be discarded using the MI criterion [33]:

Jmifs(Xi) = I(Xi;Y )− β
∑
Xj∈S

I(Xi;Xj),

where S ⊆ Sθ is the current set of selected features and β is a weight factor. Considered is the MI between each candidate
Xi 6∈ S and the class. Also introduced is a penalty proportional to the redundancy, calculated as the MI between the current
set of selected features and each candidate feature.

A wide range of methods have been described in the literature that are built on these information theory measures. To
homogenize use of all the criteria, Brown et al. [16] proposed a generic expression that allows multiple information theory
criteria to be ensembled in a single FS framework, based on a greedy optimization process that assesses features using a simple
scoring criterion. Through certain independence assumptions, many criteria can be transformed as linear combinations of the
Shannon entropy terms MI and CMI [32]. In some cases, more complex criteria are expressed as non-linear combinations
of these terms (e.g. max or min). For a detailed description of the transformation processes, see [16]. The generic formula
proposed by Brown et al. [16] is as follows:

J = I(Xi;Y )− β
∑
Xj∈S

I(Xj ;Xi) + γ
∑
Xj∈S

I(Xj ;Xi|Y ), (3)

where γ represents a weight factor for the conditional redundancy component.
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The formula can be divided into three components, representing the relevance of a feature Xi, the redundancy between two
features Xi and Xj and the conditional redundancy between two features Xi, Xj and the class Y . Through the aforementioned
assumptions, many criteria were re-written by the authors [16] to fit the generic formulation in such a way that all the methods
could be implemented using a slight variation on this formula. For a comprehensive list of adapted FS methods, see [16].

B. Feature selection filtering framework for Big Data

We now describe the proposed FS filtering framework for Big Data using distributed operations, outlining the main changes
made to adapt the classical approach to the new Big Data environment. We also analyze the implications arising from
the distributed implementation of Equation 3 and the complexity arising from parallelization of the core operations of this
expression, namely, MI and CMI.

Beyond implementation in Spark, we re-designed Brown’s framework [16] by making improvements to the classical approach
while maintaining certain features:
• Columnar transformation: The access pattern presented by most FS methods is feature-wise, in contrast to many other

ML algorithms, which are instance-wise (they operate on rows). Although this may be considered a minor issue, it can
significantly degrade performance since the natural way to compute relevance and redundancy in FS methods is normally
via columns. This issue is especially important for distributed frameworks like Spark, where the data partitioning scheme
has a significant impact on performance.

• Broadcasting: Once all features values have been grouped and partitioned into different partitions, data shift has to be
minimal to avoid superfluous network and CPU usage. If the MI process is performed locally in each partition, the overall
algorithm will run efficiently (almost linearly). Data shift is minimized by replicating the output feature and the last
selected feature in each iteration.

• Pre-computed data caching: The first term in the generic criterion of Equation 3 is relevance, which basically implies
calculating MI for all the input features and the output (relevance). This operation is performed once at the start of
our algorithm, then cached to be re-used in subsequent evaluations of Equation 3. Likewise, subsequent marginal and
joint proportions derived from these operations are also kept so as to omit some computations. This also helps isolate
redundancy computation by feature as it replicates permanent information in all nodes.

• Greedy approach: Brown et al. [16] proposed a greedy search process in which only one feature is selected in each
iteration. This approach transforms the quadratic complexity of typical FS algorithms into a more manageable complexity
determined by the number of features to select.

1) Main FS algorithm: Algorithm 1 is the main FS algorithm, in charge of deciding which feature to select in a sequential
manner. Roughly speaking, it calculates the initial relevance for all the features, and then iterates to select the best features
according to Equation 3 and the underlying MI and CMI values.

Algorithm 1 Main FS algorithm
Input: D Dataset, an RDD of samples.
Input: ns Number of features to select.
Input: npart Number of partitions to set.
Input: cindex Index of the output feature.
Output: Sθ Index list of selected features
Dc ← columnarTransformation(D,ns, npart)
ni← D.nrows;nf ← D.ncols
REL← computeRelevances(Dc, cindex, ni)
CRIT ← initCriteria(REL)
pbest ← CRIT.max
sfeat← Set(pbest)
while |S| < |Sθ| do

RED ← computeRedundancies(Dc, pbest.index)
CRIT ← updateCriteria(CRIT,RED)
pbest ← CRIT.max
sfeat← addTo(pbest, sfeat)

end while
return(sfeat)

The first step consists of transforming the data into columnar format. Once the data matrix is transformed, the algorithm
obtains the relevance for each feature in X , initializing the criterion value (partial result according to Equation 3) and creating
an initial ranking of the features. Relevance values are saved as part of the previous expression and are re-used in subsequent
steps to update the criteria. The most relevant feature, pbest, is then selected and added to the set sfeat, initially empty.
The iterative phase begins by calculating MI and CMI for pbest, each candidate Xi and Y . The resulting values update the
accumulated redundancies (simple and conditional) of the criteria. In each iteration, the most relevant candidate features are
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selected as the new pbest and are added to sfeat. The loop ends once ns features (where ns = |Sθ|) have been selected or
when no more features remain to be selected.

2) Distributed operations: columnar transformation and MI computation: MI and CMI are undoubtedly the costliest
operations to estimate in information theory-based FS. With huge datasets, these operations become impossible to calculate
sequentially as the number of combinations grows. Below we describe how these calculations are parallelized as a set of
distributed operations (explained in Section II-C). For all the algorithms described below, RDD variables are written in uppercase
to distinguish them from ordinary variables.

Columnar transformation
As mentioned previously, the column-wise format is much more manageable for FS filtering methods than the row-

wise format. Algorithm 2 explains this transformation, carried out as the first step in our algorithm. The idea behind this
transformation is to transpose the local data matrix provided by each partition. This operation maintains the partitioning
scheme without incurring in a high shuffling overhead. Additionally, once data are transformed, they can be cached and re-
used in the subsequent loop. The result of this operation is a new matrix, with one row per feature, that generates a tuple,
where k represents the feature index, part.index is the index of the partition (henceforth the block index) and matrix(k) is
the local matrix for this feature block.

Algorithm 2 Function that transforms row-wise data into a column-wise format (columnarTransformation)
Input: D Dataset, an RDD of samples.
Input: nf Number of features.
Input: npart Number of partitions to set.
Output: Column-wise data (RDD of feature vectors).

1: Dc ←
2: map partitions part ∈ D
3: matrix← new Matrix(nf)(part.length)
4: for j = 0 until part.length do
5: for i = 0 until nf do
6: matrix(i)(j)← part(j)(i)
7: end for
8: end for
9: for k = 0 until nf do

10: EMIT < k, (part.index,matrix(k)) >
11: end for
12: end map
13: return(Dc.sortByKey(npart))

In order to benefit from data locality, the algorithm allocates all instances of the same feature to a specific set of partitions
(if possible, to just one partition). To do that, the new instances are sorted by key, with the number of partitions limited to
npart. In subsequent phases, the partitions are mapped with the aim of generating a number of histograms per feature that
count the number of occurrences by combination.

Choosing the right number of partitions is important for the next steps. If npart is equal to or less than the number of
features, then the number of total histograms per feature will be two at most; otherwise, the total number of histograms can be
high, since the same feature can be distributed across many partitions (more than two). We recommend setting this parameter
to, at most, 2× the number of features.

Figure 1 depicts this process using a small example with eight instances and four features. This figure shows how the
algorithm generates a block for each feature in each partition and how all blocks are sorted by feature in order to place them
in the same partitions.

Computing relevance
Algorithm 3 describes how to compute relevance (MI) for all the input features and Y (as expressed in Equation 1). The

design as an initialization method means that all variables in this function can be used in the subsequent algorithms. For example,
the number of different values for each feature is first computed and saved as counter (to limit the size of histograms).

The main idea behind relevance and redundancy functions is that calculations for each feature are performed independently.
This is done by distributing only the single variables (pbest and Y ) across the cluster and leveraging for the data locality
property. The first step consists of collecting all blocks of Y from the data and putting them in a single vector for broadcasting
(bycol). Histograms for all the candidate features with respect to Y are then calculated in getHistograms (explained below).
This function is common to both the relevance and redundancy phases. Three-dimensional histograms are computed between
all the non-selected features and two secondary variables for redundancy, and between all the non-selected features and one
variable for relevance. 3 Joint and marginal proportions are generated from the resulting histograms using matrix operations, that
is, by aggregating proportions by row (marginal) and by computing joint for joint proportions (joint). Using this information
we can now obtain the MI value for each candidate feature.

3For relevance, the null value is used to represent the lack of the second variable.
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Fig. 1: Columnar transformation scheme. F and I indicate features and instances, respectively. Each rectangle on the left
represents a single register in the original dataset and each rectangle on the right represents a transposed feature block in the
new columnar format.

Algorithm 3 Compute mutual information between the set of features X and Y . (computeRelevances)
Input: Dc RDD of tuples (index, (block, vector)).
Input: yind Index of Y .
Input: ni Number of instances.
Output: MI values for all input features.

1: ycol← Dc.lookup(yind)
2: bycol← broadcast(ycol)
3: counter ← broadcast(getMaxByFeature(Dc))
4: H ← getHistograms(Dc, yind, bycol, null, null)
5: joint← getProportions(H,ni)
6: marginal← getProportions(aggregateByRow(joint), ni)
7: return(computeMutualInfo(H, yind, null))

Computing redundancy
Simple and conditional redundancy are computed between pbest, each candidate feature Xi and Y . Conditional redundancy

introduces a third conditional variable (Y ), following the formula I(Xj ;Xi|Y ) (Equation 2).
The operation is repeated until we obtain the number of features specified as a parameter. Algorithm 4, an extension of

relevance computation (Algorithm 3), depicts this process. Blocks for pbest are obtained from the RDD and broadcast to all
the nodes. The getHistograms function is called up with two variables in order to obtain the histograms for all the candidate
features with respect to pbest and Y . Note that the vector for Y is already available from the redundancy computation phase.
Finally, both types of redundancy are computed using the function that computes MI and CMI (computeMutualInfo).

Algorithm 4 Compute CMI and MI between pbest, the set of candidate features, and Y . (computeRedundancies)
Input: Dc RDD of tuples (index, (block, vector)).
Input: jind Index of pbest.
Output: CMI values for all input features.

1: jcol← Dc.lookup(jind)
2: bjcol← broadcast(jcol)
3: H ← getHistograms(Dc, jind, bjcol, yind, bycol)
4: return(computeMutualInfo(H, jind, yind))

Histograms creation
Algorithm 5 computes 3-dimensional histograms for the set of candidate features with respect to pbest and Y and subsequently

computes MI and CMI. When no conditional variable is provided, this yields histograms whose third dimension is equal to
one.

The first two lines return the dimensions for the pbest and Y variables using counter (Algorithm 1). A mapping operation
on each partition is launched on the dataset that iterates over the blocks derived from the columnar transformation. Each tuple
is formed of a key (the index of a candidate feature) and a value with an index block and the corresponding feature array
((k, (block, v))). For each instance, a matrix is initialized to zero and then incremented by one, according to the value for
each combination of pbest, Xi, and Y . Single features (pbest and Y ) are broadcast in the form of matrices, whose first and
second axes indicate, respectively, the block index and the partial index of the value in this block. This updating operation
is repeated to the end of the feature vector, after which a new tuple is emitted with the feature index as the key and the
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Algorithm 5 Function that computes 3-dimensional histograms between pbest, the set of candidate features, and Y for CMI;
or between the set of candidate features, and Y for MI. (getHistograms)
Input: Dc RDD of tuples (index, (block, vector)).
Input: jind Index of Y or pbest.
Input: yind Index of feature Y (can be empty).
Input: jcol Values for Y or pbest, a broadcast matrix.
Input: ycol Values for Y , a broadcast matrix (can be empty).
Output: Column-wise dataset (RDD of feature vectors).

1: jsize← counter(jind)
2: ysize← counter(yind)
3: H ←
4: map partitions part ∈ partitions
5: for (k, (block, v))← part do
6: isize← counter(k)
7: m← newMatrix(ysize)(isize)(jsize)
8: for e = 0 until v.size do
9: j ← jcol(block)(e); y ← ycol(block)(e); i← v(e)

10: m(y)(i)(j)+ = 1
11: end for
12: EMIT < k,m >
13: end for
14: end map
15: return(H.reduceByKey(sum))

resulting matrix as the value (< k,m >). The mapping operation continues with ensuing blocks until the partition is finished.
The final histograms are then aggregated by summation. This aggregation process will remain simple as long as the number
of histograms per partition is small – which is normally the case, as a single partition usually contains all the blocks for the
same feature. This is why it is important, as explained above, to reduce the number of histograms by adjusting the number of
partitions.

Figure 2 depicts the histogram creation process using a simple example, showing how the algorithm generates one histogram
for each partition and feature. In this case, the number of partitions corresponds to the number of features, so only one histogram
is generated per feature.

Fig. 2: Histogram creation scheme. F and I indicate features and instances, respectively. The white rectangles each represent
a single feature block in the columnar format and the black rectangles represent marginal and joint proportions for single
variables, broadcast across the cluster.

MI and CMI computations
Algorithm 6 details the process that unifies computation of MI and CMI. The algorithm takes as input the indices of

single variables (Y or pbest for MI, and both for CMI) and all previously computed histograms. Before launch, the algorithm
broadcasts the marginal and joint matrices that correspond to these variables and sends this information to the nodes, as this
information is already computed and cannot be computed independently from the previous histograms.

A mapping phase is then launched for each histogram tuple, consisting of a given feature index as the key and a 3-dimensional
matrix as the value. The algorithm generates the MI and CMI values for all combinations of histograms and single variables
(see Equations 1 and 2). First, however, it is necessary to compute the marginal proportions for the set of candidate features
as well as the joint proportions between each Xi and Y and each Xi and pbest (using the matrix operations described in
Algorithm 3). Once all joint and marginal proportions are calculated, a loop starts over all combinations to compute the
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Algorithm 6 Calculate MI and CMI for the set of histograms with respect to Y or pbest for MI, and both variables for
CMI. (computeMutualInfo)
Input: H Histograms, an RDD of tuples (index, matrix).
Input: bind Index of feature pbest.
Input: cind Index of feature Y (can be empty).
Output: MI and CMI values.

1: bprob← broadcast(marginal(bind))
2: cprob← broadcast(marginal(cind))
3: bcprob← broadcast(joint(bind))
4: MINFO ←
5: map (k,m) ∈ H
6: aprob← computeMarginal(m)
7: abprob← computeJoint(m, bind)
8: acprob← computeJoint(m, cind)
9: for c = 0 until getSize(m) do

10: for b = 0 until getnRows(m(c)) do
11: for a = 0 until getnCols(m(c)) do
12: pc← cprob(c)
13: pabc← (m(c)(a)(b)/ninstances)/pc
14: pac← acprob(c)(a); pbc← bcprob(c)(b)
15: cmi + = conditionalMutualInfo(pabc, pac, pbc, pc)
16: if c == 0 then
17: pa← xprob(a)
18: pab← abprob(a)(b); pb← yprob(b)
19: mi + = mutualInfo(pa, pab, pb)
20: end if
21: end for
22: end for
23: end for
24: EMIT < k, (mi, cmi) >
25: end map
26: return(MINFO)

proportion pabc (which comes directly from the histogram) and the final result for each combination. These results are then
aggregated to obtain the overall MI and CMI values for each feature.

Fig. 3: MI computations. F indicates features and the matrices depict the histograms for each feature. The black rectangles
represent broadcast joint and marginal probabilities.

Figure 3 depicts the MI process that is launched once all histograms have been computed. Each partition generates a histogram
for each feature it contains. Histograms for the same feature are aggregated to obtain a single final histogram. Only marginal
and joint proportions that cannot be computed independently from each histogram are broadcast. Using the histograms and
broadcast variables, MI and CMI are independently computed per feature.

3) High-dimensional and sparse versions: The above algorithms work well with tall-and-skinny data, formed of a small
number of features and a large number of instances. However, complexity grows horizontally for sparse datasets characterized
by a large number of features and a variable number of instances with an undefined number of non-zero indexed elements.
The algorithms affected by this issue are columnar transformation (Algorithm 2) and histogram creation (Algorithm 5). The
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remaining code remains unchanged except that the structure of data is reduced to a single vector (in the form (index, vector)).
Since only one histogram is generated per feature, the block index is excluded from this structure.

Algorithm 7 describes a new model of processing that transposes data directly, generating single vectors for each feature.
Sparsity is maintained in sparse vectors while the index of the original instance is used as the key. The algorithm generates a
tuple for each value, in such a way that the key is formed of the feature index and the value is formed of the instance index
and the value itself. Tuples are all grouped by key to create a single sparse vector (formed of sorted key-value tuples).

Algorithm 7 Function that transforms row-wise data into column-wise data (sparse version) (sparseColumnar)
Input: D Dataset, an RDD of sparse samples.
Input: npart Number of partitions to set.
Output: Column-wise dataset (feature vectors).

1: Dc ←
2: map reg ∈ D
3: ireg ← reg.index
4: for i = 0 until reg.length do
5: EMIT < reg(i).key, (ireg, reg(i).value) >
6: end for
7: end map
8: Dc ← Dc.groupByKey(npart).mapV alues(vectorize)

As for histogram creation, the partition mapping operation is now replaced by a mapping operation applied to each previously
generated feature vector. Algorithm 8, which describes this process, is similar to Algorithm 5, with the caveat that only one
histogram is yielded for each feature; hence, no reducing operation is necessary.

Algorithm 8 Function that computes 3-dimensional histograms for the set of features Xi with respect to features pbest and Y
(sparse version). (sparseHistograms)
Input: Dc Dataset, an RDD of tuples (Int, (Int, Vector)).
Input: jind Index of Y or pbest.
Input: yind Index of feature Y (can be empty).
Input: jcol Values for Y or pbest, a broadcast matrix.
Input: ycol Values for Y , a broadcast matrix (can be empty).
Output: Column-wise dataset (RDD of feature vectors).

1: jsize← counter(jind); ysize← counter(yind)
2: jyhist← frequencyMap(jind, yind)
3: zhist← frequencyMap(yind)
4: H ←
5: map (k, v) ∈ Dc

6: isize← counter(k)
7: m← newMatrix(ysize)(isize)(jsize)
8: for e = 0 until v.size do
9: j ← jcol(e); y ← ycol(e)

10: i← v(e)
11: if j <> 0 then
12: jyhist(j)(y) = jyhist(j)(y)− 1
13: end if
14: m(y)(i)(j)+ = 1
15: end for
16: for ((j, y), q)← jyhist do
17: m(y)(0)(j)+ = q
18: end for
19: for (y, q)← yhist do
20: m(y)(0)(0)+ = yhist(y)− sum(mat(y))
21: end for
22: EMIT < k,m >
23: end map
24: return(H)

Unlike what happens in the dense version, to avoid visiting all possible sparse feature combinations, the matrix generation
process is adapted, using, as much as possible, accumulators to compute combinations formed by zeros. As accumulators, the
algorithm calculates the class histogram for the conditional variable and the joint class histogram for the parametric variables
jind and yind. A loop is first started for those combinations in which the first variable (i) is not equal to zero (the procedure is
the same as in the dense version). If the second variable (j) is equal to zero, then the frequency counter (in the joint histogram)
for the combination is reduced by one. If j is not equal to zero, then the algorithm completes the matrix with the frequencies
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in the joint histogram. Finally, when both variables (j and y) are equal to zero, the matrix is updated with the remaining
occurrences for all classes.4 The outcome is the feature index and the aforementioned matrix.

4) Algorithm complexity: As mentioned earlier, the FS algorithm performs a greedy search which stops once the condition de-
fined as input is reached. Beyond this point, the sequential algorithm is influenced by the set of distributed algorithms/operations
as presented above. The distributed primitives used in these algorithms need to be analyzed to check the complexity of the full
proposal. Note that the first operation (columnar transformation) is quite time-consuming as it makes great use of the network
and memory when shuffling the data (wide dependency). However, once data have a known partition, they can be re-used in
subsequent phases (leveraging the data locality property). This transformation is performed once at the start or can even be
omitted if data are already in columnar format. The list of distributed operations in this algorithm are described as follows:
• Algorithm 2: This algorithm starts with a mapPartitions operation that transposes the local matrix contained in the partition

and emits a tuple for each feature (in a linear distributed order). The total number of tuples is n multiplied by the number
of original partitions. These tuples are then shuffled across the cluster and each subset is locally sorted (in a log-linear
distributed order).

• Algorithm 3-4: The first operation for both algorithms is to retrieve a single column (feature) using the lookup primitive (in
a linear distributed order). Since the data are already partitioned, the operation efficiently only looks at the right partition.
This variable is then broadcast to all the nodes, sending a single feature (m values) across the network. The following
operations (histograms and MI computations) are described below.

• Algorithm 5: This algorithm is a simple mapReduce operation whereby the previously generated tuples are transformed to
local histograms and then reduced to the final histograms by feature. This mapping operation consists of a linear function
(O(m)) that fetches the data contained in each local matrix.

• Algorithm 6: This operation starts by broadcasting three single values (proportion values). For each feature, three linear
operations are launched to compute extra probabilities. The MI values are then computed by fetching the entire 3D-
histogram (in a cubic linear order). Note that the complexity of all these operations is bounded by the cardinality of the
features included in the histogram.

IV. EXPERIMENTAL FRAMEWORK AND ANALYSIS

This section describes experiments that evaluate the proposed FS framework applied to a set of real-world problems that
are huge in terms of both features and instances.

A. Datasets and methods

We used five classification datasets to measure the quality and usefulness of our FS framework implementation for Spark.
We classified these datasets into two groups: dense (large number of samples) and sparse (high-dimensional datasets). For the
sparse datasets, the high-dimension version described in Section III-B3 was used.

The first dataset ECBDL14, used as a reference dataset at the international GECCO-2014 conference, consists of 631 features
(including both numerical and categorical attributes) and 32 million instances. In this binary classification problem the class
distribution is imbalanced, with 98% of negative instances. To this imbalanced problem, we applied the MapReduce version
of the Random OverSampling (ROS) algorithm [34] (henceforth we will use ECBDL14 to refer to the ROS version). Another
dataset used was dna, consisting of 50 000 000 instances and 201 discrete features and created in 2008 for the Pascal Large
Scale Learning Challenge.5 Only the training set was used for our experiments; since the test set does not contain the class
labels, the training set was used to generate both subsets (using an 80/20 hold-out data split). The ROS technique was also
applied to this dataset (henceforth dna) since this problem is also imbalanced between classes. The remaining datasets (epsilon,
url and kddb) come from the LibSVM dataset repository [1]. These datasets and their descriptions can be found in the project’s
website.6 Table I provides summary details of these datasets.

TABLE I: Summary description of five datasets, indicating the number of examples for training and test sets (#Train Ex., #Test
Ex.), the total number of attributes (#Atts.), the number classes (#Cl) and the sparsity condition (Sparse).

Data Set #Train Ex. #Test Ex. #Atts. #Cl. Sparse
epsilon 400 000 100 000 2000 2 No
dna 79 739 293 10 000 000 200 2 No
ECBDL14 65 003 913 2 897 917 630 2 No
url 1 916 904 479 226 3 231 961 2 Yes
kddb 19 264 097 748 401 29 890 095 2 Yes

4The class vector is always dense
5http://largescale.ml.tu-berlin.de/summary/
6http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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As an FS benchmark method, we used the mRMR algorithm [35] since it is one of the most cited selectors in the literature.
Note that the FS algorithm chosen to test performance did not affect the time results yielded by the framework since all criteria
were computed in the same way.

For the comparison study, we used Support Vector Machines (SVM) [36], and Naive Bayes [37] as the classifiers. For our
experiments, we used the distributed versions of these algorithms implemented in the MLlib library [14]. The parameters of
the classifiers, as recommended in the authors’ specifications [14], are shown in Table II. For all executions, the datasets were
cached in memory as SVM and our method used iterative processes. The level of parallelism (number of partitions) was set
to 864, twice the total number of cores available in the cluster.7

TABLE II: Parameters of the used classifiers

Method Parameters
Naive Bayes lambda = 1.0
SVM stepSize = 1.0, batchFraction = 1.0, regularization = 1.0, iterations = 100

mRMR level of parallelism = 864

A Spark package associated with this research can be found in the third-party Spark Repository: http:// spark-packages.org/
package/sramirez/spark-infotheoretic-feature-selection. This software was designed for integration in the MLlib Library and
has an associated JIRA issue to discuss its integration in this library: https:// issues.apache.org/ jira/browse/SPARK-6531.

We used two common evaluation metrics to assess the quality of the resulting FS schemes: Area under the Receiver Operating
Characteristic Curve (AUROC, henceforth AUC) to evaluate classifier accuracy, and training modeling time to evaluate FS
performance.

B. Cluster configuration

For all the experiments we used a cluster composed of eighteen computing nodes and one master node. The computing
nodes had the following characteristics: 2 processors x Intel Xeon CPU E5-2620, 6 cores per processor, 2.00 GHz, 15 MB
cache, QDR InfiniBand Network (40 Gbps), 2 TB HDD, 64 GB RAM. We used the following configuration for the software:
Hadoop 2.5.0-cdh5.3.1 from Cloudera’s open-source Apache Hadoop distribution,8 HDFS replication factor 2, HDFS default
block size 128 MB, Apache Spark and MLlib 1.2.0, 432 cores (24 cores/node), 864 RAM GB (48 GB/node).

Both the HDFS and Spark master processes (the HDFS NameNode and the Spark Master) were hosted in the main node.
The NameNode controlled the HDFS and coordinated the slave machines by means of their respective DataNode daemons.
The Spark Master controlled all the executors in each worker node. Spark used the HDFS file system to load and save data
in the same way as the Hadoop framework.

C. Results analysis

For the evaluation of the time employed by our implementation to rank the most relevant features, Table III presents the
results obtained by our algorithm using different ranking thresholds (number of selected features).

TABLE III: Selection time by dataset and threshold (in seconds)

# Features kddb url dna ECBDL14 epsilon
10 283.61 94.06 97.83 332.90 111.42
25 774.43 186.22 148.78 596.31 173.39
50 1365.82 333.70 411.84 1084.58 292.07
100 2789.55 660.48 828.35 2420.94 542.05

As can be observed, our algorithm yielded competitive results in all cases, irrespective of the number of iterations (represented
by the threshold value). Regarding the datasets with the highest data volumes, namely, kddb (ultra-high-dimensionality) and
ECBDL14 (with a huge number of samples), our method was able to rank 100 features in under 60 minutes.

We conducted a comparison study between our distributed version and the sequential version developed by Brown’s lab.9.
Samples from dna were generated with different ratios of instances in order to study the scalability of our approach in comparison
with the sequential version.10 The level of parallelism was set to 200 in the distributed executions as so to facilitate comparison
between the distributed version with one core per feature and the sequential version with just a single core.

Table IV and Figure 4 show the time results for our distributed versions compared to the sequential version. In the latter,
the last two values (highlighted in italics) were estimated using linear interpolation since they could not be computed due to
memory problems. Table IV indicates that our distributed version outperformed the sequential approach in all cases. What was
especially remarkable was that the largest dataset achieved the maximum speedup rate (29.83).
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TABLE IV: Selection times (sequential vs. distributed approaches) in seconds.

# Examples Sequential Distributed Speedup
1 000 000 450.00 425.56 1.06
5 000 000 2 839.72 508.41 5.59
40 000 000 23 749.77 828.35 28.67
80 000 000 47 646.97 1 597.26 29.83

Fig. 4: Selection times (sequential vs. distributed approaches)

Finally, as an additional study of scalability we varied the number of cores, using ECBDL14 (the largest dense dataset)
as a reference and using the same parameters as in the previous study. Figure 5, which depicts how our method performed
depending on the number of cores (10 to 100), reveals logarithmic behavior as the number of cores increased. Note that for
just 10 cores not all memory was available.

Fig. 5: Selection time by number of cores in the distributed approach (in seconds).

D. Classification results analysis

We also analyzed the usefulness of our FS solution when applied to large-scale classification. Figures 6 and 7 show the
accuracy results for SVM and Naive Bayes using different FS schemes. All the datasets described in Table I were used in this
study except kddb because those classifiers were not designed to work with such great dimensionality.

Figure 7 points to an important improvement when FS was used for url and epsilon. In contrast, the fact that the impact
for dna and ECBDL14 was negligible can be explained by their high imbalance ratio or small number of features. Figure 6
presents similar results, except that the improvement for the url dataset was much smaller.

7The Spark creators recommend using 2-4 partitions per core: http://spark.apache.org/docs/latest/programming-guide.html#parallelized-collections
8http://www.cloudera.com/content/cloudera/en/documentation/cdh5/v5-0-0/CDH5-homepage.html
9FEAST toolbox (python version): http://www.cs.man.ac.uk/∼gbrown/software/
10The sequential version was executed in one node of our cluster with the aforementioned characteristics.
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Fig. 6: AUC results for NaiveBayes using different thresholds

Fig. 7: AUC results for SVM using different thresholds

Beyond AUC, the time employed to create a classification model is quite important in many large-scale problems. Figures 8
and 9 show classification times for the training phase for different datasets and thresholds. The results demonstrate that the
simplicity and performance of the generated models was improved after applying FS, most especially for SVM, which requires
more time for modeling than Naive Bayes.

Fig. 8: NaiveBayes classification times for the training phase using different thresholds (in seconds)

The performance results demonstrate that our solution is capable of selecting features in a competitive time interval when
applied to datasets that are huge- in both number of instances and features. The results also demonstrate the superiority of our
distributed approach to FS over the sequential approach.

Furthermore, using our selection schemes, the classifiers yield better results in most cases, and at least similar results in the
other cases. Note that, in all the studied cases, our model was much simpler and faster despite using a small percentage of the
original set of features.
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Fig. 9: SVM classification times for the training phase using different thresholds (in seconds)

V. CONCLUSIONS

In discussing the problem of processing Big Data, especially from the perspective of dimensionality, we have highlighted the
impact of correctly identifying relevant features in datasets and the corresponding difficulties caused by the combinatorial effects
of incoming data growing in terms of both instances and features. Despite the growing interest in dimensionality reduction for
Big Data, few FS methods have been developed to date that can adequately deal with high-dimensionality problems.

Adopting an information theory approach, we adapted a generic FS framework for Big Data from a proposal by Brown et
al. [16]. The framework contains implementations of many state-of-the-art FS algorithms, including mRMR and JMI. The
adaptation entailed a radical redesign of Brown et al.’s framework so as to adapt it to a distributed paradigm. This research has
also resulted in contributing an FS module to the emerging Spark and MLlib platforms, which, to date, included no complex
FS algorithm.

Our experimental results demonstrate the usefulness of our FS solution applied to a broad set of large real-world problems.
Our solution performed well with two dimensions of Big Data (samples and features) and yielded competitive performance
results in dealing with both ultra-high-dimensionality datasets and datasets with a huge number of samples. Our distributed
approach consistently outperformed the sequential version, enabling the resolution of problems that could not be usefully
resolved using the classical approach.

Future research will focus on the following:
• Designing new information theory-based approaches for high-speed data streams and also extending these approaches to

the handling of drifts in concepts.
• Analyzing the impact of approximative selection on high-dimensional data via faster solutions that do not incur a high

penalty on accuracy.
• Designing a new fully automatic FS system that selects the most relevant subset of features from a full set of features,

thereby eliminating the need to define the number of features to select in each execution.
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