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Abstract
The large amounts of data have created a need for new frameworks for processing. The
MapReduce model is a framework for processing and generating large-scale datasets
with parallel and distributed algorithms. Apache Spark is a fast and general engine for
large-scale data processing based on the MapReduce model. The main feature of Spark
is the in-memory computation. Recently a novel framework called Apache Flink has
emerged, focused on distributed stream and batch data processing. In this paper we
perform a comparative study on the scalability of these two frameworks using the
corresponding Machine Learning libraries for batch data processing. Additionally we
analyze the performance of the two Machine Learning libraries that Spark currently has,
MLlib and ML. For the experiments, the same algorithms and the same dataset are
being used. Experimental results show that Spark MLlib has better perfomance and
overall lower runtimes than Flink.
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Introduction
With the always growing amount of data, the need for frameworks to store and process
this data is increasing. In 2014 IDC predicted that by 2020, the digital universe will be 10
times as big as it was in 2013, totaling an astonishing 44 zettabytes [1]. Big Data is not
only a huge amount of data, but a new paradigm and set of technologies that can store
and process this data. In this context, a set of new frameworks focused on storing and
processing huge volumes of data have emerged.
MapReduce [2] and its open-source version Apache Hadoop [3, 4] were the first dis-

tributed programming techniques to face Big Data storing and processing. Since then,
several distributed tools have emerged as consequence of the spread of Big Data. Apache
Spark [5, 6] is one of these new frameworks, designed as a fast and general engine for
large-scale data processing based on in-memory computation. Apache Flink [7] is a novel
and recent framework for distributed stream and batch data processing that is getting a
lot of attention because of its streaming orientation.
Most of these frameworks have their own Machine Learning (ML) library for Big Data

processing. The first one was Mahout [8] (as part of Apache Hadoop [3]), followed by
MLlib [9] which is part of Spark project [5]. Flink also has its ownML library that, while it
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is not as powerful or complete as Spark’s MLlib, it is starting to include some classic ML
algorithms.
In this paper, we present a comparative study between the ML libraries of these two

powerful and promising frameworks, Apache Spark and Apache Flink. Our main goal is
to show the differences and similarities in performance between these two frameworks
for batch data processing. For the experiments, we use two algorithms present in both
ML libraries, Support Vector Machines (SVM) and Linear Regression (LR), on the same
dataset. Additionally, we have implemented a feature selection algorithm to compare the
different functioning of each framework.

Background
In this section, we describe the MapReduce framework and two extensions of it, Apache
Spark and Apache Flink.

MapReduce

MapReduce is a framework that has supposed a revolution since Google introduced it
in 2003 [2]. This framework processes and generates large datasets in a parallel and dis-
tributed way. It is based on the Divide and Conquer algorithm. Briefly explained, the
framework splits the input data and distributes it across the cluster, then the same opera-
tion is performed on each split in parallel. Finally, the results are aggregated and returned
to the master node. The framework manages all the task scheduling, monitoring and
re-executing in case of failed tasks.
The MapReduce model is composed of two phases: Map and Reduce. Before the Map

operation, the master node splits the dataset and distributes it across the computing
nodes. Then the Map operation is performed to every key-value pair to the node local
data. This produces a set of intermediate key-value pairs. Once all Map tasks have fin-
ished, the results are grouped by key and redistributed so that all pairs belonging to one
key are in the same node. Finally, they are processed in parallel.
The Map function takes data structured in <key, value> pairs as input and outputs a

set of intermediate <key, value> pairs:

Map(< key1, value1 >) → list(< key2, value2 >) (1)

The result is grouped by key and distributed across the cluster. The Reduce phase
applies a function to each list value, producing a single output value:

Reduce(< key2, list(value2) >) →< key2, value3 > (2)

Apache Hadoop [3, 4] has become the most popular open-source framework for large-
scale data storing and processing based on the MapReduce model. Despite its popularity
and performance, Hadoop presents some important limitations [10]:

• Intensive disk-usage
• Low inter-communication capability
• Inadequacy for in-memory computation
• Poor perfomance for online and iterative computing
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Apache Spark

Apache Spark [5, 6] is a framework aimed at performing fast distributed computing on
Big Data by using in-memory primitives. This platform allows user programs to load data
into memory and query it repeatedly, making it a well suited tool for online and iterative
processing (especially for ML algorithms). It was developed motivated by the limitations
in the MapReduce/Hadoop paradigm [4, 10], which forces to follow a linear dataflow that
make an intensive disk-usage.
Spark is based on distributed data structures called Resilient Distributed Datasets

(RDDs) [11]. Operations on RDDs automatically place tasks into partitions, maintain-
ing the locality of persisted data. Beyond this, RDDs are an immutable and versatile
tool that let programmers persist intermediate results into memory or disk for re-
usability purposes, and customize the partitioning to optimize data placement. RDDs are
also fault-tolerant by nature. The lazy operations performed on each RDD are tracked
using a “lineage”, so that each RDD can be reconstructed at any moment in case of
data loss.
In addition to Spark Core, some additional projects have been developed to comple-

ment the functionality provided by the core. All these sub-projects (built on top of the
core) are described in the following:

• Spark SQL: introduces DataFrames, which is a new data structure for structured (and
semi-structured) data. DataFrames offers us the possibility of introducing SQL
queries in the Spark programs. It provides SQL language support, with
command-line interfaces and ODBC/JDBC controllers.

• Spark Streaming: allows us to use the Spark’s API in streaming environments by
using mini-batches of data which are quickly processed. This design enables the same
set of batch code (formed by RDD transformations) to be used in streaming analytics
with almost no change. Spark Streaming can work with several data sources like
HDFS, Flume or Kafka.

• Machine Learning library (MLlib) [12]: is formed by common learning algorithms
and statistic utilities. Among its main functionalities includes: classification,
regression, clustering, collaborative filtering, optimization, and dimensionality
reduction. This library has been especially designed to simplify ML pipelines in
large-scale environments. In the latest versions of Spark, the MLlib library has been
divided into two packages, MLlib, build on top of RDDs, and ML, build on top of
DataFrames for constructing pipelines.

• Spark GraphX: is the graph processing system in Spark. Thanks to this engine, users
can view, transform and join interchangeably both graphs and collections. It also
allows expressing the graph computation using the Pregel abstraction [13].

Apache Flink

Apache Flink [7] is a recent open-source framework for distributed stream and batch data
processing. It is focused on working with lots of data with very low data latency and high
fault tolerance on distributed systems. Flink’s core feature is its ability to process data
streams in real time.
Apache Flink offers a high fault tolerance mechanism to consistently recover the state

of data streaming applications. This mechanism is generating consistent snapshots of the
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distributed data stream and operator state. In case of failure, the system can fall back to
these snapshots.
It also supports both stream and batch data processing with his two main APIs: DataS-

tream and DataSet. These APIs are built on top of the underlying stream processing
engine.
Apache Flink has four big libraries built on those main APIs:

• Gelly: is the graph processing system in Flink. It contains methods and utilities for
the development of graph analysis applications.

• FlinkML: this library aims to provide a set of scalable ML algorithms and an intuitive
API. It contains algorithms for supervised learning, unsupervised learning, data
preprocessing, recommendation and other utilities.

• Table API and SQL: is a SQL-like expression language for relational stream and batch
processing that can be embedded in Flink’s data APIs.

• FlinkCEP: is the complex event processing library. It allows to detect complex events
patterns in streams.

Although Flink is a new platform, it is constantly evolving with new additions and it has
already been adopted as a real-time process framework in many big companies, such as:
ResearchData, Bouygues Telecom, Zalando and Otto Group.

Spark vs. Flink: main differences and similarities
In this section, we present the main differences and similarities in the engines of both
platforms in order to explain which are the best scenarios for one platform or the other.
Afterwards, we highlight themain differences between threeML algorithms implemented
in both platforms: Distributed Information Theoretic Feature Selection (DITFS), SVM
and LR.

Comparison between engines

The first remarkable difference between both engines lies in the way each tool ingests
streams of data. Whereas Flink is a native streaming processing framework that can work
on batch data, Spark was originally designed to work with static data through its RDDs.
Spark uses micro-batching to deal with streams. This technique divides incoming data
and processess small parts one at a time. The main advantage of this scheme is that the
structure chosen by Spark, called DStream, is a simple queue of RDDs. This approach
allows users to switch between streaming and batch as both have the same API. However,
micro-batching may not perform quick enough in systems that requires very low latency.
Nevertheless, Flink fits perfectly well in those systems as it natively uses streams for all
type of workloads.
Unlike Hadoop MapReduce, Spark and Flink have support for data re-utilization and

iterations. Spark keeps data in memory across iterations through an explicit caching.
However, Spark plans its executions as acyclic graph plans, which implies that it needs to
schedule and run the same set of instructions in each iteration. In contrast, Flink imple-
ments a thoroughly iterative processing in its engine based on cyclic data flows (one
iteration, one schedule). Additionally, it offers delta iterations to leverage operations that
only changes part of data.
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Till the advent of Tungsten optimization project, Spark mainly used the JVM’s heap
memory to manage all its memory [14]. Although it is straightforward solution, it may
suffers from overflow memory problems and garbage collect pauses. Thanks to this novel
project, these problems started to disappear. Through DataFrames, Spark is now able to
to manage its own memory stack and to exploit the memory hierarchy available in mod-
ern computers (L1 and L2 CPU caches). Flink’s designers, however, had these facts into
consideration from the initial point [15]. The Flink team thus proposed to maintain a self-
controlled memory stack, with its own type extraction and serialization strategy in binary
format. The advantage derived from these tunes are: less memory errors, less garbage
collection pressure, and a better space data representation, among others.
About optimization, both frameworks have mechanisms that analyze the code sub-

mitted by the user and yields the best pipeline code for a given execution graph. Spark
through the DataFrames API and Flink as first citizen. For instance, in Flink a join opera-
tion can be planned as a complete shuffling of two sets, or as a broadcast of the smallest
one. Spark also offers a manual optimization, which allows the user to control partitioning
and memory caching.
The rest of matters about easiness of coding and tuning, variety of operators, etc. have

been omitted from this comparison as these factors do not affect the performance of
executions.

A thorough comparison between algorithm implementations

Here, we present the implementation details of three ML algorithms implemented in
Spark and Flink. Firstly, a feature selection algorithm implemented by us in both platforms
is reviewed. Secondly, the native implementation of SVM in both platforms is analyzed.
And lastly, the same process is applied for the native implementation of LR.

Distributed information theoretic feature selection

For comparison purposes, we have implemented in both platforms a feature selec-
tion framework based on information theory. This framework was proposed by Brown
et al. [16] in order to ensemble multiple information theoretic criteria into a single greedy
algorithm. Through some independence assumptions, it allows to transformmany criteria
as linear combinations of Shannon entropy terms: mutual information (MI) and condi-
tional mutual information (CMI). Some relevant algorithms like minimum Redundancy
Maximum Relevance or Information Gain, among others, are included in the framework.
The main objective of the algorithm is to assess features based on a simple score, and to
select those more relevant according to a ranking. The generic framework proposed by
Brown et al. [16] to score features can be formulated as:

J = I(Xi;Y ) − β
∑

Xj∈S
I
(
Xj;Xi

) + γ
∑

Xj∈S
I
(
Xj;Xi|Y

)
, (3)

where the first term represents the relevance (MI) between the candidate input featuresXi
and the class Y, the second one the redundancy (MI) between the features already selected
(in the set S) and the candidate ones, and the third one the conditional redundancy (CMI)
between both sets and the class. γ represents a weight factor for CMI and β the same
for MI.
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Brown’s version was re-designed for a better performance in distributed environments.
The main changes accomplished by us are described below:

• Column-wise transformation: most of feature selection methods performs
computations by columns. It implies that a previous transformation of data to a
columnar format may improve the performance of further computations, for
example, when computing relevance or redundancy. Accordingly, the first step in our
program is aimed at transforming the original set into columns where each new
instance contains the values for each feature and partition in the original set.

• Persistence of important information: some pre-computed data like the transformed
input or the initial relevances are cached in memory in order to avoid re-computing
them in next phases. As this information is computed once at the start, its
persistence can speed up significantly the performance of the algorithm.

• Broadcast of variables: in order to avoid moving transformed data in each iteration,
we persist this set and only broadcast those columns (feature) involved in the current
iteration. For example, in the first iteration the class feature is broadcasted to
compute the initial relevance values in each partition.

In the Flink implementation a bulk iteration process has been used to cope
with the greedy process. In the Spark version, the typical iterative process with
caching and repeated tasks has been implemented. Flink code can be found in the
following GitHub repository: https://github.com/sramirez/flink-infotheoretic-feature-
selection. The Spark code was gathered into a package and uploaded to the
Spark’s third-party package repository: https://spark-packages.org/package/sramirez/
spark-infotheoretic-feature-selection.

Linear support vector machines

Both Spark and Flink implements SVMs classifiers using a linear optimizer. Briefly, the
minimization problem to be solved is the following:

min
w∈Rd

λ

2
‖w‖2 + 1

n

n∑

i=1
li

(
wTxi

)
(4)

where w is the weight vector, xi ∈ R
d the data instances, λ the regularization constant,

and li the convex loss functions. For both versions, the default regularizer is l2-norm and
the loss function is the hinge-loss: li = max

(
0, 1 − yiwTxi

)

The Communication-efficient distributed dual Coordinate Ascent algorithm (CoCoA)
[17] and the stochastic dual coordinate ascent (SDCA) algorithms are used in Flink to
solve the previously defined minimization problem. CoCoA consists of several iterations
of SDCA on each partition, and a final phase of aggregation of partial results. The result
is a final gradient state, which is replicated across all nodes and used in further steps.
In Spark a distributed Stochastic Gradient Descent1 (SGD) solution is adopted [12]. In

SGD a sample of data (called mini batches) are used to compute subgradients in each
phase. Only the partial results from each worker are sent across the network in order to
update the global gradient.

https://github.com/sramirez/flink-infotheoretic-feature-selection
https://github.com/sramirez/flink-infotheoretic-feature-selection
https://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
https://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection
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Linear regression

Linear least squares is another simple linear method implemented in Spark. Despite it
was designed for regression, its output can be adapted for binary classification problems.
Linear least squares follows the same minimization formula described for SVMs (see
Eq. 4) and the same optimization method (based on SGD), however, it uses squared loss
(described below) and no regularization method: li = 1

2
(
wTxi − yi

)2

The Flink version for this algorithm is quite similar to the one created by Spark’s
developers. It uses SGD to approximate the gradient solutions. However, Flink only
offers squared loss whereas Spark offers many alternatives, like hinge or logistic
loss.

Experimental results
This section describes the experiments carried out to show the performance of Spark
and Flink using three ML algorithms over the same huge dataset. We carried out the
comparative study using SVM, LR and DITFS algorithm.
The dataset used for the experiments is the ECBDL14 dataset. This dataset was used at

the ML competition of the Evolutionary Computation for Big Data and Big Learning held
on July 14, 2014, under the international conference GECCO-2014. It consists of 631 char-
acteristics (including both numerical and categorical attributes) and 32 million instances.
It is a binary classification problem where the class distribution is highly imbalanced:
2 % of positive instances. For this problem, two pre-processing algorithms were applied.
First, the Random OverSampling (ROS) algorithm used in [18] was applied in order
to replicate the minority class instances from the original dataset until the number of
instances for both classes was equalized, summing a total of 65 millions instances. Finally,
for DITFS algorithm, the dataset has been discretized using the Minimum Description
Length Principle (MDLP) discretizer [19].
The original dataset has been sampled randomly using five differents rates in order

to measure the scalability performance of both frameworks: 10, 30, 50, 75 and 100 % of
the pre-processed dataset is used. Due to a current Flink limitation, we have employed a
subset of 150 features of each ECBDL14 dataset sample for the SVM learning algorithm.
Table 1 gives a brief summary of these datasets. For each one, the number of examples

(Instances), the total number of features (Feats.), the total number of values (Total), and
the number of classes (CL) are shown.
We have established 100 iterations, a step size of 0.01 and a regularization parameter of

0.01 for the SVM. For the LR, 100 iterations and a step size of 0.00001 are used. Finally,
for DITFS 10 features are selected using minimum Redundancy Maximum Relevance
algorithm [20].

Table 1 Summary description for ECBDL14 dataset

Dataset Instances Feats. Total CL

ECBDL14-10 6 500 391 631 4 101 746 721 2

ECBDL14-30 19 501 174 631 12 305 240 794 2

ECBDL14-50 32 501 957 631 20 508 734 867 2

ECBDL14-75 48 752 935 631 30 763 101 985 2

ECBDL14-100 65 003 913 631 41 017 469 103 2
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Table 2 SVM learning time in seconds

Dataset Spark MLlib Flink Difference

ECBDL14-10 42 111 69

ECBDL14-30 61 196 135

ECBDL14-50 103 302 199

ECBDL14-75 123 456 333

ECBDL14-100 174 783 609

As an evaluation criteria, we have employed the overall learning runtime (in seconds)
for SVM and Linear Regression, as well as the overall runtime for DITFS.
For all experiments we have used a cluster composed of 9 computing nodes and

one master node. The computing nodes hold the following characteristics: 2 proces-
sors x Intel Xeon CPU E5-2630 v3, 8 cores per processor, 2.40 GHz, 20 MB cache,
2 x 2TB HDD, 128 GB RAM. Regarding the software, we have used the following
configuration: Hadoop 2.6.0-cdh5.5.1 from Cloudera’s open-source Apache Hadoop dis-
tribution, Apache Spark and MLlib 1.6.0, 279 cores (31 cores/node), 900 GB RAM (100
GB/node) and Apache Flink 1.0.3, 270 TaskManagers (30 TaskManagers/core), 100 GB
RAM/node.
Table 2 shows the learning runtime values obtained by SVM with 100 iterations, using

the reduced version of the datasets with 150 features. Currently SVM is not present
in the Spark ML library, so we omit that experiment. As we can see, Spark scales
much better than Flink. The time difference between Spark and Flink increases with
the size of the dataset, being 2.5x slower at the beginning, and 4.5x with the complete
dataset.
Table 3 compares the learning runtime values obtained by LR with 100 iterations.

The time difference between Spark MLlib and Spark ML can be explained by internally
transforming the dataset from DataFrame to RDD in order to use the same imple-
mentation of the algorithm present in MLlib. Spark ML is around 8x times faster
than Flink. Spark MLlib version have shown to perform specially better compared to
Flink.
Table 4 compares the runtime values obtained by DITFS algorithm selecting the

top 10 features of the discretized datset. As stated previously, the differences between
Spark MLlib and Spark ML can be explained with the internal transformation between
DataFrame and RDD.We observe that Flink is around 10x times slower than Spark for 10,
30 and 50 % of the dataset, 8x times slower for 75 %, and 4x times slower for the complete
dataset.
In Fig. 1 we can see the scalability of the three algorithms compared side to side.

Table 3 LR learning time in seconds

Dataset Spark MLlib Spark ML Flink

ECBDL14-10 3 26 181

ECBDL14-30 5 63 815

ECBDL14-50 6 173 1314

ECBDL14-75 8 260 1878

ECBDL14-100 12 415 2566
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Table 4 DITFS runtime in seconds

Dataset Spark MLlib Spark ML Flink

ECBDL14-10 44 55 487

ECBDL14-30 111 143 1891

ECBDL14-50 317 441 3240

ECBDL14-75 590 783 4928

ECBDL14-100 1696 2159 6615

Conclusions
In this paper, we have performed a comparative study for batch data processing of the scal-
ability of two popular frameworks for processing and storing Big Data, Apache Spark and
Apache Flink. We have tested these two frameworks using SVM and LR as learning algo-
rithms, present in their respective ML libraries. We have also implemented and tested a
feature selection algorithm in both platforms. Apache Spark have shown to be the frame-
work with better scalability and overall faster runtimes. Although the differences between
Spark’s MLlib and Spark ML are minimal, MLlib performs slightly better than Spark ML.
These differences can be explained with the internal transformations from DataFrame to
RDD in order to use the same implementations of the algorithms present in MLlib.
Flink is a novel framework while Spark is becoming the reference tool in the Big Data

environment. Spark has had several improvements in performance over the different
releases, while Flink has just hit its first stable version. Although some of the Apache Spark
improvements are already present by design in Apache Flink, Spark is much refined than
Flink as we can see in the results.
Apache Flink has a great potential and a long way still to go. With the necessary

improvements, it can become a reference tool for distributed data streaming ana-
lytics. It is pending a study on data streaming, the theoretical strengh of Apache
Flink.
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Endnote
1 https://en.wikipedia.org/wiki/Stochastic_gradient_descent.
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