
Data Mining Methods for 
Big Data Preprocessing

Research Group on Soft Computing and
Information Intelligent Systems (SCI2S)

http://sci2s.ugr.es
Dept. of Computer Science and A.I. 

University of Granada, Spain

Email: herrera@decsai.ugr.es

Francisco Herrera



Objectives 

 To understand the different problems to solve in the
processes of data preprocessing.

 To know the problems related to clean data and to mitigate
imperfect data, together with some techniques to solve
them.

 To know the data reduction techniques and the necessity of 
their application. 

 To know the problems to apply data preprocessing
techniques for big data analytics. 

 To know the current big data preprocessing proposals.



3

Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big Data Preprocessing

 Imbalanced Big Data Classification: Data preprocessing

 Challenges and Final Comments



4

Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big Data Preprocessing

 Imbalanced Big Data Classification: Data preprocessing

 Challenges and Final Comments



5

Big Data

Alex ' Sandy' Pentland
Media Lab Massachusetts Institute of 
Technology (MIT)

“It is the decade of data, hence 
come the revolution”



6

Big Data

Our world revolves around 
the data



Our world revolves around the data
 Science

 Data bases from astronomy, genomics, environmental data, 
transportation data, …

 Humanities and Social Sciences
 Scanned books, historical documents, social interactions data, …

 Business & Commerce
 Corporate sales, stock market transactions, census, airline traffic, …

 Entertainment
 Internet images, Hollywood movies, MP3 files, …

 Medicine
 MRI & CT scans, patient records, …

 Industry, Energy, …
 Sensors, …

What is Big Data?



What is Big Data? 3 Vs of Big Data

Astronomy

Transactions

Ej. Genomics



What is Big Data? 3 Vs of Big Data



What is Big Data? 3 Vs of Big Data



What is Big Data? 3 Vs of Big Data



What is Big Data?
4 V’s  --> Value



No single standard definition

Big data is a collection of data sets so 
large and complex that it becomes 
difficult to process using on-hand 
database management tools or 
traditional data processing applications.

What is Big Data?

“Big Data” is data whose scale, diversity, 
and complexity require new architectures, 
techniques, algorithms, and analytics to 
manage it and extract value and hidden 
knowledge from it…



What is Big Data? 

Social media and networks
(all of us are generating data)

Scientific instruments
(collecting all sorts of data) 

Mobile devices 
(tracking all objects 
all the time)

Sensor technology and networks
(measuring all kinds of data) 

The progress and innovation is no longer hindered by the 
ability to collect data but, by the ability to manage, 
analyze, summarize, visualize, and discover knowledge 
from the collected data in a timely manner and in a 
scalable fashion

Who’s Generating Big Data?  

Transactions



15

Big data refers to any problem 
characteristic that represents a challenge 
to proccess it with traditional applications

What is Big Data? (in short)



What is Big Data? Example 

ECBDL’14 Big Data Competition 2014 
(GEGGO 2014, Vancouver)

Objective:  Contact map prediction
Details:

 32 million instances
 631 attributes (539 real & 92 nominal values)
 2 classes
 98% of negative examples
 About 56.7GB of disk space

Evaluation:
True positive rate · True negative rate 
TPR · TNR



Data Science combines the 
traditional scientific method with the 
ability to munch, explore, learn and 
gain deep insight for Big Data 

It is not just about finding patterns in 
data … it is mainly about explaining 
those patterns

Big Data Science



Data Science Process
D

at
a 

Pr
ep

ro
ce

ss
in

g • Clean
• Sample
• Aggregate
• Imperfect

data: missing, 
noise, …

• Reduce dim.
• ...

D
at

a 
Pr

oc
es

si
ng

• Explore data
• Represent

data
• Link data
• Learn from

data
• Deliver

insight
• …

D
at

a 
A
na

ly
tic

s • Clustering
• Classification
• Regression
• Network 

analysis
• Visual 

analytics
• Association
• …> 70% time!



Data Preprocessing: Tasks to discover quality data 
prior to the use of knowledge extraction algorithms. 

data

Target
data

Processed
data

Patterns

Knowledge

Selection

Preprocessing

Data Mining

Interpretation
Evaluation

Data Preprocessing



20

Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big data Preprocessing

 Imbalanced Big Data Classification: Data preprocessing

 Challenges and Final Comments



 Scalability to large data volumes:
 Scan 100 TB on 1 node @ 50 MB/sec = 23 days
 Scan on 1000-node cluster = 33 minutes

 Divide-And-Conquer (i.e., data partitioning)

Why Big Data? 

A single machine can not manage large volumes of data efficiently



 Scalability to large data volumes:
 Scan 100 TB on 1 node @ 50 MB/sec = 23 days
 Scan on 1000-node cluster = 33 minutes

 Divide-And-Conquer (i.e., data partitioning)

MapReduce
 Overview:

 Data-parallel programming model 
 An associated parallel and distributed implementation for commodity clusters

 Pioneered by Google
 Processes 20 PB of data per day

 Popularized by open-source Hadoop project
 Used by Yahoo!, Facebook, Amazon, and the list is growing …

Why Big Data? MapReduce



MapReduce

 MapReduce is a popular 
approach to deal with Big 
Data

 Based on a key-value pair 
data structure

 Two key operations:
1. Map function: Process 

independent data blocks 
and outputs summary 
information

2. Reduce function: Further 
process previous 
independent results

J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters,
Communications of the ACM 51 (1) (2008) 107-113.

input inputinputinput

mapmap map map

Shuffling: group values by keys

reduce reduce reduce

output output output

map (k, v) → list (k’, v’)
reduce (k’, list(v’)) → v’’

(k , v)(k , v)(k , v) (k , v)

(k’, v’)(k’, v’)(k’, v’)(k’, v’)

k’, list(v’)k’, list(v’)k’, list(v’)

v’’v’’v’’



MapReduce

Blocks/
fragments

Intermediary 
Files

Output 
Files

The key of a MapReduce data partitioning approach is usually 
on the reduce phase

MapReduce workflow



MapReduce



 Runs on large commodity clusters:
 10s to 10,000s of machines

 Processes many terabytes of data
 Easy to use since run-time complexity hidden from 

the users
 Cost-efficiency:

 Commodity nodes (cheap, but unreliable)
 Commodity network
 Automatic fault-tolerance (fewer administrators)
 Easy to use (fewer programmers)

Experience

MapReduce



 Advantage: MapReduce’s data-parallel 
programming model hides complexity of 
distribution and fault tolerance

 Key philosophy:
 Make it scale, so you can throw hardware at 

problems
 Make it cheap, saving hardware, programmer 

and administration costs (but requiring fault 
tolerance)

 MapReduce is not suitable for all problems, but 
when it works, it may save you a lot of time

MapReduce



MapReduce. Hadoop

Hadoop is an open 
source 

implementation of 
MapReduce

computational 
paradigm

http://hadoop.apache.org/

Created by Doug Cutting (chairman 
of board of directors of the Apache 
Software Foundation, 2010)



Map Reduce
Layer

HDFS
Layer

Task 
tracker

Job
tracker

Task 
tracker

Name
node

Data 
node
Data 
node

Data 
node

http://hadoop.apache.org/

Apache Hadoop is an open-source 
software framework that supports 
data-intensive distributed applications, 
licensed under the Apache v2 license. 

Created by Doug Cutting (chairman of 
board of directors of the Apache 
Software Foundation, 2010)

Hadoop implements 
the computational 
paradigm named 

MapReduce 

Hadoop



Hadoop

Amazon Elastic Compute Cloud (Amazon EC2)
http://aws.amazon.com/es/ec2/

Windows Azure
http://www.windowsazure.com/

How do I access to a Hadoop platform?

Cloud Platform with 
Hadoop installation

Cluster Instalation
Example ATLAS, SCI2S 
Research Group

Cluster ATLAS: 4 super servers from Super Micro 
Computer Inc. (4 nodes per server) 
The features of each node are:

 Microprocessors: 2 x Intel Xeon E5-2620 (6 cores/12 
threads, 2 GHz, 15 MB Cache)

 RAM 64 GB DDR3 ECC 1600MHz, Registered
 1 HDD SATA 1TB, 3Gb/s; (system)
 1 HDD SATA 2TB, 3Gb/s; (distributed file system)



July 2008 - Hadoop Wins Terabyte Sort Benchmark
One of Yahoo's Hadoop clusters sorted 1 terabyte of data in 209 seconds, 
which beat the previous record of 297 seconds in the annual general 
purpose (Daytona) terabyte short bechmark. This is the first time that 
either a Java or an open source program has won. 

http://developer.yahoo.com/blogs/hadoop/hadoop-sorts-petabyte-16-25-
hours-terabyte-62-422.html

Hadoop birth



http://hadoop.apache.org/

The project

Recently: Apache Spark 

Hadoop Ecosystem



The following malfunctions types of algorithms are examples 
where MapReduce:
Iterative Graph Algorithms: PageRank
Gradient Descent
Expectation Maximization

‘‘If all you have is a hammer, then everything looks like a nail.’’

MapReduce: Limitations

Pregel (Google)



On the limitations of Hadoop. New platforms
GIRAPH (APACHE Project)
(http://giraph.apache.org/)
Iterative graphs

GPS - A Graph Processing System, 
(Stanford) http://infolab.stanford.edu/gps/
Amazon's EC2 

Distributed GraphLab 
(Carnegie Mellon Univ.) 

https://github.com/graphlab-code/graphlab
Amazon's EC2

HaLoop 
(University of Washington)    

http://clue.cs.washington.edu/node/14    
http://code.google.com/p/haloop/
Amazon’s EC2

Twister (Indiana University)
http://www.iterativemapreduce.org/

PrIter (University of Massachusetts.            
Amherst, Northeastern University-
China)

http://code.google.com/p/priter/
Amazon EC2 cloud 

GPU based platforms
Mars
Grex

Spark (UC Berkeley)
(100 times more efficient than Hadoop, 

including iterative algorithms, according to creators)  
http://spark.incubator.apache.org/research.html

Hadoop



35

MapReduce

Enrique Alfonseca
Google Research Zurich

More than 10000 applications in Google



Hadoop Ecosystem

Hadoop Evolution

Bibliografía: A. Fernandez, S. Río, V. López, A. Bawakid, M.J. del Jesus, J.M. Benítez, F. Herrera, Big Data
with Cloud Computing: An Insight on the Computing Environment, MapReduce and Programming
Frameworks. WIREs Data Mining and Knowledge Discovery 4:5 (2014) 380-409

MapReduce Limitations. Graph algorithms (Page 
Rank, Google), iterative algorithms. 



Apache Spark



InMemory
HDFS Hadoop + SPARK

Ecosystem
Apache Spark

Future version 
of Mahout for 
Spark

Apache Spark: InMemory



Spark birth

http://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

Using Spark on 206 EC2 
nodes, we completed the 
benchmark in 23 minutes. 
This means that Spark 
sorted the same data 3X 
faster using 10X fewer 
machines. All the sorting 
took place on disk (HDFS), 
without using Spark’s in-
memory cache.

October 10, 2014



Spark birth

http://sortbenchmark.org/



41

Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big data Preprocessing

 Imbalanced Big Data Classification: Data preprocessing

 Challenges and Final Comments



Generation 1st 
Generation

2nd Generation 3nd Generation

Examples SAS, R, Weka, 
SPSS, KEEL

Mahout, Pentaho, 
Cascading

Spark, Haloop, GraphLab,
Pregel, Giraph, ML over
Storm

Scalability Vertical Horizontal (over
Hadoop)

Horizontal (Beyond
Hadoop)

Algorithms
Available

Huge
collection of 
algorithms

Small subset: sequential
logistic regression, 
linear SVMs, Stochastic
Gradient Decendent, k-
means clustsering, 
Random forest, etc.

Much wider: CGD, ALS, 
collaborative filtering, 
kernel SVM, matrix
factorization, Gibbs
sampling, etc.

Algorithms
Not
Available

Practically
nothing

Vast no.: Kernel SVMs, 
Multivariate Logistic
Regression, Conjugate
Gradient Descendent, 
ALS, etc.

Multivariate logistic
regression in general form, 
k-means clustering, etc. –
Work in progress to expand
the set of available
algorithms

Fault-
Tolerance

Single point
of failure

Most tools are FT, as 
they are built on top of 
Hadoop

FT: HaLoop, Spark
Not FT: Pregel, GraphLab, 
Giraph

Classification



43

Classification 

Mahout

MLlib

https://spark.apache.org/mllib/



44

Classification



http://mahout.apache.org/

Classification: Mahout



Classification: Mahout

Four great application areas

Clustering

Recommendation 
Systems

Classification

Association



Classification: RF

Case of Study: Random Forest for
KddCup’99



48

Classification: RF

The  RF Mahout Partial implementation: is an algorithm that builds 
multiple trees for different portions of the data. Two phases: 

Building phase 
Classification phase

Case of Study: Random Forest for
KddCup’99



Classification: RF

Case of Study: Random Forest for
KddCup’99

Class Instance
Number

normal 972.781
DOS 3.883.370
PRB 41.102
R2L 1.126
U2R 52



Classification: RF

Class Instance
Number

normal 972.781
DOS 3.883.370
PRB 41.102
R2L 1.126
U2R 52

Case of Study: Random Forest for
KddCup’99

Cluster ATLAS: 16 nodes
-Microprocessors: 2 x Intel E5-2620 (6 
cores/12 threads, 2 GHz)
- RAM 64 GB DDR3 ECC 1600MHz
- Mahout version 0.8



51

Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big Data Preprocessing

 Imbalanced Big Data Classification: Data preprocessing

 Challenges and Final Comments



Data 
Science

Big 
Data

Model building
Predictive and 
descriptive
Analytics

Data 
Preprocessing

Data Preprocessing



1. Introduction. Data Preprocessing
2. Integration, Cleaning and Transformations
3. Imperfect Data
4. Data Reduction
5. Final Remarks

Data Preprocessing
Bibliography: 

S. García, J. Luengo, F. Herrera
Data Preprocessing in Data Mining
Springer, January 2015

Websites: 
http://sci2s.ugr.es/books/data-preprocessing
http://www.springer.com/us/book/9783319102467



Data Preprocessing

1. Introduction. Data Preprocessing
2. Integration, Cleaning and Transformations
3. Imperfect Data
4. Data Reduction
5. Final Remarks



D. Pyle, 1999, pp. 90:

“The fundamental purpose of data preparation 
is to manipulate and transform raw data so that 
the information content enfolded in the data set 
can be exposed, or made more easily 
accesible.”

Dorian Pyle
Data Preparation for Data 
Mining Morgan Kaufmann 
Publishers, 1999

INTRODUCTION



Data Preprocessing

1. Real data could be dirty and could drive to the 
extraction of useless patterns/rules.

This is mainly due to:

Incomplete data: lacking attribute values, …
Data with noise: containing errors or outliers
Inconsistent data (including discrepancies)

Importance of Data Preprocessing



2. Data preprocessing can generate a smaller data set 
than the original, which allows us to improve the 
efficiency in the Data Mining process. 

This performing includes Data Reduction techniques:
Feature selection, sampling or instance selection, 
discretization. 

Data Preprocessing
Importance of Data Preprocessing



3. No quality data, no quality mining results! 

Data preprocessing techniques generate “quality data”, 
driving us to obtain “quality patterns/rules”. 

Data Preprocessing
Importance of Data Preprocessing

Quality decisions must be based on 
quality data!



Data preprocessing spends 
a very important part of the 
total time in a data mining 
process. 

Data Preprocessing



60

Real databases usually contain noisy data, missing data, and 
inconsistent data, …

1. Data integration. Fusion of multiple sources in a Data 
Warehousing.

2. Data cleaning. Removal of noise and inconsistencies.

3. Missing values imputation. 

4. Data Transformation. 

5. Data reduction. 

Data Preprocessing
What is included in data preprocessing?

Major Tasks in Data Preprocessing



61

Data Preprocessing
What is included in data preprocessing?



62

Data Preprocessing
What is included in data preprocessing?



Data Preprocessing

1. Introduction. Data Preprocessing
2. Integration, Cleaning and Transformations
3. Imperfect Data
4. Data Reduction
5. Final Remarks



64

Integration, Cleaning and Transformation



65

Data Integration

Obtain data from different information sources. 

Address problems of codification and representation.

Integrate data from different tables to produce 
homogeneous information, ...

Data Warehouse
Server Database 1

Extraction, 
aggregation ..

Database 2



66

 Different scales: Salary in dollars versus euros (€)

 Derivative attributes: Mensual salary versus annual salary

item Salary/month 
1 5000 
2 2400 
3 3000 

 

item Salary 
6 50,000 
7 100,000 
8 40,000 

 

Examples

Data Integration



67

Data Cleaning

 Objetictives: 
• Fix inconsistencies
• Fill/impute missing values, 
• Smooth noisy data, 
• Identify or remove outliers …

 Some Data Mining algorithms have proper methods to 
deal with incomplete or noisy data. But in general, these 
methods are not very robust. It is usual to perform a 
data cleaning previously to their application.

Bibliography: 
W. Kim, B. Choi, E.-D. Hong, S.-K. Kim
A taxonomy of dirty data.
Data Mining and Knowledge Discovery 7, 81-99, 2003.



68

Data Cleaning

 Original Data

 Clean Data

000000000130.06.19971979-10-3080145722      #000310 111000301.01.000100000000004                                 
0000000000000.000000000000000.000000000000000.000000000000000.000000000000000.000000000000000.0000
00000000000. 000000000000000.000000000000000.0000000...… 
000000000000000.000000000000000.000000000000000.000000000000000.000000000000000.000000000000000.00
0000000000000.000000000000000.000000000000000.000000000000000.000000000000000.000000000000000.0000
00000000000.000000000000000.000000000000000.000000000000000.000000000000000.000000000000000.000000
000000000.000000000000000.000000000000000.000000000000000.00 0000000000300.00 0000000000300.00

0000000001,199706,1979.833,8014,5722   ,   ,#000310  …. 
,111,03,000101,0,04,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0300,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0300,0300.00

Data cleaning: Example



69

Data Cleaning

Age=“42” 
Birth Date=“03/07/1997”

Data Cleaning: Inconsistent data



70

Data transformation
 Objective: To transform data in the best 

way possible to the application of Data Mining algorithms.

 Some typical operations:
• Aggregation. i.e. Sum of the totality of month sales in an 

unique attribute called anual sales,…
• Data generalization. It is to obtain higher degrees of data from 

the currently available, by using concept hierarchies.
 streets  cities
 Numerical age  {young, adult, half-age, old}

• Normalization: Change the range [-1,1] or [0,1].

• Lineal transformations, quadratic, polinominal, …

Bibliography:
T. Y. Lin. Attribute Transformation for Data Mining I: Theoretical
Explorations. International Journal of Intelligent Systems 17, 213-222, 2002.



71

Normalization

 Objective: convert the values of an attribute to a better 
range.

 Useful for some techniques such as Neural Networks o 
distance-based methods (k-Nearest Neighbors,…).

 Some normalization techniques:
Z-score normalization

min-max normalization: Perform a lineal transformation of the 
original data.

The relationships among original data are maintained.

[minA, maxA] [newminA
,newmaxA

]

v'  vminA

maxAminA

(newmaxA
newminA

)newminA

A

Avv



'



Data Preprocessing

1. Introduction. Data Preprocessing
2. Integration, Cleaning and Transformations
3. Imperfect Data
4. Data Reduction
5. Final Remarks



73

Imperfect data



74

Missing values



75

Missing values

It could be used the next choices, although some of 
them may skew the data:

 Ignore the tuple. It is usually used when the variable to 
classify has no value.

 Use a global constant for the replacement. I.e. 
“unknown”,”?”,…

 Fill tuples by means of mean/deviation of the rest of the 
tuples.

 Fill tuples by means of mean/deviation of the rest of the 
tuples belonging to the same class.

 Impute with the most probable value. For this, some 
technique of inference could be used, i.e., bayesian or 
decision trees.



76

Missing values

15 methods
http://www.keel.es/



77

Missing values



78

Missing values

Bibliography:
WEBSITE: http://sci2s.ugr.es/MVDM/

J. Luengo, S. García, F. Herrera, A Study on the Use of Imputation Methods for 
Experimentation with Radial Basis Function Network Classifiers Handling 
Missing Attribute Values: The good synergy between RBFs and EventCovering 
method. Neural Networks, doi:10.1016/j.neunet.2009.11.014, 23(3) (2010) 406-418.

S. García, F. Herrera, On the choice of the best imputation methods for missing 
values considering three groups of classification methods. Knowledge and 
Information Systems 32:1 (2012) 77-108, doi:10.1007/s10115-011-0424-2



79

Noise cleaning

Types of examples

Fig. 5.2 The three types of examples considered in this book: safe examples (labeled as 
s), borderline examples (labeled as b) and noisy examples (labeled as n). The 
continuous line shows the decision boundary between the two classes



80

Noise cleaning

Fig. 5.1 Examples of the interaction between classes: a) small 
disjuncts and b) overlapping between classes



81

The three noise filters mentioned next, which are the most-

known, use a voting scheme to determine what cases have to be 

removed from the training set:

 Ensemble Filter (EF)
 Cross-Validated Committees Filter
 Iterative-Partitioning Filter 

Noise cleaning

Use of noise filtering techniques in classification



Ensemble Filter (EF)
• C.E. Brodley, M.A. Friedl. Identifying Mislabeled Training Data. Journal of Artificial Intelligence Research 11 

(1999) 131‐167.
• Different learning algorithm (C4.5, 1‐NN and LDA) are used to create classifiers in several subsets of the 

training data that serve as noise filters for the training sets.
• Two main steps:
1. For each learning algorithm, a k‐fold cross‐validation is used to tag each training example as correct

(prediction = training data label) or mislabeled (prediction ≠ training data label).
2. A voting scheme is used to identify the final set of noisy examples.

• Consensus voting: it removes an example if it is misclassified by all the classifiers.
• Majority voting: it removes an instance if it is misclassified by more than half of the classifiers.

Training Data

Classifier #1 Classifier #2 Classifier #m

Noisy examples

( / )
Classification #1

(correct/mislabeled) ( / )
Classification #2

(correct/mislabeled) ( / )
Classification #m

(correct/mislabeled)

Voting scheme
(consensus or majority)



Ensemble Filter (EF)



Cross‐Validated Committees Filter (CVCF)
• S. Verbaeten, A.V. Assche. Ensemble methods for noise elimination in 

classification problems. 4th International Workshop on Multiple Classifier Systems 
(MCS 2003). LNCS 2709, Springer 2003, Guilford (UK, 2003) 317‐325.

• CVCF is similar to EF  two main differences:

1. The same learning algorithm (C4.5) is used to create classifiers in several 
subsets of the training data.

The authors of CVCF place special emphasis on using ensembles of decision 
trees such as C4.5 because they work well as a filter for noisy data.

2. Each classifier built with the k‐fold cross‐validation is used to tag ALL the 
training examples (not only the test set) as correct (prediction = training data 
label) or mislabeled (prediction ≠ training data label).



Iterative Partitioning Filter (IPF)
• T.M. Khoshgoftaar, P. Rebours. Improving software quality prediction by noise filtering 

techniques. Journal of Computer Science and Technology 22 (2007) 387‐396.
• IPF removes noisy data in multiple iterations using CVCF until a stopping criterion is reached.
• The iterative process stops if, for a number of consecutive iterations, the number of noisy 

examples in each iteration is less than a percentage of the size of the training dataset.

Training Data

CVCF Filter

Current Training Data without Noisy
examples identified by CVCF

Current Training Data

Final Noisy examples

STOP?
NO

YES



INFFC: An iterative class noise filter based on the fusion 
of classifiers with noise sensitivity control



INFFC: An iterative class noise filter based on the fusion 
of classifiers with noise sensitivity control

http://www.sciencedirect.com/science/article/pii/S156625351500038X



88

Noise cleaning

http://www.keel.es/

Bibliography:
WEBSITE: 
http://sci2s.ugr.es/noisydata/



Data Preprocessing

1. Introduction. Data Preprocessing
2. Integration, Cleaning and Transformations
3. Imperfect Data
4. Data Reduction
5. Final Remarks



90

Data Reduction



Feature Selection

The problem of Feature Subset Selection (FSS) consists of 

finding a subset of the attributes/features/variables of the 

data set that optimizes the probability of success in the 

subsequent data mining taks.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
E 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0
F 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0

Var. 5Var. 1. Var. 13

Feature Selection



Feature Selection

The problem of Feature Subset Selection (FSS) consists of 
finding a subset of the attributes/features/variables of the 
data set that optimizes the probability of success in the 
subsequent data mining taks.

Why is feature selection necessary?

 More attributes do not mean more success in the data 
mining process.

 Working with less attributes reduces the complexity of the 
problem and the running time.

 With less attributes, the generalization capability increases.
 The values for certain attributes may be difficult and costly 

to obtain.



Feature Selection

The outcome of FS would be:
 Less data  algorithms couls learn quickly

 Higher accuracy  the algorithm better generalizes 

 Simpler results  easier to understand them

FS has as extension the extraction and construction 
of attributes.



Feature Selection

Complete 
Set of 

Features

Empty 
Set of 

Features

Fig. 7.1 Search 
space for FS



{}

{1} {2} {3} {4}

{1}{3} {2,3} {1,4} {2,4}{1,2} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

It can be considered as a search problem

Feature Selection



(SG) 
Subset

generation

(EC) 
Evaluation
Function

Selected
SubsetStop

criteria

no

feature

subset

Target
data

Yes

Process

Feature Selection



Feature Selection

Goal functions: There are two different approaches

 Filter. The goal function evaluates the subsets basing on 
the information they contain. Measures of class 
separability, statistical dependences, information theory,… 
are used as the goal function.

 Wrapper. The goal function consists of applying the 
same learning technique that will be used later over the 
data resulted from the selection of the features. The 
returned value usually is the accuracy rate of the 
constructed classifier.



Feature Selection
Process

Fig. 7.2 A filter model for FS



Feature Selection

Filtering measures
 Separability measures. They estimate the separability among 

classes: euclidean, Mahalanobis,…
 I.e. In a two-class problem, a FS process based on this kind of measures 

determined that X is bettern than Y if X induces a greater difference than 
Y between the two prior conditional probabilities between the classes.

 Correlation. Good subset will be those correlated with the class 
variable

where ρic is the coefficient of correlation between the variable Xi and the 
label c of the class (C) and ρij is the correlation coefficient between Xi
and Xj





 

 M

i

M

ij
ij

M

i
ic

MXXf

1 1

1
1 ),...,(







Feature Selection

 Information theory based measures
 Correlation only can estimate lineal dependences. A more powerful 

method is the mutual information I(X1,…,M; C)

where H represents the entropy and ωc the c-th label of the class C
 Mutual information measures the quantity of uncertainty that 

decreases in the class C when the values of the vector X1…M are known.
 Due to the complexity of the computation of I, it is usual to use 

heurisctics rules

with β=0.5, as example.

dx
PXP

XPXP

XCHCHCXIXf
C

c X cM

cM
cM

MMM

M

 




1 ...1

...1
...1

,...,1,...,1,...,1

,...,1
)()(

),(log),(

)()();()(




  
  


M

i

M

i

M

ij
jiiM XXICXIXf

1 1 1
...1 );();()( 



Feature Selection
 Consistency measures

 The three previous groups of measures try to find those 
features than could, maximally, predict the class better than 
the remain.

• This approach cannot distinguish between two attributes that 
are equally appropriate, it does not detect redundant features.

 Consistency measures try to find a minimum number of 
features that are able to separate the classes in the same 
way that the original data set does.



Feature Selection
Process

Fig. 7.2 A wrapper model for FS



Feature Selection
Process

Fig. 7.2 A filter model for FS



Feature Selection

Advantages

 Wrappers:
 Accuracy: generally, they are more accurate than filters, 

due to the interaction between the classifier used in the goal 
function and the training data set.

 Generalization capability: they pose capacity to avoid 
overfitting due to validation techniques employed.

 Filters:
 Fast: They usually compute frequencies, much quicker than 

training a classifier.
 Generality: Due to they evaluate instrinsic properties of the 

data and not their interaction with a classifier, they can be 
used in any problem.



Feature Selection

Drawbacks

 Wrappers:
 Very costly: for each evaluation, it is required to learn and 

validate a model. It is prohibitive to complex classifiers.
 Ad-hoc solutions: The solutions are skewed towards the 

used classifier.

 Filters:
 Trend to include many variables: Normally, it is due to 

the fact that there are monotone features in the goal 
function used.

• The use should set the threshold to stop.



Feature Selection

4. According to outcome:

Ranking 

Subset of features

1. According to evaluation:

filter

wrapper

2. Class availability:

Supervised

Unsupervised

3. According to the search:

Complete O(2N)
Heurístic O(N2)
Random ??

Categories



Feature Selection

Input: x attributes – U evaluation criterion

Subset = {}

Repeat

Sk = generateSubset(x)

if improvement(S, Sk,U)

Subset = Sk

Until StopCriterion()

Output: List, of the most relevant atts.

Algorithms for getting subset of features
They return a subset of attributes optimized according 
to an evaluation criterion.



Feature Selection

Input: x attributed – U evaluation criterion

List = {}

For each Attribute xi, i  {1,...,N}

vi = compute(xi,U)

set xi within the List according to vi

Output: List, more relevant atts first

They return a list of attributes sorted by an evaluation 
criterion.

Ranking algorithms



Feature Selection

Ranking algorithms

Attributes A1 A2 A3 A4 A5 A6 A7 A8 A9

Ranking A5 A7 A4 A3 A1 A8 A6 A2 A9

A5 A7 A4 A3 A1 A8 (6 attributes)



Feature Selection

Some relevant algorithms: 

 Focus algorithm. Consistency measure for forward search
 Mutual Information based Features Selection (MIFS). 
 mRMR:  Minimum Redundancy Maximum Relevance
 Las Vegas Filter (LVF)
 Las Vegas Wrapper (LVW)
 Relief Algorithm



Instance selection try to choose the examples which are 
relevant to an application, achieving the maximum 
performance. The outcome of IS would be:

 Less data  algorithms learn quicker

 Higher accuracy  the algorithm better generalizes 

 Simpler results  easier to understand them

IS has as extension the generation of instances 
(prototype generation)

Instance Selection



Different size examples

8000 points 2000 points 500 points

Instance Selection



Sampling 

Raw data

Instance Selection



Sampling
Raw Data Simple reduction

Instance Selection



Instance Selection

Training 
Data Set 

(TR)

Test 
Data Set 

(TS)

Instances
Selected (S)

Prototype
Selection
Algorithm

Instance-based
Classifier

Fig. 8.1 PS process



Prototype Selection (instance-based learning)

Properties:

 Direction of the search: Incremental, decremental, 

batch, hybrid or fixed.

 Selection type: Condensation, Edition, Hybrid.

 Evaluation type: Filter or wrapper.

Instance Selection



Instance Selection



 Classical algorithm of condensation: Condensed Nearest Neighbor (CNN)
 Incremental
 It only inserts the misclassified instances in the new subsets.
 Dependant on the order of presentation.
 It only retains borderline examples.

A pair of classical algorithms:

Instance Selection



 Classical algorithm for Edition: Edited Nearest Neighbor (ENN)
 Batch
 It removes those instances which are wrongly classified by using a k-nearest 

neighbor scheme (k = 3, 5 or 9).
 It “smooths” the borders among classes, but also retains the rest of points.

A pair of classical algorithms:

Instance Selection



Graphical illustrations (Condensation vs Edition):

Banana data set with 5,300 instances and two classes. Obtained 
subset with CNN and AllKNN (iterative application of ENN with 
k=3, 5 y 7).

Instance Selection



Graphical illustrations:

RMHC is an adaptive sampling technique based on local search with 
a fixed final rate of retention.

DROP3 is the most-known hybrid technique very use for kNN.
SSMA is an evolutionary approach based on memetic algorithms..

Instance Selection



Instance Selection

Training Set Selection



Kdd Cup’99. Strata Number: 100
No. 

Rules
% 

Reduction
C4.5

%Ac Trn %Ac Test
C4.5 252 99.97% 99.94%
Cnn Strat 83 81.61% 98.48% 96.43%
Drop1 Strat 3 99.97% 38.63% 34.97%
Drop2 Strat 82 76.66% 81.40% 76.58%
Drop3 Strat 49 56.74% 77.02% 75.38%
Ib2 Strat 48 82.01% 95.81% 95.05%
Ib3 Strat 74 78.92% 99.13% 96.77%
Icf Strat 68 23.62% 99.98% 99.53%
CHC Strat 9 99.68% 98.97% 97.53%

Example Instance Selection 
and Decision Tree modeling

Bibliography: J.R. Cano, F. Herrera, M. Lozano, Evolutionary Stratified Training Set Selection for Extracting Classification 
Rules with Trade-off Precision-Interpretability. Data and Knowledge Engineering 60 (2007) 90-108, 
doi:10.1016/j.datak.2006.01.008.



S. García, J. Derrac, J.R. Cano and F. Herrera,
Prototype Selection for Nearest Neighbor Classification: Taxonomy and Empirical Study.
IEEE Transactions on Pattern Analysis and Machine Intelligence 34:3 (2012) 417-435 doi:
10.1109/TPAMI.2011.142

S. García, J. Luengo, F. Herrera. Data Preprocessing in Data Mining, Springer, 15, 2015

WEBSITE: 
http://sci2s.ugr.es/pr/index.php
Bibliography:

Instance Selection

Source Codes (Java):



Discretization

 Discrete values are very useful in Data Mining.

 They represent more concise information, they are easier 
to understand and closer to the representation of 
knowledge.

 The discretization is focused on the transformation of 
continuous values with an order among in 
nominal/categorical values without ordering. It is also a 
quantification of numerical attributes.

 Nominal values are within a finite domain, so they are 
also considered as a data reduction technique.



 Divide the range of numerical (continuous or not) attributes 
into intervals.

 Store the labels of the intervals.
 Is crucial for association rules and some classification 

algorithms, which only accept discrete data.

Age 5 6 6 9 … 15 16 16 17 20 … 24 25 41 50 65 … 67

Owner of a 
Car 0 0 0 0 … 0 1 0 1 1 … 0 1 1 1 1 … 1

AGE  [5,15] AGE [16,24] AGE [25,67]

Discretization



Stages in the discretization process

Discretization



Discretization
 Discretization has been developed in several lines 

according to the neccesities:

 Supervised vs. unsupervised: Whether or not they consider 
the objective (class) attributes.

 Dinamical vs. Static: Simultaneously when the model is built 
or not.

 Local vs. Global: Whether they consider a subset of the 
instances or all of them.

 Top-down vs. Bottom-up: Whether they start with an empty 
list of cut points (adding new ones) or with all the possible 
cut points (merging them).

 Direct vs. Incremental: They make decisions all together or 
one by one.



 Unsupervised algorithms: 
• Equal width
• Equal frequency
• Clustering …..

 Supervised algorithms:

• Entropy based [Fayyad & Irani 93 and others] 
[Fayyad & Irani 93] U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued attributes 
for classification learning. Proc. 13th Int. Joint Conf. AI (IJCAI-93), 1022-1027. Chamberry, France, Aug./ 
Sep. 1993.

• Chi-square [Kerber 92] 
[Kerber 92] R. Kerber. ChiMerge: Discretization of numeric attributes. Proc. 10th Nat. Conf. AAAI, 123-128. 
1992.

• … (lots of proposals)

Discretization

Bibliography: S. García, J. Luengo, José A. Sáez, V. López, F. Herrera, A Survey of Discretization 
Techniques: Taxonomy and Empirical Analysis in Supervised Learning. 
IEEE Transactions on Knowledge and Data Engineering 25:4 (2013) 734-750, doi: 10.1109/TKDE.2012.35. 



Example Discretization: Equal width

Equal width

[64,67)  [67,70)  [70,73)  [73,76)  [76,79)  [79,82)  [82,85]

Temperature:
64 65 68 69 70 71 72 72 75 75 80 81 83 85

2 2

Count

4
2 2 20

Discretization



Example discretization: Equal frequency

Equal frequency (height) = 4, except for the last 
box

[64 .. .. .. .. 69]  [70 .. 72]  [73 .. .. .. .. .. .. .. .. 81] [83 .. 85]

Temperature
64 65 68 69 70 71 72 72 75 75 80 81 83 85

4

Count

4 4
2

Discretization



Discretization

 Which discretizer will be the best?. 

 As usual, it will depend on the application, user 
requirements, etc.

 Evaluation ways:

 Total number of intervals
 Number of inconsistencies
 Predictive accuracy rate of classifiers



Data Preprocessing

1. Introduction. Data Preprocessing
2. Integration, Cleaning and Transformations
3. Imperfect Data
4. Data Reduction
5. Final Remarks



Final Remarks

Data preprocessing is a necessity when we 
work with real applications. 

Data 
Pre-

processing
Patterns 

Extraction

Interpretability
of 

results

Raw data Knowledge



Final Remarks

Real data could be dirty and could drive to the extraction of 
useless patterns/rules.

Data preprocessing can generate a smaller data set than the 
original, which allows us to improve the efficiency in the Data 

Mining process.

No quality data, no quality mining results! 

Quality decisions must be based on quality data!



Data Preprocessing Advantage: Data preprocessing 

allows us to apply Learning/Data Mining algorithms easier 

and quicker, obtaining more quality models/patterns in terms 

of accuracy  and/or interpretability.

Final Remarks



Data Preprocessing Advantage: Data preprocessing allows us to apply
Learning/Data Mining algorithms easier and quicker, obtaining more quality
models/patterns in terms of accuracy and/or interpretability.

Final Remarks

A drawback: Data preprocessing is not a structured area 

with a specific methodology for understanding the suitability 

of preprocessing algorithms for managing a new problems. 

Every problem can need a different preprocessing process, 
using different tools. 
The design of automatic processes of use of the different 

stages/techniques is one of the data mining challenges.



Final Remarks

Website including slides, material, links …
(under preparation)

http://sci2s.ugr.es/books/data-preprocessing



Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big Data Preprocessing

 Imbalanced Big Data Classification: Data preprocessing

 Challenges and Final Comments



Big Data Preprocessing

Preprocessing for Big Data analytics 

Tasks to discuss: 

1. Scalability of the proposals (Algorithms redesign!!)

2. Reduce phase: How must we combine the output of the 
maps? (Fundamental phase to use MapReduce for Big Data 
Preprocessing!!)

1. Appearance of small disjuncts with the MapReduce data 
fragmentation. 
This problem is basically associated to imbalanced 
classification: Lack of Data/lack of density 



Density: Lack of data

The lack of density in the 
training data may also cause the 
introduction of small disjuncts.

It becomes very hard for 
the learning algorithm to 
obtain a model that is 
able to perform a good 
generalization when 
there is not enough data 
that represents the 
boundaries of the 
problem and, what it is 
also most significant, 
when the concentration 
of minority examples is 
so low that they can be 
simply treated as noise.

Appearance of small disjuncts with the 
MapReduce data fragmentation 



Big Data Preprocessing
Bird's eye view

9 cases of study 10 chapters giving a quick 
glance on Machine Learning 
with Spakr



Big Data Preprocessing
Bird's eye view

A short introduction to
data preparation with 
Spark – Chapter 3



ChiSqSelector
ChiSqSelector stands for Chi-Squared feature selection. It operates on labeled 
data with categorical features. ChiSqSelector orders features based on a Chi-
Squared test of independence from the class, and then filters (selects) the top 
features which are most closely related to the label.

Model Fitting
ChiSqSelector has the following parameter in the constructor:
• numTopFeatures number of top features that the selector will select (filter).

Big Data Preprocessing
https://spark.apache.org/docs/latest/mllib-guide.htmlBird's eye view



Big Data Preprocessing
Bird's eye view http://sci2s.ugr.es/BigData



Big Data Preprocessing
Bird's eye view http://sci2s.ugr.es/BigData



Big Data Preprocessing
Bird's eye view

Feature Selection

MapReduce based Evolutionary Feature Selection

https://github.com/triguero/MR-EFS

This repository includes the MapReduce implementations used in [1]. This 
implementation is based on Apache Mahout 0.8 library. The Apache Mahout 
(http://mahout.apache.org/) project's goal is to build an environment for quickly 
creating scalable performant machine learning applications.

[1] D. Peralta, S. Del Río, S. Ramírez-Gallego, I. Triguero, J.M. Benítez, F. Herrera. 
Evolutionary Feature Selection for Big Data Classification: A MapReduce Approach.
Mathematical Problems in Engineering, In press, 2015. 

http://sci2s.ugr.es/BigData



Big Data Preprocessing
Bird's eye view

Feature Selection

An Information Theoretic Feature Selection Framework for Spark

https://github.com/sramirez/spark-infotheoretic-feature-selection
http://spark-packages.org/package/sramirez/spark-infotheoretic-feature-selection

This package contains a generic implementation of greedy Information Theoretic 
Feature Selection (FS) methods. The implementation is based on the common 
theoretic framework presented by Gavin Brown. Implementations of mRMR, 
InfoGain, JMI and other commonly used FS filters are provided

http://sci2s.ugr.es/BigData



Big Data Preprocessing
Bird's eye view

Feature Selection

Fast-mRMR: an optimal implementation of minimum Redundancy Maximum 
Relevance algorithm

https://github.com/sramirez/fast-mRMR

This is an improved implementation of the classical feature selection method: 
minimum Redundancy and Maximum Relevance (mRMR); presented by Peng in 
(Hanchuan Peng, Fuhui Long, and Chris Ding "Feature selection based on mutual 
information: criteria of max-dependency, max-relevance, and min-redundancy," IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, pp.1226-
1238, 2005). 
This includes several optimizations such as: cache marginal probabilities, 
accumulation of redundancy (greedy approach) and a data-access by columns.

http://sci2s.ugr.es/BigData

Fast-
mRMR



Big Data Preprocessing
Bird's eye view

Feature Weighting

https://github.com/triguero/ROSEFW-RF

This project contains the code used in the ROSEFW-RF algorithm, including: 

Evolutionary Feature Weighting
RandomForest
Random Oversampling

I. Triguero, S. Río, V. López, J. Bacardit, J.M. Benítez, F. Herrera. ROSEFW-RF: The winner algorithm for
the ECBDL'14 Big Data Competition: An extremely imbalanced big data bioinformatics problem. Knowledge-
Based Systems, in press. doi: 10.1016/j.knosys.2015.05.027

Feature weighting is a feature importance ranking technique where weights, not only ranks, are obtained. 
When successfully applied relevant features are attributed a high weight value, whereas irrelevant features 
are given a weight value close to zero. 
Feature weighting can be used not only to improve classification accuracy but also to discard features with 
weights below a certain threshold value and thereby increase the resource efficiency of the classifier.

http://sci2s.ugr.es/BigData



Big Data Preprocessing
Bird's eye view

Prototype Generation

MapReduce based Prototype Reduction

https://github.com/triguero/MRPR

This repository includes the MapReduce implementation proposed for Prototype 
Reduction for the algorithm MRPR. 

I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera. MRPR: A MapReduce Solution for
Prototype Reduction in Big Data Classification. Neurocomputing 150 (2015), 331-345. doi: 
10.1016/j.neucom.2014.04.078

http://sci2s.ugr.es/BigData



Big Data Preprocessing
Bird's eye view

Discretization
Distributed Minimum Description Length Discretizer for Spark

https://github.com/sramirez/spark-MDLP-discretization
http://spark-packages.org/package/sramirez/spark-MDLP-discretization

Spark implementation of Fayyad's discretizer based on Minimum Description Length 
Principle (MDLP). Published in: 

S. Ramírez-Gallego, S. García, H. Mouriño-Talin, D. Martínez-Rego, V. Bolón, A. Alonso-
Betanzos, J.M. Benitez, F. Herrera. Distributed Entropy Minimization Discretizer for Big Data 
Analysis under Apache Spark. IEEE BigDataSE Conference, Helsinki, August, 2015.  

http://sci2s.ugr.es/BigData



Big Data Preprocessing
Bird's eye view

Processing Imbalanced data sets
Imbalanced Data Preprocessing for Hadoop

https://github.com/saradelrio/hadoop-imbalanced-preprocessing 

MapReduce implementations of random oversampling, random undersampling and 
‘‘Synthetic Minority Oversampling TEchnique’’ (SMOTE) algorithms using Hadoop, 
used in: 

S. Río, V. López, J.M. Benítez, F. Herrera, On the use of MapReduce for 
Imbalanced Big Data using Random Forest. Information Sciences 285 (2014) 112-
137.  

http://sci2s.ugr.es/BigData



Our approaches: 

Big Data Preprocessing

https://github.com/sramirez

https://github.com/triguero https://github.com/saradelrio

Bird's eye view http://sci2s.ugr.es/BigData



• MRPR: A Combined MapReduce-Windowing Two-Level 

Parallel Scheme for Evolutionary Prototype Generation

• MR-EFS: Evolutionary Feature Selection for Big Data 

Classification: A MapReduce Approach

• Spark-ITFS: Filtering Feature Selection For Big Data 

• Fast-mRMR: an optimal implementation of minimum 

Redundancy Maximum Relevance algorithm

• Spark-MDLP: Distributed Entropy Minimization Discretizer for 

Big Data Analysis under Apache Spark

Big Data Preprocessing

Describing some Approaches:



• MRPR: A Combined MapReduce-Windowing Two-Level 

Parallel Scheme for Evolutionary Prototype Generation

• MR-EFS: Evolutionary Feature Selection for Big Data 

Classification: A MapReduce Approach

• Spark-ITFS: Filtering Feature Selection For Big Data 

• Fast-mRMR: an optimal implementation of minimum 

Redundancy Maximum Relevance algorithm

• Spark-MDLP: Distributed Entropy Minimization Discretizer for 

Big Data Analysis under Apache Spark

Big Data Preprocessing

Describing some Approaches:



Big Data Preprocessing:MRPR

MRPR: A Combined MapReduce-Windowing Two-Level Parallel 
Scheme for Evolutionary Prototype Generation

I. Triguero, D. Peralta, J. Bacardit, S.García, F. Herrera. A Combined MapReduce-Windowing 
Two-Level Parallel Scheme for Evolutionary Prototype Generation. 
IEEE CEC Conference, 2014. 

I. Triguero



Prototype Generation: properties

 The NN classifier is one of the most used 
algorithms in machine learning.

 Prototype Generation (PG) processes learn new 
representative examples if needed.  It results in 
more accurate results.

 Advantages:
 PG reduces the computational costs and high 

storage requirements of NN.
 Evolutionary PG algorithms highlighted as the 

best performing approaches.
 Main issues:

 Dealing with big data becomes impractical in 
terms of Runtime and Memory consumption.
Especially for EPG.

Big Data Preprocessing: MRPR

I. Triguero



Evolutionary Prototype Generation

More information about Prototype Reduction can be found in 
the SCI2S thematic website:  http://sci2s.ugr.es/pr

I. Triguero, S. García, F. Herrera, IPADE: Iterative Prototype Adjustment for Nearest 
Neighbor Classification. IEEE Transactions on Neural Networks 21 (12) (2010) 1984-1990

 Evolutionary PG algorithms are typically based on adjustment of 
the positioning of the prototypes.

 Each individual encodes a single prototype or a complete 
generated set with real codification.

 The fitness function is computed as the classification performance 
in the training set using the Generated Set.

 Currently, best performing approaches use differential evolution.

I. Triguero

Big Data Preprocessing: MRPR



Parallelizing PG with MapReduce

Map phase:
 Each map constitutes a subset of the original training data.
 It applies a Prototype Generation step.
 For evalution, it use Windowing: Incremental Learning with Alternating 

Strata (ILAS) 
 As output, it returns a Generated Set of prototypes.

Reduce phase:
 We established a single reducer.
 It consists of an iterative aggregation of all the resulting generated

sets.
 As output, it returns the final Generated Set.

I. Triguero

Big Data Preprocessing: MRPR



The key of a MapReduce data partitioning approach is usually 
on the reduce phase.

Two alternative reducers:
 Join: Concatenates all the resulting generated sets.

 This process does not guarantee that the final generated set 
does not contain irrelevant or even harmful instances

 Fusion: This variant eliminates redundant prototypes by fusion of 
prototypes. Centroid-based PG methods: ICPL2 (Lam et al).

W. Lam et al, Discovering useful concept prototypes for classification based on filtering and 
abstraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pp. 1075-1090, 
2002

Parallelizing PG with MapReduce

I. Triguero

Big Data Preprocessing: MRPR



Windowing: Incremental Learning with Alternating Strata (ILAS) 

J. Bacardit et al,  Speeding-up pittsburgh learning classifier systems: Modeling time and accuracy In 
Parallel Problem Solving from Nature - PPSN VIII, ser. LNCS, vol. 3242, 2004, pp. 1021–1031

 Training set is divided into strata, each iteration just uses one 
of the stratum.

Training set

0 Ex/n 2∙Ex/n Ex3∙Ex/n

Iterations

0 Iter

Main properties:
Avoids a (potentially biased) static prototype selection
This mechanism also introduces some generalization pressure

I. Triguero

Big Data Preprocessing: MRPR



The MRW-EPG scheme Windowing: Incremental Learning 
with Alternating Strata (ILAS) 

I. Triguero

Big Data Preprocessing: MRPR



Experimental Study

 PokerHand data set. 1 million of instances, 3x5 fcv.
 Performance measures: Accuracy, reduction rate, runtime, test 

classification time and speed up.
 PG technique tested: IPADECS.

I. Triguero

Big Data Preprocessing: MRPR



Results

PokerHand: Accuracy Test vs. Runtime results obtained by MRW-EPG
I. Triguero

Big Data Preprocessing: MRPR



Results

I. Triguero

Big Data Preprocessing: MRPR



Results: Speed-up

I. Triguero

Big Data Preprocessing: MRPR



 There is a good synergy between the windowing and MapReduce 
approaches. They complement themselves in the proposed two-
level scheme.

 Without windowing, evolutionary prototype generation could not 
be applied to data sets larger than approximately ten thousands 
instances

 The application of this model has resulted in a very big reduction 
of storage requirements and classification time for the NN rule.

EPG for Big Data: Final Comments

I. Triguero

Big Data Preprocessing: MRPR



 Complete study: I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera. 
MRPR: A MapReduce solution for prototype reduction in big data classification. 
Neurocomputing 150 (2015) 331–345.

EPG for Big Data: Final Comments

Including: 
ENN algorithm for Filtering 

Big Data Preprocessing: MRPR

https://github.com/triguero/MRPR



Fig. 6 Average runtime obtained by MRPR. (a) PokerHand

Complete study: I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera. MRPR: A 
MapReduce solution for prototype reduction in big data classification. Neurocomputing 150 
(2015) 331–345.

EPG for Big Data: Final Comments

Big Data Preprocessing: MRPR



• MRPG: A Combined MapReduce-Windowing Two-Level 

Parallel Scheme for Evolutionary Prototype Generation

• MR-EFS: Evolutionary Feature Selection for Big Data 

Classification: A MapReduce Approach

• Spark-ITFS: Filtering Feature Selection For Big Data 

• Fast-mRMR: an optimal implementation of minimum 

Redundancy Maximum Relevance algorithm

• Spark-MDLP: Distributed Entropy Minimization Discretizer for 

Big Data Analysis under Apache Spark

Big Data Preprocessing

Describing some Approaches:



Big Data Preprocessing: MR-EFS

Evolutionary Feature Selection for Big Data Classification: A 
MapReduce Approach

D. Peralta, S. del Río, S. Ramírez-Gallego, I. Triguero, J.M. Benítez, F. Herrera. Evolutionary 
Feature Selection for Big Data Classification: A MapReduce Approach.
Mathematical Problems in Engineering, 2015, In press. 



Evolutionary Feature Selection (EFS)

 Each individual represents a set of selected features (binary 
vector).

 The individuals are crossed and mutated to generate new 
candidate sets of features.

 Fitness function:
Classification performance in the training dataset using only 
the features in the corresponding set.

Big Data Preprocessing: MR-EFS

D. Peralta



L. J. Eshelman, The CHC adaptative search algorithm: How to have safe search  
when engaging in nontraditional genetic recombination, in: G. J. E. Rawlins (Ed.), 
Foundations of Genetic Algorithms, 1991, pp. 265--283.

Evolutionary Algorithm: CHC

Big Data Preprocessing: MR-EFS

D. Peralta



Parallelizing FS with MapReduce
Map phase
Each map task uses a subset of the training data.
It applies an EFS algorithm (CHC) over the subset.
A k-NN classifier is used for the evaluation of the population.
Output (best individual):

 Binary vector, indicating which features are selected.

Reduce phase
One reducer.
It sums the binary vectors obtained from all the map tasks.
The output is a vector of integers.

 Each element is a weight for the corresponding feature.

Big Data Preprocessing: MR-EFS

D. Peralta



MapReduce EFS process

Big Data Preprocessing: MR-EFS

The vector of 
weights is 
binarized with a 
threshold

D. Peralta



Dataset reduction

Big Data Preprocessing: MR-EFS

The maps remove 
the discarded 
features

No reduce phase

D. Peralta



Experimental Study: EFS scalability in MapReduce

0 5000 10000 15000 20000

0
50

00
0

10
00

00
15

00
00

Number of instances

T
im

e 
(s

ec
on

ds
)

Sequential CHC
MR−EFS
MR−EFS (full dataset)

 CHC is quadratic w.r.t. the number of instances
 Splitting the dataset yields nearly quadratic acceleration

D. Peralta

Big Data Preprocessing: MR-EFS



Experimental Study: Classification

 Two datasets
 epsilon
 ECBDL14, after applying 

Random Oversampling

 The reduction rate is 
controlled with the weight 
threshold

 Three classifiers in Spark
 SVM
 Logistic Regression
 Naïve Bayes

 Performance measures


 Training runtime

D. Peralta

Big Data Preprocessing: MR-EFS



Experimental Study: results

0.64

0.66

0.68

0.70

500 1000 1500 2000
Features

A
U

C

Classifier

LogisticRegression

NaiveBayes

SVM−0.0

SVM−0.5

Set

Training

Test

D. Peralta

Big Data Preprocessing: MR-EFS



Experimental Study: Feature selection scalability

D. Peralta

Big Data Preprocessing: MR-EFS



 The splitting of CHC provides several advantages:
 It enables tackling Big Data problems
 The speedup of the map phase is nearly quadratic
 The feature weight vector is more flexible than a binary vector

 The data reduction process in MapReduce provides a scalable 
and flexible way to apply the feature selection

 Both the accuracy and the runtime of the classification were 
improved after the preprocessing.

EFS for Big Data: Final Comments

D. Peralta

Big Data Preprocessing: MR-EFS

https://github.com/triguero/MR-EFS



• MRPG: A Combined MapReduce-Windowing Two-Level 

Parallel Scheme for Evolutionary Prototype Generation

• MR-EFS: Evolutionary Feature Selection for Big Data 

Classification: A MapReduce Approach

• Spark-ITFS: Filtering Feature Selection For Big Data 

• Fast-mRMR: an optimal implementation of minimum 

Redundancy Maximum Relevance algorithm

• Spark-MDLP: Distributed Entropy Minimization Discretizer for 

Big Data Analysis under Apache Spark

Big Data Preprocessing

Describing some Approaches:



Filtering Feature Selection For Big Data

 Many filtering methods are based on information theory. These are based on a 
quantitative criterion or index that measures its usefulness.

 Relevance (self-interaction): mutual information of a feature with the class. 
Importance of a feature.

 Redundancy (multi-interaction): conditional mutual information between two 
input features. Features that carry similar information. 

S. Ramirez

Big Data Preprocessing: Spark-ITFS



Filtering Feature Selection For Big Data

 There are a wide range of method in the literature built on these information 
theoretic measures.

 To homogenize the use of all these criterions, Gavin Brown proposed a generic 
expression that allows to ensemble many of these criterions in an unique FS 
framework:

 It is based on a greedy optimization which assesses features based on a simple 
scoring criterion. Through some independence assumptions, it allows to 
transform many criterions as linear combinations of Shannon entropy terms.

S. Ramirez

Brown G, Pocock A, Zhao MJ, Luján M (2012) Conditional likelihood max-
imisation: A unifying framework for information theoretic feature selection. J
Mach Learn Res 13:27–66

Big Data Preprocessing: Spark-ITFS



Filtering Feature Selection For Big Data

S. Ramirez

Big Data Preprocessing: Spark-ITFS



Filtering Feature Selection For Big Data

 We propose a distributed 
version of this framework 
based on a greedy 
approach (each iteration 
the algorithm selects one 
feature).

 As relevance values do 
not change, we compute 
them first and cache to 
reuse.

 Then, redundancy values 
are calculated between 
the non-selected features 
and the last one selected.

S. Ramirez

Big Data Preprocessing: Spark-ITFS



Filtering Feature Selection For Big Data

 The most challenging
part is to compute the 
mutual and conditional 
information results.

 It supposes to compute all 
combinations necessary 
for marginal and joint 
probabilities.

 This imply to run several 
Map-Reduce phases to 
distribute and joint 
probabilities with its 
correspondent feature.

S. Ramirez

Big Data Preprocessing: Spark-ITFS



Filtering Feature Selection For Big Data

S. Ramirez

Group by type of probability
(maintaining the origin)

(key, x, y, z, count) –
Distinct by key Join by instance

Join by feature

Big Data Preprocessing: Spark-ITFS



Experimental Framework

 Datasets: Two huge datasets (ECBDL14 and epsilon)

 Parameters:

 Measures: AUC, selection and classification time.
 Hardware: 16 nodes (12 cores per node), 64 GB RAM.
 Software: Hadoop 2.5 and Apache Spark 1.2.0.

S. Ramirez

Big Data Preprocessing: Spark-ITFS



Experimental Results: AUC and classification time

S. Ramirez

Big Data Preprocessing: Spark-ITFS



Experimental Results: Selection Time (in seconds)

S. Ramirez

Big Data Preprocessing: Spark-ITFS



Filtering Feature Selection For Big Data

Info-Theoretic Framework 2.0:
 Data column format: Row/Instance data are transformed to a column-wise 

format. Each feature computation (X) is isolated and parallelized in each step. 
 Cached marginal and joint probabilities: in order to reuse them in next 

iterations.
 Broadcasted variables: Y and Z features and its marginal/joint values are 

broadcasted in each iteration.
 Support for high-dimensional and sparse problems: zero values are 

calculated from the non-zero values avoiding explosive complexity. Millions of 
features can be processed.

S. Ramirez

Code: http://spark-packages.org/package/sramirez/spark-
infotheoretic-feature-selection

Big Data Preprocessing: Spark-ITFS



• MRPG: A Combined MapReduce-Windowing Two-Level 

Parallel Scheme for Evolutionary Prototype Generation

• MR-EFS: Evolutionary Feature Selection for Big Data 

Classification: A MapReduce Approach

• Spark-ITFS: Filtering Feature Selection For Big Data 

• Fast-mRMR: an optimal implementation of minimum 

Redundancy Maximum Relevance algorithm

• Spark-MDLP: Distributed Entropy Minimization Discretizer for 

Big Data Analysis under Apache Spark

Big Data Preprocessing

Describing some Approaches:



Fast-mRMR: an optimal implementation of minimum 
Redundancy Maximum Relevance algorithm
Original proposal (mRMR):
 Rank features based on their relevance to the target, and at the same 

time, the redundancy of features is also penalized.
 Maximum dependency: mutual information (MI) between a feature set 

S with xi features and the targe class c: 

 Minimum redundancy: MI between features.

 Combining two criterions:

S. Ramirez

Hanchuan Peng, Fulmi Long, and Chris Ding. Feature selection based on mutual 
information criteria of max-dependency, max-relevance, and min-redundancy. 
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(8):1226–
1238, 2005.

Big Data Preprocessing: Fast-mRMR



Fast-mRMR: an optimal implementation of minimum 
Redundancy Maximum Relevance algorithm
Improvements:

 Accumulating Redundancy (greedy approach): in each iteration only 
compute MI between last selected feature and those non-selected. 
Select one feature by iteration.

 Data-access pattern: column-wise format (more natural approach).
 Caching marginal probabilities: computed once at the beginning, 

saving extra computations.

S. Ramirez

Big Data Preprocessing: Fast-mRMR



Fast-mRMR: an optimal implementation of minimum 
Redundancy Maximum Relevance algorithm
Software package with several versions for:

 CPU: implemented in C++. For small and medium datasets.
 GPU: mapped MI computation problem to histogramming problem in 

GPU. Parallel version. 
 Apache Spark: for Big Data problems.

S. Ramirez

Code: https://github.com/sramirez/fast-mRMR

Big Data Preprocessing: Fast-mRMR



Fast-mRMR: an optimal implementation of minimum 
Redundancy Maximum Relevance algorithm

S. Ramirez

Big Data Preprocessing: Fast-mRMR



• MRPG: A Combined MapReduce-Windowing Two-Level 

Parallel Scheme for Evolutionary Prototype Generation

• MR-EFS: Evolutionary Feature Selection for Big Data 

Classification: A MapReduce Approach

• Spark-ITFS: Filtering Feature Selection For Big Data 

• Fast-mRMR: an optimal implementation of minimum 

Redundancy Maximum Relevance algorithm
• Spark-MDLP: Distributed Entropy Minimization Discretizer for 

Big Data Analysis under Apache Spark

Big Data Preprocessing

Describing some Approaches:



Distributed Entropy Minimization Discretizer for
Big Data Analysis under Apache Spark

Sergio Ramírez-Gallego, Salvador García, Héctor Mouriño-Talín, David Martínez-Rego ,
Verónica Bolón-Canedo, Amparo Alonso-Betanzos, José Manuel Benítez, Francisco Herrera 
Distributed Entropy Minimization Discretizer for Big Data Analysis under Apache Spark.
IEEE BigDataSE, 2015.

I. Triguero

Big Data Preprocessing: Spark-MDLP



Introduction

 The astonishing rate of data generation on the Internet nowadays has 
caused that many classical knowledge extraction techniques have become 
obsolete. 

 Data reduction (discretization) techniques are required in order to reduce 
the complexity order held by these techniques. 

 In spite of the great interest, only a few simple discretization techniques 
have been implemented in the literature for Big Data.

 We propose a distributed implementation of the entropy minimization 
discretizer proposed by Fayyad and Irani using Apache Spark platform. 

S. Ramirez

U. M. Fayyad and K. B. Irani, “Multi-interval discretization of continuous-valued 
attributes for classification learning,” in International Joint Conference On Artificial 
Intelligence, vol. 13. Morgan Kaufmann, 1993, pp. 1022–1029. 

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster 
Computing. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, 
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica. NSDI 
2012. April 2012.

Big Data Preprocessing: Spark-MDLP



Discretization: An Entropy Minimization Approach

 Discretization: transforms numerical attributes into discrete or nominal 
attributes with a finite number of intervals. 

 Main objective: find the best set of points/intervals according to a quality 
measure (e.g.: inconsistency or entropy).

 Optimal discretization is NP-complete, determined by the number of 
candidate cut points (all distinct values in the dataset for each attribute). 

 A possible optimization: use only boundary points in the whole set 
(midpoint between two values between two classes). 

S. Ramirez

U. M. Fayyad and K. B. Irani, “Multi-interval discretization of continuous-valued 
attributes for classification learning,” in International Joint Conference On Artificial 
Intelligence, vol. 13. Morgan Kaufmann, 1993, pp. 1022–1029. 

S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data
Mining. Springer, 2015.

Big Data Preprocessing: Spark-MDLP



Discretization: An Entropy Minimization Approach

 Minimum Description Length Discretizer (MDLP) implements this 
optimization and multi-interval extraction of points (which improves 
accuracy and simplicity respect to ID-3). 

 Quality measure: class entropy of partitioning schemes (S1, S2) for 
attribute A. Find the best cut point.

 Stop criterion: MDLP criterion

S. Ramirez

U. M. Fayyad and K. B. Irani, “Multi-interval discretization of continuous-valued 
attributes for classification learning,” in International Joint Conference On Artificial 
Intelligence, vol. 13. Morgan Kaufmann, 1993, pp. 1022–1029. 

Big Data Preprocessing: Spark-MDLP



Distributed MDLP Discretization: a complexity study

 Determined by two time-consuming operations (repeated for each 
attribute):
– Sorting: O(|A| log |A|), assuming A is an attribute with all its points 

distinct.
– Evaluation: quadratic operation (boundary points).

 Proposal:
– Sort all points in the dataset using a single distributed operation.
– Evaluates boundary points (per feature) in an parallel way.

 Main Primitives: using Apache Spark, a large-scale processing 
framework based on in-memory primitives. Some primitives used:
– SortByKey: sort tuples by key in each partition. Partitions are also 

sorted.
– MapPartitions: an extension of Map-Reduce operation for partition 

processing.
S. Ramirez

Big Data Preprocessing: Spark-MDLP



Distributed MDLP Discretization: main procedure

1) Distinct points: it creates tuples
where key is formed by the feature 
index and the value. Value: frequency 
vector for classes. 

2) Sorting: distinct points are sorted by 
key (feature, value).

3) Boundary points: boundary points 
are calculated evaluating consecutives 
points.

4) Points grouped by feature: grouped 
and new key: only the attribute index.

5) Attributes divided by size: depends 
on the number of boundary points (> 
10,000 points)

6) Points selection and MLDP 
evaluation

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Distributed MDLP Discretization: main procedure
1) Distinct points: already 

calculated in step #1 from raw 
data.

2) Sorting: distinct points are 
sorted by key. For the next step, 
the first points in each partition 
are sent to the following 
partition.

3) Boundary points: midpoints 
are generated when two points 
of the same attribute are on the 
border. Last points in a partition 
and in a feature are also added.

4) MLDP selection and 
evaluation: parallelized by 
feature

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Distributed MDLP Discretization: attribute division

 Once boundary points are 
generated, for each 
attribute do:
 Points < limit: group in a 

local list.
 Point > limit: associate a 

list of partitions 
(distributed) → unusual.

 Then, the points are 
evaluated recursively,
depending of the 
aforementiond parameter. 
In case of partitions, the 
process is iterative, 
whereas for list of points, it 
is distributed.

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Distributed MDLP Discretization: MDLP evaluation (small)

1)Prerequisites: Points 
must be sorted. 

2)Compute the total 
frequency for all classes

3)For each point:
 Left accumulator: 

computed from the left.
 Right accumulator: 

computed using the left 
one and the total,

4) The point is evaluated 
as:

(point, frequency, left, right)

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Distributed MDLP Discretization: MDLP evaluation (big)

1)Prerequisites: Points and 
partitions must be sorted 

2)Compute the total 
frequency by partition

3) Compute the 
accumulated frequency

4)For each partition:
 Left accumulator: 

computed from the left.
 Right accumulator: 

computed using the left 
one and the total,

5) The point is evaluated 
as: (point, frequency, left, 
right).

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Experimental Framework

 Datasets: Two huge datasets (ECBDL14 and epsilon)

 Parameters: 50 intervals and 100,000 max candidates per partition.
 Classifier: Naive Bayes from MLLib, lambda = 1, iterations = 100.
 Measures: discretization time, classification time and classification accuracy.
 Hardware: 16 nodes (12 cores per node), 64 GB RAM.
 Software: Hadoop 2.5 and Apache Spark 1.2.0.

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Performance results: Classification accuracy

 Clear advantage on using discretization in both datasets.
 Specially important for ECBDL14.

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Performance results: Classification time modelling

 Light improvement between both versions. It seems that using discretization 
does not affect too much the modelling performance.

 Despite of being insignificant, the time value for discretization is a bit better 
than for the other one.

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Performance results: Discretization time

 High speedup between the sequential version and the distributed one for both 
datasets.

 For ECBDL14, our version is almost 300 times faster.
 Even for the medium-size dataset (epsilon), there is a clear advantage.

 The bigger the dataset, the higher the improvement.

S. Ramirez

Big Data Preprocessing: Spark-MDLP



Spark-MDLP: Final Comments

 We have proposed a sound multi-interval discretization method
based on entropy minimization for large-scale discretization. This has 
implied a complete redesign of the original proposal.

 Adapting discretization methods to Big Data is not a trivial task (only 
few simple techniques implemented).

 The experimental results has demonstrated the improvement in 
accuracy and time (both classification and discretization) with respect 
to the sequential proposal.

S. Ramirez

Big Data Preprocessing: Spark-MDLP

https://github.com/sramirez/spark-MDLP-discretization



216

Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big data Preprocessing

 Imbalanced Big Data Classification: Data preprocessing

 Challenges and Final Comments



Objective:  Contact map prediction

Details:
 32 million instances
 631 attributes (539 real & 92 nominal values)
 2 classes
 98% of negative examples
 About 56.7GB of disk space

Evaluation:
True positive rate · True negative rate 
TPR · TNR

J. Bacardit et al, Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple
predicted structural features, Bioinformatics 28 (19) (2012) 2441-2448

http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=data

ECBDL’14 Big Data Competition 2014: Self-deployment track 

Evolutionary Computation for 
Big Data and Big Learning 

Workshop



Evolutionary Computation for 
Big Data and Big Learning 

Workshop
ECBDL’14 Big Data Competition 2014: Self-deployment track 

The challenge:

 Very large size of the training set
 Does not fit all together in memory.

 Even large for the test set (5.1GB, 2.9 million instances)

 Relatively high dimensional data.

 Low ratio (<2%) of true contacts. Imbalance rate: > 49
 Imbalanced problem!
 Imbalanced Big Data Classification

-
-

-- --
--

- -
-

--
----

-- -- -
- -

- --
-- - -

+
+ +++



We need to
change the way
to evaluate a 
model
performance!

Imbalanced 
classes 
problem: 
standard 
learners are 
often biased 
towards the 
majority class.

Imbalanced Big Data Classification
Introduction



Imbalanced Big Data Classification
Introduction 

Over-Sampling
Random
Focused

Under-Sampling
Random
Focused

Cost Modifying (cost-sensitive)

Motivation

Retain influential examples
Balance the training set

Remove noisy instances in 
the decision boundaries
Reduce the training set

Strategies to deal with imbalanced data sets

Algorithm-level approaches: A commont strategy to deal 
with the class imbalance is to choose an appropriate 
inductive bias.
Boosting approaches:  ensemble learning, AdaBoost, …



A MapReduce Approach

Over-Sampling
Random
Focused

Under-Sampling
Random
Focused

Cost Modifying (cost-sensitive)
Boosting/Bagging approaches (with
preprocessing)

Previous study on extremely imbalanced big data: 
S. Río, V. López, J.M. Benítez, F. Herrera, On the use of MapReduce 
for Imbalanced Big Data using Random Forest. Information Sciences 
285 (2014) 112-137.  

Imbalanced Big Data Classification

32 million instances, 98% of negative examples.  Low ratio of true 
contacts (<2%). Imbalance rate: > 49.   Imbalanced problem!



S. Río, V. López, J.M. Benítez, F. Herrera, On the use of MapReduce for Imbalanced Big Data using Random Forest. 
Information Sciences 285 (2014) 112-137.  

A MapReduce Approach for Random Undersampling

Imbalanced Big Data Classification



S. Río, V. López, J.M. Benítez, F. Herrera, On the use of MapReduce for Imbalanced Big Data using Random Forest. 
Information Sciences 285 (2014) 112-137.  

A MapReduce Approach for Random Oversampling

Imbalanced Big Data Classification



S. Río, V. López, J.M. Benítez, F. Herrera, On the use of MapReduce for Imbalanced Big Data using Random Forest. 
Information Sciences 285 (2014) 112-137.  

A MapReduce Approach for Adapting the generation of synthetic 
minority samples

Imbalanced Big Data Classification



Analysis of the effectiveness in classification of the approaches

Potential problem: lack of density of the positive class for RUS/SMOTE. 
Lack of data due to the data fragmentation for MapReduce

Imbalanced Big Data Classification

https://github.com/saradelrio/hadoop-imbalanced-preprocessing



Objective:  Contact map prediction

Details:
 32 million instances
 631 attributes (539 real & 92 nominal values)
 2 classes
 98% of negative examples
 About 56.7GB of disk space

Evaluation:
True positive rate · True negative rate 
TPR · TNR

J. Bacardit et al, Contact map prediction using a large-scale ensemble of rule sets and the fusion of multiple
predicted structural features, Bioinformatics 28 (19) (2012) 2441-2448

http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=data

ECBDL’14 Big Data Competition 2014: Self-deployment track 

Evolutionary Computation for 
Big Data and Big Learning 

Workshop



ECBDL’14 Big Data Competition 2014

Our approach:

1. Balance the original training data 
 Random Oversampling
 (As first idea, it was extended)

2. Learning a model.
 Random Forest

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



We initially focused on

 Oversampling rate: {100%}

RandomForest:
 Number of used features:  10 (log n +1);  Number of trees: 100
 Number of maps:   {64, 190, 1024, 2048}

To higher mappers, the lowest TPR (relevant!)

Nº mappers TPR_tst TNR_tst
TNR*TPR

Test
64 0,601723 0,806269 0,485151
190 0,635175 0,773308 0,491186
1024 0,627896 0,756297 0,474876
2048 0,624648 0,759753 0,474578

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

Oversampling rate: {100%}
RandomForest



ECBDL’14 Big Data Competition



We initially focused on

 Oversampling rate: 100%
RandomForest:
 Number of used features:  10 (log n +1);  Number of trees: 100
 Number of maps:   {64, 190, 1024, 2048}

Very low TPR (relevant!)

Nº mappers TPR_tst TNR_tst
TNR*TPR

Test
190 0,635175 0,773308 0,491186

How to increase the TPR rate?  

Idea: To increase the ROS percentaje

ECBDL’14 Big Data Competition



How to increase the TPR rate?  
Idea: To increase the ROS percentaje

 Oversampling rate: {100, 105, 110, 115, 130}

RandomForest:
 Number of used features:10;  Number of trees: 100 

The higher ROS percentage, the higher TPR and the lower TNR

Algorithms TPR TNR
TNR*TPR 

Test
ROS+RF (RS: 100%) 0.6351  0.7733  0.491186
ROS+RF (RS: 105%) 0.6568  0.7555  0.496286
ROS+RF (RS: 110%) 0.6759  0.7337  0.495941
ROS+RF (RS: 115%) 0.7041  0.7103  0.500175
ROS+RF (RS: 130%) 0.7472  0.6609  0.493913

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

What can we do?



ECBDL’14 Big Data Competition 2014

Our approach:

1. Balance the original training data 
 Random Oversampling
 (As first idea, it was extended)

2. Learning a model.
 Random Forest

3. Detect relevant features. 
 Evolutionary Feature Selection

Classifying test set.

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

Feature selection does not help us



ECBDL’14 Big Data Competition 2014

Our approach:

1. Balance the original training data 
 Random Oversampling
 (As first idea, it was extended)

2. Learning a model.
 Random Forest

3. Detect relevant features. 
 Evolutionary Feature Weighting

Classifying test set.

ECBDL’14 Big Data Competition



Third component: MapReduce Approach for Feature Weighting
for getting a major performance over classes

Map Side
 Each map read one block from dataset.
 Perform an Evolutionary Feature Weighting step.
 Output: a real vector that represents the degree of importance of  
each feature.
Number of maps: 32768 (less than 1000 original data per map)

Reduce Side
 Aggregate the feature’s weights
 A feature is finally selected if it overcomes a given threshold.
 Output: a binary vector that represents the final selection

I. Triguero, J. Derrac, S. García, F. Herrera, Integrating a Differential Evolution Feature Weighting scheme into Prototype
Generation. Neurocomputing 97 (2012) 332-343

ECBDL’14 Big Data Competition

How to increase the performance?



Third component: MapReduce Approach for Feature Weighting
for getting a major performance over classes

ECBDL’14 Big Data Competition

How to increase the performance?



Random Oversampling:
 Oversampling ratio. Analyzed values: {100 to 130)

Feature Weigthing:

 Threshold --> number of selected features. 
 Set of features: {19, 63, 90, 146}
 Number of maps: 32768

RandomForest:

 Number of used features: {log NumFeatures, 2 * Log +1}
 Number of trees: {100} 
 Number of maps: {32, 64,128, 190, 256, 512}

Experimental study

ECBDL’14 Big Data Competition



We investigate: The use of  Evolutionary Feature Weighting. 
It allows us to construct several subset of features (changing the threshold).

128 mappers

Algorithms
TNR*TPR 
Training TPR TNR

TNR*TPR
Test

ROS+RF (130%  ‐ Feature Weighting 19) 0.621638 0.684726 0.735272 0.503459

ROS+RF (115%  ‐ Feature Weighting 19) 0.628225 0.674569 0.750184 0.506051

ROS+RF (100%  ‐ Feature Weighting 19) 0.635029 0.629397 0.784132 0.493531

ROS+RF (130%  ‐ Feature Weighting 63) 0.634843 0.683800 0.756926 0.517586

ROS+RF (115%  ‐ Feature Weighting 63) 0.639319 0.677015 0.764589 0.517638

ROS+RF (100%  ‐ Feature Weighting 63) 0.648723 0.638567 0.794595 0.507402
64 mappers

Algorithms
TNR*TPR 
Training TPR TNR

TNR*TPR 
Test

ROS+RF (130%  ‐ Feature Weighting 63) 0.726350 0.66949 0.775652 0.519292
ROS+RF (115%  ‐ Feature Weighting 63) 0.736596 0.652692 0.790822 0.516163
ROS+RF (100%  ‐ Feature Weighting 63) 0.752824 0.626190 0.811176 0.507950

ECBDL’14 Big Data Competition



Evolutionary Feature Weighting. 
It allows us to construct several subset of features (changing the threshold).

64 mappers

Algorithms
TNR*TPR 
Training TPR TNR

TNR*TPR 
Test

ROS+RF (130%  ‐ Feature Weighting 63) 0.726350 0.66949 0.775652 0.519292
ROS+RF (115%  ‐ Feature Weighting 63) 0.736596 0.652692 0.790822 0.516163
ROS+RF (100%  ‐ Feature Weighting 63) 0.752824 0.626190 0.811176 0.507950

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition

ROS (130) + Evolutionary Feature Weighting



64 mappers

Algorithms
TNR*TPR
Training TPR TNR

TNR*TPR
Test

ROS+ RF (130%+ FW 90+25f+200t) 0.736987 0.671279 0.783911 0.526223
ROS+ RF (140%+ FW 90+25f+200t) 0.717048 0.695109 0.763951 0.531029

190 mappers

Algorithms
TNR*TPR
Training TPR TNR

TNR*TPR 
Test

ROS+ RF (140%+ FW 90+25f+200t) 0.629273 0.721652 0.729740 0.526618

64 mappers and we got 0.53

ROS 130 – 65 replications of the minority instances  (ROS 140 – 68)

More features with diffferent Maps configuration

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



Current state: 

Our knowledge: 
The higher ROS percentage, the higher TPR and the lower TNR

The less number of maps, the less TPR and the high TNR (high
accuracy).

4 days to finish the competion: 

Can we take decisions to improve the model?

64 mappers

Algorithms
TNR*TPR
Training TPR TNR

TNR*TPR
Test

ROS+ RF (140%+ FW 90+25f+200t) 0.717048 0.695109 0.763951 0.531029

ECBDL’14 Big Data Competition

ROS 130 – 65 (140 – 68) replications of the minority instances



64 mappers

Algorithms
TNR*TPR
Training TPR TNR

TNR*TPR
Test

ROS+ RF (130%+ FW 90+25f+200t) 0.736987 0.671279 0.783911 0.526223
ROS+ RF (140%+ FW 90+25f+200t) 0.717048 0.695109 0.763951 0.531029
ROS+ RF (150%+ FW 90+25f+200t) 0.706934 0.705882 0.753625 0.531971
ROS+ RF (160%+ FW 90+25f+200t) 0,698769 0.718692 0.741976 0.533252
ROS+ RF (170%+ FW 90+25f+200t) 0.682910 0.730432 0.730183 0.533349
ROS+ RF (180%+ FW 90+25f+200t) 0,678986 0.737381  0.722583 0.532819

Last decision: We investigated to increase ROS until 180% with 
64 mappers

To increase ROS and reduce the mappers number lead us to get a trade-
off with good results

ROS 170 – 85 replications of the minority instances

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



Results of the competition: Contact map prediction

Team Name TPR TNR Acc TPR · TNR
Efdamis 0.730432 0.730183 0.730188 0.533349
ICOS 0.703210 0.730155 0.729703 0.513452
UNSW 0.699159 0.727631 0.727153 0.508730
HyperEns 0.640027 0.763378 0.761308 0.488583

PUC-Rio_ICA 0.657092 0.714599 0.713634 0.469558
Test2 0.632009 0.735545 0.733808 0.464871
EmeraldLogic 0.686926 0.669737 0.670025 0.460059

LidiaGroup 0.653042 0.695753 0.695036 0.454356

http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=ranking

Evolutionary Computation for Big Data and 
Big Learning Workshop

EFDAMIS team ranked first in the ECBDL’14 big data competition

ECBDL’14 Big Data Competition



ECBDL’14 Big Data Competition



At the beginning ROS+RF (RS: 100%) 

Nº mappers TPR_tst TNR_tst
TNR*TPR

Test
64 0,601723 0,806269 0,485151

At the end: ROSEFW-RF algorithm

64 mappers

Algorithms
TNR*TPR
Training TPR TNR

TNR*TPR
Test

ROS+ RF (160%+ FW 90+25f+200t) 0,698769 0.718692 0.741976 0.533252
ROS+ RF (170%+ FW 90+25f+200t) 0.682910 0.730432 0.730183 0.533349
ROS+ RF (180%+ FW 90+25f+200t) 0,678986 0.737381 0.722583 0.532819

ECBDL’14 Big Data Competition
Final comments



Results of the competition: Contact map prediction

Team Name TPR TNR Acc
TPR · 
TNR

Efdamis 0.730432 0.730183 0.730188 0.533349
ICOS 0.703210 0.730155 0.729703 0.513452
UNSW 0.699159 0.727631 0.727153 0.508730

To increase ROS and to use Evolutionary feature weighting were two 
good decisions for getting the first position

Evolutionary Computation for Big Data and 
Big Learning Workshop

64 mappers

Algorithms
TNR*TPR 
Training TPR TNR

TNR*TPR 
Test

ROS+RF (130%  ‐ Feature Weighting 63) 0.726350 0.66949 0.7756520.519292
ROS+RF (115%  ‐ Feature Weighting 63) 0.7365960.652692 0.7908220.516163
ROS+RF (100%  ‐ Feature Weighting 63) 0.7528240.626190 0.8111760.507950

ECBDL’14 Big Data Competition
Final comments



ECBDL’14 Big Data Competition
Final comments

Experiments with 64 maps
ROS 170 – 85 replications of the minority instances
Remember the initial problem. Lack of density of the minority class



ECBDL’14 Big Data Competition
Final comments

Team Name Learning strategy
Computational
Infrastructure

Efdamis
Oversampling+FS+Random
Forest MapReduce

ICOS 
Oversampling+Ensemble of 
Rule sets Batch HPC

UNSW 
Ensemble of Deep Learning 
classifiers Parallel HPC

HyperEns SVM Parallel HPC

PUC-Rio_ICA Linear GP GPUs

EmeraldLogic ~Linear GP GPUs

LidiaGroup 1-layer NN Spark



ECBDL’14 Big Data Competition
Our algorithm: ROSEFW-RF

I. Triguero, S. del Río, V. López, J. Bacardit, J.M. Benítez, F. Herrera. 
ROSEFW-RF: The winner algorithm for the ECBDL'14 Big Data Competition: An 
extremely imbalanced big data bioinformatics problem.  Knowledge-Based 
Systems, 2015, In press. 

https://github.com/triguero/ROSEFW-RF



257

Outline

 Big Data. Big Data Science. Data Preprocessing

 Why Big Data? MapReduce Paradigm. Hadoop 
Ecosystem

 Big Data Classification: Learning algorithms

 Data Preprocessing

 Big data Preprocessing

 Big Data Classification: Imbalanced classes and data 
preprocessing

 Challenges and Final Comments



Final Comments

Data Mining, Machine learning and data preprocessing: 
Huge collection of algorithms

Big Data: A small subset of algorithms

Big Data Preprocessing: 
A few methods for preprocessing in Big Data 
analytics.



Some Challenges on Big Data Preprocessing

 Big Data Reduction
 To improve the efficiency in 

the big data analytics. 
 Quality data for quality 

models in big data analytics

Final Comments

 Clean Big Data
 Noise in data distorts 

 Computation results
 Search results

 Need automatic methods for 
“cleaning” the data
 Duplicate elimination
 Quality evaluation

 Missing values
 Missing values management

 Computing Model
 Accuracy and Approximation
 Efficiency



Final Remarks

Big Data Preprocessing

Big data preprocessing methods are necessary 
to improve the quality of the processes of big 

data analytics.

Quality decisions must be based on quality big data!



Final Comments



Data Mining methods for Big 
Data Preprocessing


