
Big Data AnalyticsGarcía et al. Big Data Analytics  (2016) 1:9 
DOI 10.1186/s41044-016-0014-0

REVIEW Open Access

Big data preprocessing: methods and
prospects
Salvador García*, Sergio Ramírez-Gallego, Julián Luengo, José Manuel Benítez and Francisco Herrera

*Correspondence:
salvagl@decsai.ugr.es
Department of Computer Science
and Artificial Intelligence, University
of Granada, CITIC-UGR, 18071
Granada, Spain

Abstract

The massive growth in the scale of data has been observed in recent years being a key
factor of the Big Data scenario. Big Data can be defined as high volume, velocity and
variety of data that require a new high-performance processing. Addressing big data is
a challenging and time-demanding task that requires a large computational
infrastructure to ensure successful data processing and analysis. The presence of data
preprocessing methods for data mining in big data is reviewed in this paper. The
definition, characteristics, and categorization of data preprocessing approaches in big
data are introduced. The connection between big data and data preprocessing
throughout all families of methods and big data technologies are also examined,
including a review of the state-of-the-art. In addition, research challenges are discussed,
with focus on developments on different big data framework, such as Hadoop, Spark
and Flink and the encouragement in devoting substantial research efforts in some
families of data preprocessing methods and applications on new big data learning
paradigms.
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Background
Vast amounts of raw data is surrounding us in our world, data that cannot be directly
treated by humans or manual applications. Technologies as the World Wide Web, engi-
neering and science applications and networks, business services andmanymore generate
data in exponential growth thanks to the development of powerful storage and connection
tools. Organized knowledge and information cannot be easily obtained due to this huge
data growth and neither it can be easily understood or automatically extracted. These
premises have led to the development of data science or data mining [1], a well-known
discipline which is more and more present in the current world of the Information Age.
Nowadays, the current volume of data managed by our systems have surpassed the pro-

cessing capacity of traditional systems [2], and this applies to data mining as well. The
arising of new technologies and services (like Cloud computing) as well as the reduction
in hardware price are leading to an ever-growing rate of information on the Internet. This
phenomenon certainly represents a “Big” challenge for the data analytics community. Big
Data can be thus defined as very high volume, velocity and variety of data that require a
new high-performance processing [3].
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Distributed computing has been widely used by data scientists before the advent of
Big Data phenomenon. Many standard and time-consuming algorithms were replaced by
their distributed versions with the aim of agilizing the learning process. However, formost
of current massive problems, a distributed approach becomes mandatory nowadays since
no batch architecture is able to tackle these huge problems.
Many platforms for large-scale processing have tried to face the problematic of Big Data

in last years [4]. These platforms try to bring closer the distributed technologies to the
standard user (enginners and data scientists) by hiding the technical nuances derived from
distributed environments. Complex designs are required to create and maintain these
platforms, which generalizes the use of distributed computing. On the other hand, Big
Data platforms also requires additional algorithms that give support to relevant tasks, like
big data preprocessing and analytics. Standard algorithms for those tasks must be also
re-designed (sometimes, entirely) if we want to learn from large-scale datasets. It is not
trivial thing and presents a big challenge for researchers.
The first framework that enabled the processing of large-scale datasets wasMapReduce

[5] (in 2003). This revolutionary tool was intended to process and generate huge datasets
in an automatic and distributed way. By implementing two primitives, Map and Reduce,
the user is able to use a scalable and distributed tool without worrying about techni-
cal nuances, such as: failure recovery, data partitioning or job communication. Apache
Hadoop [6, 7] emerged as the most popular open-source implementation of MapReduce,
maintaining the aforementioned features. In spite of its great popularity, MapReduce (and
Hadoop) is not designed to scale well when dealing with iterative and online processes,
typical in machine learning and stream analytics [8].
Apache Spark [9, 10] was designed as an alternative to Hadoop, capable of perform-

ing faster distributed computing by using in-memory primitives. Thanks to its ability of
loading data into memory and re-using it repeatedly, this tool overcomes the problem of
iterative and online processing presented byMapReduce. Additionally, Spark is a general-
purpose framework that thanks to its generality allows to implement several distributed
programming models on top of it (like Pregel or HaLoop) [11]. Spark is built on top of a
new abstraction model called Resilient Distributed Datasets (RDDs). This versatile model
allows controlling the persistence and managing the partitioning of data, among other
features.
Some competitors to Apache Spark have emerged lastly, especially from the streaming

side [12]. Apache Storm [13] is an open-source distributed real-time processing platform,
which is capable of processing millions of tuples per second and node in a fault-tolerant
way. Apache Flink [14] is a recent top-level Apache project designed for distributed
stream and batch data processing. Both alternatives try to fill the “online” gap left by
Spark, which employs a mini-batch streaming processing instead of a pure streaming
approach.
The performance and quality of the knowledge extracted by a data mining method in

any framework does not only depends on the design and performance of the method but
is also very dependent on the quality and suitability of such data. Unfortunately, nega-
tive factors as noise, missing values, inconsistent and superfluous data and huge sizes
in examples and features highly influence the data used to learn and extract knowl-
edge. It is well-known that low quality data will lead to low quality knowledge [15].
Thus data preprocessing [16] is a major and essential stage whose main goal is to obtain
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final data sets which can be considered correct and useful for further data mining
algorithms.
Big Data also suffer of the aforementioned negative factors. Big Data preprocessing con-

stitutes a challenging task, as the previous existent approaches cannot be directly applied
as the size of the data sets or data streams make them unfeasible. In this overview we
gather the most recent proposals in data preprocessing for Big Data, providing a snapshot
of the current state-of-the-art. Besides, we discuss the main challenges on developments
in data preprocessing for big data frameworks, as well as technologies and new learning
paradigms where they could be successfully applied.

Data preprocessing
The set of techniques used prior to the application of a data mining method is named as
data preprocessing for data mining [16] and it is known to be one of the most meaningful
issues within the famous Knowledge Discovery from Data process [17, 18] as shown in
Fig. 1. Since data will likely be imperfect, containing inconsistencies and redundancies is
not directly applicable for a starting a data mining process. We must also mention the
fast growing of data generation rates and their size in business, industrial, academic and
science applications. The bigger amounts of data collected require more sophisticated
mechanisms to analyze it. Data preprocessing is able to adapt the data to the requirements
posed by each data mining algorithm, enabling to process data that would be unfeasible
otherwise.
Albeit data preprocessing is a powerful tool that can enable the user to treat and process

complex data, it may consume large amounts of processing time [15]. It includes a wide
range of disciplines, as data preparation and data reduction techniques as can be seen in
Fig. 2. The former includes data transformation, integration, cleaning and normalization;
while the latter aims to reduce the complexity of the data by feature selection, instance

Fig. 1 KDD process
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Fig. 2 Data preprocessing tasks

selection or by discretization (see Fig. 3). After the application of a successful data prepro-
cessing stage, the final data set obtained can be regarded as a reliable and suitable source
for any data mining algorithm applied afterwards.
Data preprocessing is not only limited to classical data mining tasks, as classification

or regression. More and more researchers in novel data mining fields are paying increas-
ingly attention to data data preprocessing as a tool to improve their models. This wider
adoption of data preprocessing techniques is resulting in adaptations of known models
for related frameworks, or completely novel proposals.
In the following we will present the main fields of data preprocessing, grouping them

by their types and showing the current open challenges relative to each one. First, we
will tackle the preprocessing techniques to deal with imperfect data, where missing val-
ues and noise data are included. Next, data reduction preprocessing approaches will be
presented, in which feature selection and space transformation are shown. The following
section will deal with instance reduction algorithms, including instance selection and pro-
totype generation. The last three section will be devoted to discretization, resampling for
imbalanced problems and data preprocessing in new fields of data mining respectively.

Imperfect data

Most techniques in data mining rely on a data set that is supposedly complete or noise-
free. However, real-world data is far from being clean or complete. In data preprocessing
it is common to employ techniques to either removing the noisy data or to impute (fill in)
the missing data. The following two sections are devoted two missing values imputation
and noise filtering.

Missing values imputation

One big assumption made by data mining techniques is that the data set is complete.
The presence of missing values is, however, very common in the acquisition processes. A
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Fig. 3 Data reduction approaches

missing value is a datum that has not been stored or gathered due to a faulty sampling
process, cost restrictions or limitations in the acquisition process. Missing values cannot
be avoided in data analysis, and they tend to create severe difficulties for practitioners.
Missing values treatment is difficult. Inappropriately handling the missing values will

easily lead to poor knowledge extracted and also wrong conclusions [19]. Missing values
have been reported to cause loss of efficiency in the knowledge extraction process, strong
biases if themissingness introductionmechanism ismishandled and severe complications
in data handling.
Many approaches are available to tackle the problematic imposed by the missing val-

ues in data preprocessing [20]. The first option is usually to discard those instances that
may contain a missing value. However, this approach is rarely beneficial, as eliminating
instances may produce a bias in the learning process, and important information can
be discarded [21]. The seminal works on data imputation come from statistics. They
model the probability functions of the data and take into account the mechanisms that
induce missingness. By using maximum likelihood procedures, they sample the approxi-
mate probabilistic models to fill the missing values. Since the true probability model for
a particular data sets is usually unknown, the usage of machine learning techniques has
become very popular nowadays as they can be applied avoiding without providing any
prior information.

Noise treatment

Data mining algorithms tend to assume that any data set is a sample of an underlying dis-
tribution with no disturbances. As we have seen in the previous section, data gathering
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is rarely perfect, and corruptions often appear. Since the quality of the results obtained
by a data mining technique is dependent on the quality of the data, tackling the problem
of noise data is mandatory [22]. In supervised problems, noise can affect the input fea-
tures, the output values or both. When noise is present in the input attributes, it is usually
referred as attribute noise. The worse case is when the noise affects the output attribute,
as this means that the bias introduced will be greater. As this kind of noise has been deeply
studied in classification, it is usually known as class noise.
In order to treat noise in data mining, two main approaches are commonly used in the

data preprocessing literature. The first one is to correct the noise by using data polishing
methods, specially if it affects the labeling of an instance. Even partial noise correction is
claimed to be beneficial [23], but it is a difficult task and usually limited to small amounts
of noise. The second is to use noise filters, which identify and remove the noisy instances
in the training data and do no require the data mining technique to be modified.

Dimensionality reduction

When data sets become large in the number of predictor variables or the number of
instances, data mining algorithms face the curse of dimensionality problem [24]. It is a
serious problem as it will impede the operation of most data mining algorithms as the
computational cost rise. This section will underline the most influential dimensionality
reduction algorithms according to the division established into Feature Selection (FS) and
space transformation based methods.

Feature selection

Feature selection (FS) is “the process of identifying and removing as much irrelevant and
redundant information as possible” [25]. The goal is to obtain a subset of features from
the original problem that still appropriately describe it. This subset is commonly used
to train a learner, with added benefits reported in the specialized literature [26, 27]. FS
can remove irrelevant and redundant features which may induce accidental correlations
in learning algorithms, diminishing their generalization abilities. The use of FS is also
known to decrease the risk of over-fitting in the algorithms used later. FS will also reduce
the search space determined by the features, thus making the learning process faster and
also less memory consuming.
The use FS can also help in task not directly related to the datamining algorithm applied

to the data. FS can be used in the data collection stage, saving cost in time, sampling,
sensing and personnel used to gather the data. Models and visualizations made from data
with fewer features will be easier to understand and to interpret.

Space transformations

FS is not the only way to cope with the curse of dimensionality by reducing the number
of dimensions. Instead of selecting the most promising features, space transformation
techniques generate a whole new set of features by combining the original ones. Such a
combination can be made obeying different criteria. The first approaches were based on
linear methods, as factor analysis [28] and PCA [29].
More recent techniques try to exploit nonlinear relations among the variables. Some

of the most important, both in relevance and usage, space transformation procedures
are LLE [30], ISOMAP [31] and derivatives. They focus on transforming the original
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set of variables into a smaller number of projections, sometimes taking into account the
geometrical properties of clusters of instances or patches of the underlying manifolds.

Instance reduction

A popular approach to minimize the impact of very large data sets in data mining algo-
rithms is the use of Instance Reduction (IR) techniques. They reduce the size of the data
set without decreasing the quality of the knowledge that can be extracted from it. Instance
reduction is a complementary task regarding FS. It reduces the quantity of data by remov-
ing instances or by generating new ones. In the following we describe the most important
instance reduction and generation algorithms.

Instance selection

Nowadays, instance selection is perceived as necessary [32]. The main problem in
instance selection is to identify suitable examples from a very large amount of instances
and then prepare them as input for a data mining algorithm. Thus, instance selection is
comprised by a series of techniques that must be able to choose a subset of data that
can replace the original data set and also being able to fulfill the goal of a data mining
application [33, 34]. It must be distinguished between instance selection, which implies a
smart operation of instance categorization, from data sampling, which constitutes a more
randomized approach [16].
A successful application of instance selection will produce a minimum data subset

that it is independent from the data mining algorithm used afterwards, without losing
performance. Other added benefits of instance selection is to remove noisy and redun-
dant instances (cleaning), to allow data mining algorithms to operate with large data sets
(enabling) and to focus on the important part of the data (focusing).

Instance generation

Instance selection methods concern the identification of an optimal subset of representa-
tive objects from the original training data by discarding noisy and redundant examples.
Instance generationmethods, by contrast, besides selecting data, can generate and replace
the original data with new artificial data. This process allows it to fill regions in the domain
of the problem, which have no representative examples in original data, or to conden-
sate large amounts of instances in less examples. Instance generation methods are often
called prototype generation methods, as the artificial examples created tend to act as a
representative of a region or a subset of the original instances [35].
The new prototypes may be generated following diverse criteria. The simplest approach

is to relabel some examples, for example those that are suspicious of belonging to a
wrong class label. Some prototype generation methods create centroids by merging sim-
ilar examples, or by first merging the feature space in several regions and then creating
a set of prototype for each one. Others adjust the position of the prototypes through the
space, by adding or substracting values to the prototype’s features.

Discretization

Data mining algorithms require to know the domain and type of the data that will be used
as input. The type of such data may vary, from categorical where no order among the
values can be established, to numerical data where the order among the values there exist.
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Decision trees, for instance, make split based on information or separabilitymeasures that
require categorical values in most cases. If continuous data is present, the discretization
of the numerical features is mandatory, either prior to the tree induction or during its
building process.
Discretization is gaining more and more consideration in the scientific community [36]

and it is one of the most used data preprocessing techniques. It transforms quantitative
data into qualitative data by dividing the numerical features into a limited number of non-
overlapped intervals. Using the boundaries generated, each numerical value is mapped
to each interval, thus becoming discrete. Any data mining algorithm that needs nominal
data can benefit from discretization methods, since many real-world applications usually
produce real valued outputs. For example, three of the ten methods considered as the top
ten in data mining [37] need an external or embedded discretization of data: C4.5 [38],
Apriori [39] and Naïve Bayes [40] In these cases, discretization is a crucial previous stage.
Discretization also produce added benefits. The first is data simplification and reduc-

tion, helping to produce a faster and more accurate learning. The second is readability,
as discrete attributes are usually easier to understand, use and explain [36]. Neverthe-
less these benefits come at price: any discretization process is expected to generate a loss
of information. Minimizing this information loss is the main goal pursused by the dis-
cretizer, but an optimal discretization is a NP-complete process. Thus, a wide range of
alternatives are available in the literature as we can see in some published reviews on the
topic [36, 41, 42].

Imbalanced learning. Undersampling and oversampling methods

In many supervised learning applications, there is a significant difference between the
prior probabilities of different classes, i.e., between the probabilities with which an exam-
ple belongs to the different classes of the classification problem. This situation is known
as the class imbalance problem [43]. The hitch with imbalanced datasets is that standard
classification learning algorithms are often biased towards the majority class (known as
the “negative” class) and therefore there is a higher misclassification rate for the minority
class instances (called the “positive” examples).
While algorithmic modifications are available for imbalanced problems, our interest

lies in preprocessing techniques to alleviate the bias produced by standard data mining
algorithms. These preprocessing techniques proceed by resampling the data to balance
the class distribution. The main advantage is that they are independent of the data mining
algorithm applied afterwards.
Two main groups can be distinguished within resampling. The first one is undersam-

pling methods, which create a subset of the original dataset by eliminating (majority)
instances. The second one is oversamplingmethods, which create a superset of the original
dataset by replicating some instances or creating new instances from existing ones.
Non-heuristic techniques, as random-oversampling or random-undersampling were

initially proposed, but they tend to discard information or induce over-fitting. Among
the more sophisticated, heuristic approaches, “Synthetic Minority Oversampling TEch-
nique” (SMOTE) [44] has become one of the most renowned approaches in this area.
It interpolates several minority class examples that lie together. Since SMOTE can still
induce over-fitting in the learner, its combination with a plethora of sampling meth-
ods can be found in the specialized literature with excellent results. Under-sampling has
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the advantage of producing reduced data sets, and thus interesting approaches based
on neighborhood methods, clustering and even evolutionary algorithms have been suc-
cessfully applied to generate quality balanced training sets by discarding majority class
examples.

Data preprocessing in new data mining fields

Many data preprocessing methods have been devised to work with supervised data, since
the label provides useful information that facilitates data transformation. However, there
are also preprocessing approaches for unsupervised problems.
For instance, FS has attracted much attention lately for unsupervised problems [45–47]

or missing values imputation [48]. Semisupervised classification, which contains
instances both labeled and unlabeled, also shows several works in preprocessing for
discretization [49], FS [46], instance selection [50] or missing values imputation [51].
Multi-label classification is a framework prone to gather imbalanced problems. Thus,
methods for re-sampling these particular data sets have been proposed [52, 53]. Multi-
instance problems are also challenging, and resampling strategies have been also studied
for them [54]. Data streams are also a challenging area of data mining, since the informa-
tion represented may change with time. Nevertheless, data streams are attracting much
attention and for instance preprocessing approaches for imputing missing values [55, 56],
FS [57] and IR [58] have been recently proposed.

Big data preprocessing
This section aims at detailing a thorough list of contributions on Big Data preprocess-
ing. Table 1 classifies these contributions according to the category of data preprocessing,
number of features, number of instances, maximum data size managed by each algorithm
and the framework under they have been developed. The size has been computed mul-
tiplying the total number features by the number of instances (8 bytes per datum). For
sparsemethods (like [59] or [60]), only the non-sparse cells have been considered. Figure 4
depicts an histogram of the methods using the size variable. It can be observed as most of
methods have only been tested against datasets between zero an five gigabytes, and few
approaches have been tested against truly large-scale datasets.
Once seen a snapshot of the current developments in Big Data preprocessing, we will

give shorts descriptions of the contributions in the rest of this section. First, we describe
one of the most popular machine learning library for Big Data: MLlib; which brings a
wide range of data preprocessing techniques to the Spark community. Next the rest of
sections will be devoted to enumerate those contributions presented in the literature, and
categorized and arranged in the Table 1.

MLlib: a spark machine learning library

MLlib [61] is a powerful machine learning library that enables the use of Spark in the data
analytics field. This library is formed by two packages:

• mllib : this is the first version of MLlib, which was built on top of RDDs. It contains
the majority of the methods proposed up to now.

• ml : it comes with the newest features of MLlib for constructing ML pipelines. This
higher-level API is built on enhanced DataFrames structures [62].
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Table 1 Analyzed methods and the maximum data size managed by each one

Methods Category # Features # Instances Size (GB) Framework

[70] FS 630 65,003,913 305.1196 Hadoop MapReduce

[69] FS 630 65,003,913 305.1196 Hadoop MapReduce

[74] FS 1,156 5,670,000 48.8350 MPI

[60] FS 29,890,095 19,264,097 4.1623 C++/MATLAB

[59] FS 100,000 10,000,000 1.4901 MapReduce

[76] FS 100 1,600,000 1.1921 Apache Spark

[80] FS 127 1,131,571 1.0707 Hadoop MapReduce

[71] FS 54,675 2,096 0.8538 Hadoop MapReduce

[75] FS 54 581,012 0.2338 Hadoop MapReduce

[73] FS 20 1,000,000 0.1490 MapReduce

[77] FS – – 0.0976 Hadoop MapReduce

[79] FS 256 38,232 0.0729 Hadoop MapReduce

[68] FS 52 5,253 0.0020 Hadoop MapReduce

[78] FS – – 0.0000 Hadoop MapReduce

[67] FS – – 0.0000 Hadoop MapReduce

[72] FS – – 0.0000 Hadoop MapReduce

[83] Imbalanced 630 32,000,000 150.2037 Hadoop MapReduce

[84] Imbalanced 630 32,000,000 150.2037 Hadoop MapReduce

[90] Imbalanced 630 16,000,000 75.1019 Apache Spark

[89] Imbalanced 41 4,856,151 1.4834 Hadoop MapReduce

[82] Imbalanced 41 4,000,000 1.2219 Hadoop MapReduce

[81] Imbalanced 14 1,432,941 0.1495 Hadoop MapReduce

[86] Imbalanced 9,731 1,446 0.1048 Hadoop MapReduce

[91] Imbalanced 14 524,131 0.0547 Hadoop MapReduce

[87] Imbalanced 36 95,048 0.0255 Hadoop MapReduce

[88] Imbalanced 8 2,687,280 0.0200 Hadoop MapReduce

[93] Incomplete 625 4,096,000 19.0735 MapReduce (Twister)

[92] Incomplete 481 191,779 0.6873 Hadoop MapReduce

[95] discretization 630 65,003,913 305.1196 Apache Spark

[96] discretization 630 65,003,913 305.1196 Apache Spark

[94] discretization – – 4.0000 Hadoop MapReduce

[97] IR 41 4,856,151 1.4834 Hadoop MapReduce

The methods are grouped by preprocessing task, and ordered by maximum data size. Those methods with no information about
number of features or instances have been set to zero size

Fig. 4 Maximum data size managed by each preprocessing method (in gigabytes)
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Here, we describe and classify all data preprocessing techniques for both versions1

into five categories: discretization and normalization, feature extraction, feature selection,
feature indexers and encoders, and text mining.

Discretization and normalization

Discretization transforms continuous variables using discrete intervals, whereas normal-
ization just performs an adjustment of distributions.

• Binarizer: converts numerical features to binary features. This method makes the
assumption that data follows a Bernoulli distribution. If a given feature is greater than
a threshold it yields a 1.0, if not, a 0.0.

• Bucketizer: discretizes a set of continuous features by using buckets. The user
specifies the number of buckets.

• Discrete Cosine Transform: transforms a real-valued sequence in the time domain
into another real-valued sequence (with the same size) in the frequency domain.

• Normalizer: normalizes each row to have unit norm. It uses parameter p, which
specifies the p-norm used.

• StandardScaler: normalizes each feature so that it follows a normal distribution.
• MinMaxScaler: normalizes each feature to a specific range, using two parameters: the

lower and the upper bound.
• ElementwiseProduct: scales each feature by a scalar multiplier.

Feature extraction

Feature extraction techniques combine the original set of features to obtain a new set
of less-redundant variables [63]. For example, by using projections to low-dimensional
spaces.

• Polynomial Expansion expands the set of features into a polynomial space. This new
space is formed by an n-degree combination of the original dimensions.

• VectorAssambler: combines a set of features into a single vector column.
• Single Value Decomposition (SVD) is matrix factorization method that transform a

real/complex matrix M (mxn) into a factorized matrix A.
The creators expose that for large matrices it is not needed the complete
factorization but only to maintain the top-k singular values and vectors. In such way,
the dimensions of the implied matrices will be reduced. They also assume that n is
much smaller than m (tall-and-skinny matrices) in order to avoid a severe
degradation of the algorithm’s performance.

• Principal component analysis (PCA) tries to find a rotation such that the set of
possibly correlated features transforms into a set of linearly uncorrelated features.
The columns used in this orthogonal transformation are called principal components.
This method is also designed for matrices with a low number of features.

Feature selection

As explained before, FS tries to select relevant subsets of relevant features without
incurring much loss of information [64].

• VectorSlicer: the user selects manually a subset of features.
• RFormula: selects features specified by an R model formula.
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• Chi-Squared selector: it orders categorical features using a Chi-Squared test of
independence from the class. Then, it selects the most-dependent features. This is a
filter method, which needs the number of features to select.

Feature indexers and encoders

These functions convert features from one type to another using indexing or encoding
techniques.

• StringIndexer: converts a column of string into a column of numerical indices. The
indices are ordered by label frequencies.

• OneHotEncoder: maps a column of strings to a column of unique binary vectors.
This encoding allows better representation of categorical features since it removes
the numerical order imposed by the previous method.

• VectorIndexer: automatically decides which features are categorical and transform
them to category indices.

Other preprocessingmethods for text mining

Text mining techniques try to structure the input text, yielding structured patterns of
information.

• TF-IDF: this tool is aimed at quantifying how relevant each term is to a document,
given a complete set of documents. Term Frequency (TF) measures the number of
times that a term appears in a documents, whereas Inverse Document Frequency
(IDF) measures how much information is given by a term according to its document
frequency. TF is implemented using feature hashing for a better performance, so that
each raw feature is mapped into an index. The dimension of the hast table is
normally quite high (220) in order to avoid collisions.

• Word2Vec: it takes as input a text corpus and yields as output the word vectors. It first
constructs a vocabulary from the text, and then learns vector representation of words.

• CountVectorizer: transforms a corpus into a set of vectors of token counts. It extracts
the vocabulary using an estimator and counts the number of occurrences for each
term.

• Tokenizer: breaks some text into individual terms using simple or regular expressions.
• StopWordsRemover: removes irrelevant words from the input text. The list of stop

words is specified as parameter.
• n-gram: generates sequences of n-grams terms, where each one is formed by a

space-delimited string of n consecutive words.

Feature selection

As mentioned before, FS has a key role to play in dealing with large-scale datasets, espe-
cially those that present an ultra-high dimensionality. However, FS methods, like many
other learningmethods, suffers from the “curse of dimensionality” [65], and consequently,
are not expected to scale well. New paradigms and tools have emerged to solve this prob-
lematic [66]. Most of them are centered in the use of parallel processing to distribute the
massive complexity burden across several nodes. Here, a list of the contributions for FS is
presented:
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• [59]: Singh et al. proposed a new approximate heuristic, optimized for logistic
regression in MapReduce, which employs a greedy search to select features
increasingly.

• [67]: Meena et al. designed an evolutionary approach based on Ant Colony
Optimization (ACO) with the aim of finding the optimal subset of features. It
parallelizes on Hadoop MapReduce some parts of the algorithm, such as:
tokenization, the computation of association degrees, and the evaluation of solutions.

• [68]: Tanupabrungsun et al. proposed a Genetic Algorithm (GA) approach with a
wrapper fitness function. In this work, the Hadoop master process is in charge of the
management of the population whereas the fitness evaluation is parallelized.

• [69]: Triguero et al. proposed an evolutionary feature weighting model to learn the
feature weights per map. They introduced a Reduce phase adding the weights and
using a threshold to select the most relevant instance. This model was the winner
solution in the ECBDL’14 competition.

• [70]: Peralta et al. proposed a different approach based on independent GA processes
(executed on each partition). A voting scheme is employed to aggregate the partial
solutions.

• [71]: Kumar et al. implemented three feature selectors (ANOVA, Kruskal–Wallis,
and Friedman test) based on statistical test. All of them were parallelized on Hadoop
MapReduce so as each feature is evaluated independently.

• [72]: Hodge et al. proposed an unified framework which uses binary Correlation
Matrix Memories (CMMs) to store and retrieve patterns using matrix calculus. They
propose to compute sequentially the CMMs, and them, to distribute them on
Hadoop to obtain the final coefficients.

• [73]: A feature selection method based on differential privacy (Laplacian Noise) and a
Gini-index measure was designed by Chen et al. This technique was implemented
using a general MapReduce model.

• [74]: Zhao et al. proposed a FS framework for both unsupervised and supervised
learning, which includes several measures, such as: the Akaike information criterion
(AIC), the Bayesian information criterion (BIC), and the corrected Hannan–Quinn
information criterion (HQC). This framework has been implemented on MPI.

• [75]: Sun et al. designed a method that computes the total combinatory mutual
information, and the contribution degree between all feature variables and class
variable. It uses a iterative process (implemented on Hadoop) to select the most
relevant features.

• [76]: A filter method based on column subset selection was implemented by
Ordozgoiti et al. However, as stated by the authors, this Spark algorithm is not
designed to tackle high-dimensional problems.

• [77]: A simple version of TF-IDF (for Hadoop MapReduce) was designed by Chao
et al. to deal with text mining problem on Big Data.

• [78]: Dalavi et al. proposed a novel weighting scheme based on supervised learning
(using SVMs) for Hadoop MapReduce.

• [79]: He et al. implemented on Hadoop a FS method using positive approximation as
an accelerator for traditional rough sets.
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• [80]: Wang et al. designed a family of feature selection algorithms for online learning.
The algorithm selects those features with bigger weights, according to a linear
classifier based on L1-norm.

• [60]: Tan et al. reformulated the FS problem as a convex semi-infinite programming
problem. They also proposed to speed up the training phase through several cache
techniques and a modified accelerated proximal gradient method. This sequential
approach (written in C++ and MatLab) has been included on this list because of its
relevance and promising results on Big Data (see Table 1).

Imbalanced data

Classification problems are typically formed by a small set of classes. Some of them
come with a tiny percentage of instances compared with the other classes. This highly-
imbalanced problems are more noteworthy in Big Data environments where millions
of instances are present. Some contributions to this topic have been implemented on
Hadoop MapReduce:

• [81]: The first approach in dealing with imbalanced large-scale datasets was proposed
by Park et al. In this work, a simple over-sampling technique was employed using
Apache Hadoop and Hive on traffic data with a 14 % of positive instances.

• [82]: Hu et al. proposed an enhanced version of Synthetic Minority Over-sampling
Technique (SMOTE) algorithm on MapReduce. This method focused on replicating
those minority cases that only belong to the boundary region to solve the problem of
original SMOTE, which omits the distribution of the original data while yields new
samples.

• [83]: Rio et al. adapted some over-sampling, under-sampling and cost-sensitive
methods for MapReduce. All these distributed algorithms apply a sampling technique
on each data partition, and reduce the partial results by randomly selecting a fixed
amount of instances. It was extended for extremely imbalanced data in [84] using a
high over-sampling rate to highlight the presence of the minority class. This proposal
has been tested against several bio-informatics problems (like contact map prediction
and orthogonal detection) with accurate results [69, 85].

• [86]: Wang et al. proposed an algorithm that weighs the penalties associated to each
instance in order to reduce the effect of less important points. This weighted
boosting method aims at adjusting the weights of each instance in each iteration. The
weighted instances are finally classified by a SVM classifier.

• [87]: Bhagat et al. proposed an extension to this work where a combination of
SMOTE and a One-vs-All (OVA) approach is tested.

• [88]: Zhai et al. designed a oversampling technique based on nearest neighbors for
ensemble learning. This technique yields several over-sampled sets by alternating the
process between positive and negative instances. In this work, only the neighbors
computation is reported to be distributed using MapReduce.

• [89]: Triguero et al. designed an evolutionary undersampling method for Big Data
classification. It is based on two MapReduce stages: the first one builds a decision tree
in each map after performing undersampling; and the second one, classifies the test
set using the set of trees. The building phase is accelerated by a windowing
technique. In [90], an iterative model was designed on Apache Spark aiming at
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solving extremely imbalance problems [90]. Through Spark in-memory operations,
this model is able to make an efficient use of data.

• [91]: Park et al. developed a distributed version of SMOTE algorithm for traffic
detection. This version consists of two MapReduce jobs: the first one calculates
distances among the input examples; and the second one sorts the results by
distance. The latter step caches the original data into a distributed cache, which can
be consider as a serious problem for scalability.

Incomplete data

In most of current real-life problems, there is a potential for incomplete data (also called
missing data). Because of either human or machine failure, input data can present some
gaps or errors. This problem needs to be faced early with some additional techniques (like
imputation methods) that prevent the learning process from its negative effect. Although
Big Data systems are more prone to incompleteness, just a couple of contributions have
been proposed in the literature to solve this:

• [92]: Chen et al. designed a data cleansing method based on the combination of set-
valued decision information system, and a deep analysis of missing information. The
algorithm implements on Hadoop MapReduce the computation of the equivalent
set-valued decision information system and the boolean equivalence matrix. By using
this information, they purge duplicate and inconsistent objects from the input
data.

• [93]: Zhang et al. run an investigation about the effect of rough sets over incomplete
information systems. Its Twister MapReduce implementation aims at accelerating
the computation of the relation matrix, one of the main structures in rough sets
theory. One of its main advantages is the Sub-Merge operation implemented, which
accelerates the process of joining the relation matrices and saves some space.

Discretization

Discretization task is frequently used to improve the performance and effectiveness of
classifiers. It is also used to simplify, and therefore, to reduce continuous-valued datasets.
For this reason, data discretization has become one of the most important task in the
knowledge discovery process. Nevertheless, standard discretization are not prepared to
deal with big datasets. Here, we present the unique contributions in this field:

• [94]: Zhang et al. implemented on Hadoop a parallel version of Chi-Squared
discretization method. However, the main drawback of this method is its poor
scalability due to the merging process is bounded by the number of input features.

• [95]: Ramírez et al. designed an efficient implementation of Fayyad’s discretizer on
Apache Spark. This entropy minimization proposal was re-adapted to completely
distribute the computation burden associated to the most-consuming operations in
this method: feature sorting and boundary points generation. In [96], an updated
taxonomy of the most relevant discretization methods is presented along with the Big
Data challenge that supposes the application of discretization techniques in
large-scale scenarios. A distributed entropy minization discretizer is presented and
evaluated on several big datasets.
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Instance reduction

Instance selection is a type of preprocessing technique, which aims at reducing the num-
ber of samples to be considered in the learning phase. In spite of its promising results
with small and medium datasets, this task is normally undermined when coping with
large-scale datasets (from tens of thousands of instances onwards).
Just one contribution of Triguero et al. [97] has been able to address this problem

from a distributed perspective up to now. In this work, the authors apply an advanced IR
technique (called SSMA-SFLSDE) over each data partition (map phase) using Hadoop.
The reduce phase offers several ways to aggregate the partial instance sets, either by:
concatenating all partial results (baseline), filtering noisy prototypes, or merging redun-
dant samples. An extension to this method was proposed in [98]. A second phase of
parallelization based on windowing is included in this extension on the mappers side.
In this section, we have reviewed the most important contributions on large-scale pre-

processing. Regarding MLlib, it offers a wide set of preprocessing algorithms, however,
almost all these methods looks quite simple. Indeed, focusing on FS, only a simple statisti-
cal filter (Chi-squared) has been implemented. On the other hand, a list of more complex
and diverse contributions have been presented in the literature. Nevertheless, just a few of
these methods have been tested against really huge datasets (greater than 5 GBs). Accord-
ingly, more scalable proposals are required to tackle the actual size of incoming data, and
to cover neglected fields of preprocessing (like IR).

Challenges and new possibilities in big data preprocessing
This last section of the paper will be devoted to point out all the existing lines in which the
efforts on Big Data preprocessing should be made in the next years. The new possibilities
on this topic will be centered onto three main key points: new technologies, to scale the
data preprocessing techniques and new learning paradigms on which they can be applied.

New technologies

As we can see in previous content of this paper, new technologies for Big Data are emerg-
ing in the last years and few attempts of data preprocessing proposals can be found
adapted to take advantage of them. It is clear that Spark [10] is offering better perfor-
mance results than Hadoop [7] in processing. But also, Spark is a newer technology and
there has been little time to develop ideas until now. Thus, the near future will offer new
methods developed in Spark under the library MLlib [61] which is growing increasingly.
It is worth mentioning that other emerging platform, such as Flink [14], are bridging

the gap of stream and batch processing that Spark currently has. Flink is a streaming
engine that can also do batches whereas Spark is a batch engine that emulates stream-
ing by micro-batches. This results in that Flink is more efficient in terms of low latency,
especially when dealing with real time analytical processing.
In the particular case of data preprocessing in Spark, excepting basic data preprocess-

ing, we can find some developments in FS and discretization for Big Data. Spark is a
more mature technology and implements MLlib with tens of already available learning
algorithms. This will make easy and encourage the integration of novel data prepro-
cessing methods in a near future. However, it is desirable to start the development
of data preprocessing techniques on Flink, in particular with streaming and real-time
applications.
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Scaling data preprocessing techniques to deal with big data

Another remarkable outcome derived from the previous analysis of existing Big Data pre-
processing techniques is that most of the effort has been devoted to the development of
FS methods, and even there are some data preprocessing families in which nothing or
almost nothing has been done.

• Instance reduction: these techniques will allow us to arrange a subset of data to carry
out the same learning tasks that we could do with original data, but with a low
decrease of performance. It is very desirable to have a complete set of instance
reduction techniques to obtain subsets of data from big databases for certain
purposes and paradigms. The key problem is that these techniques have to be
re-adjusted to deal with large scale data, they require high computation capabilities
and they are assumed to follow an iterative procedure.

• Missing values imputation: it is a hard problem in which many relationships among
data have to be analyzed to estimate the best possible value to replace a missing value.

• Noise treatment: it is again a complex problem in which decisions depend on two
perspectives: the computation of similarities among data points and the run and
fusion of several decisions coming from ensembles to enable the noise identification
approach.

Additionally, there is an open issue related to the arrangement and combination of sev-
eral data preprocessing techniques to achieve the optimal outcome for a data mining
process. This is discussed in [99], where the most influential data preprocessing tech-
niques are presented and some instructive experimental studies emphasize the effects
caused by different arrangement of data preprocessing techniques. This is an original
complex challenge, but it will be more complex according to the data scales in Big Data
scenarios. This complexity may also be influenced by other factors that mainly depends
of the data preprocessing technique in question; such as its dependency of intermediate
results, its capacity of treating different volumes of data, its possibility of parallelization
and iterative processing, or even the input it requires or the output it provides.

New big data learning paradigms

Data mining is not a static field and new problems are continuously arising. In con-
sequence data preprocessing techniques are evolving along with data mining and with
the appearance of new challenges and problems that data mining tries to tackle, new
proposals of data preprocessing methods have been proposed.
These problems are becoming a part of the Big Data universe and they are being cur-

rently addressed by some of the mentioned technologies [100]. In addition, they will
require data preprocessing techniques to ensure high quality solutions and good perfor-
mance in the results obtained. This is another major challenge for Big Data preprocessing
and it will concern different learning paradigms, besides classification and regression,
such as:

• Unsupervised learning: Clustering [101] and rule association mining [102] have been
addressed in Big Data. Developments on real-time applications can be also found in
the literature [103]. It is well-known that the success of these problems depends
heavily on the quality of data, being the data cleaning, transformation and
discretization the techniques with the most important role for this.
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• Semi-supervised learning: A significant growth of applications and solutions on this
paradigm is expected in the near future. Due to the fact of generating and storing
more and more data, the labeling of examples cannot be done for all and the
predictive or descriptive task will be supported by a subset of labelled examples [104].
Data preprocessing, especially at the instance level [105], would be useful to improve
the quality of this kind of data.

• Data streams and real-time processing: processing large data offering real-time
responses is one of the most popular and demanding paradigms in business [106].
Currently, there are some specific approaches in Big Data streams [107–109] and
even software development [110]. Data preprocessing techniques, such as noise
editing [58], should be able to tackle Big Data scenarios in upcoming applications.

• Non-standard supervised problems: there are some other popular supervised
paradigms in which Big Data solutions will be necessary soon. This is the case of
ordinal classification/regression [111], multi-label classification [52, 53, 112] or
multi-instance learning [54]. All the possible data preprocessing approaches will also
be required to enable and improve these solutions.

Conclusions
At the present, the size, variety and velocity of data is huge and continues to increase every
day. The use of Big Data frameworks to store, process, and analyze data has changed the
context of the knowledge discovery from data, especially the processes of data mining and
data preprocessing. In this paper, we presented a review on the rise of data preprocessing
in cloud computing. We presented a updated categorization of data preprocessing con-
tributions under the big data framework. The review covered different families of data
preprocessing techniques, such as feature selection, imperfect data, imbalanced learning
and instance reduction as well as the maximum size supported and the frameworks in
which they have been developed. Furthermore, the key issues in big data preprocessing
were highlighted.
In the future, significant challenges and topics must be addressed by the industry

and academia, especially those related to the use of new platforms such as Apache
Spark/Flink, the enhancement of scaling capabilities of existing techniques and the
approach to new big data learning paradigms. Researchers, practitioners, and data scien-
tists should collaborate to guarantee the long-term success of big data preprocessing and
to collectively explore new domains.

Endnote
1mllib andml documentation: http://spark.apache.org/docs/latest/mllib-guide.html.
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