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The application of data mining and machine learning techniques to biological and biomedicine data con-
tinues to be an ubiquitous research theme in current bioinformatics. The rapid advances in biotechnology
are allowing us to obtain and store large quantities of data about cells, proteins, genes, etc., that should be
processed. Moreover, in many of these problems such as contact map prediction, the problem tackled in
this paper, it is difficult to collect representative positive examples. Learning under these circumstances,
known as imbalanced big data classification, may not be straightforward for most of the standard
machine learning methods.

In this work we describe the methodology that won the ECBDL’14 big data challenge for a bioinformat-
ics big data problem. This algorithm, named as ROSEFW-RF, is based on several MapReduce approaches to
(1) balance the classes distribution through random oversampling, (2) detect the most relevant features
via an evolutionary feature weighting process and a threshold to choose them, (3) build an appropriate
Random Forest model from the pre-processed data and finally (4) classify the test data. Across the paper,
we detail and analyze the decisions made during the competition showing an extensive experimental
study that characterize the way of working of our methodology. From this analysis we can conclude that
this approach is very suitable to tackle large-scale bioinformatics classifications problems.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Data mining and machine learning techniques [1] have become
a need in many Bioinformatics applications [2–4]. The application
of these methods has shown to be very helpful for the extraction of
useful information from data in a wide variety of biological prob-
lems such as genomics, proteomics, and microarrays [5]. The com-
plexity and gigantic amount of biological data relate to several
major issues that data mining tools have to address:

� High dimensional nature: Most biological problems, going
from sequence analysis over microarray analysis to spectral
analyses, naturally present a great number of characteristics.
Hence, the application of data mining methods to such kind of
data is generally affected by the curse of dimensionality. For
this reason, the use of preprocessing techniques has been
widely extended in bioinformatics. Two main alternatives have
been applied in the literature: dimensionality reduction [6] or
feature selection [7]. The former is based on projection (for
instance, principal component analysis) or compression (by
using information theory). The latter aims at preserving the
original semantics of the variable by choosing a subset of the
original set of features.
� Imbalanced class distribution: In such kind of problems, it is

frequent that the positive data samples (typically the class of
interest) are highly outnumbered by the negative data exam-
ples that are easily found in the nature. Class imbalance bioin-
formatics classification [8] has gained lots of attention in the
last years [9,10] in order to make correct identification of the
underrepresented examples. The existing approaches fall
mostly in two groups: data sampling solutions [11], which
ced big
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transform somehow the original training set, and algorithmic
modifications which modify current algorithm implementa-
tions in order to benefit the classification of the minority class.
� Large-scale: The unstoppable advance of the technologies has

improved the collection process of new biological data.
Dealing with very large amounts of data efficiently is not
straightforward for machine learning methods. The interest of
developing really scalable machine learning models for big data
problems are growing up in the recent years by proposing
distributed-based models [12,13]. Examples of parallel classifi-
cation techniques are [14–16]. They have shown that the distri-
bution of the data and the processing under a cloud computing
infrastructure is very useful for speeding up the knowledge
extraction process.

When the first two issues are raised together with a high num-
ber of examples, current approaches become non effective and non
efficient due to the big dimension of the problem. Therefore, the
design of new algorithms will be necessary to overtake the men-
tioned limitations in the big data framework (see the three recent
reviews focusing the big data analytics an technologies [12,17,18]).

Ensemble-based classifiers are a popular choice in the area of
bioinformatics due to their unique advantages in dealing with
high-dimensionality and complex data structures and their flexi-
bility to be adapted to different kind of problems. New develop-
ments are continuously being published for a wide variety of
classification purposes [19,20]. Among the different
ensemble-based techniques, the Random Forest (RF) algorithm
[21] is a well-known decision tree ensemble method that has high-
lighted in bioinformatics [22] because of its robustness and good
performance. Some efforts to accelerate the execution of this
method for large scale problems have been very recently proposed
[23,24].

The ECDBL’14 Big Data competition [25] brought up a data set
related to the bioinformatics task of contact map prediction. It
has become one of the most challenging bioinformatic tasks within
the field of protein structure prediction because of the sparseness
of the contacts (i.e. few positive examples) and the great amount
of data extracted from a few thousand of proteins [26]. Different
machine learning methods have been previously applied to this
problem through the years [27,28]. The training data set consid-
ered in this competition was formed by 32 million instances, 631
attributes, 2 classes, 98% of negative examples. Thus, it will require
methods that can cope with high-dimensional imbalanced big data
problems.

In this work we describe step-by-step the methodology with
which we have participated, under the name ’Efdamis’, in the
ECBDL’14 competition, ranking as the winner algorithm. We
focused on MapReduce [29] paradigm in order to manage this
voluminous data set. Thus, we extended the applicability of some
pre-processing and classification models to deal with large-scale
problems. We will detail the decisions made during the competi-
tion that leaded us to develop the final method we present here.
This is composed of four main parts:

1. An oversampling approach: The goal of this phase is to balance
the highly imbalanced class distribution of the given
problem by replicating randomly the instances of the
minority class. To do so, we follow a data-level approach
presented in our previous work [23] for imbalanced big data
classification.

2. An evolutionary feature weighting method: Due the relative
high number of features of the given problem we needed to
develop a feature selection scheme for large-scale problems
that improves the classification performance by detecting the
most significant features. To do this, we were based on a
Please cite this article in press as: I. Triguero et al., ROSEFW-RF: The winner algo
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differential evolution feature weighting scheme proposed in
[30] coupled with a threshold parameter to choose the most
confident ones.

3. Building a learning model: As classifier, we focused on the RF
algorithm. Concretely, we utilized the Random Forest imple-
mentation of Mahout [31] for big data.

4. Testing the model: Even the test data can be considered big
data (2.9 millions of instances), so that, it was necessary to
deploy the testing phase within a parallel approach that allow
us to obtain a rapid response of our algorithm.

We have denoted this final algorithm as ‘‘Random
OverSampling and Evolutionary Feature Weighting for Random
Forest’’ (ROSEFW-RF). To construct this method we assessed its dif-
ferent components in order to understand the influence of the
number of maps, the oversampling rate and the number of features
used. Additionally, we also investigated the parameters of the
Random Forest algorithm to further calibrate the performance of
our algorithm.

The rest of the paper is organized as follows. In Section 2, we
provide background information about the problem of contact
map prediction. Section 3 describes the MapReduce framework
for big data. In Section 4, we will describe step by step the design
decisions we took during the competition, arising into the final
algorithm. Finally, Section 5 summarizes the conclusions of the
paper.
2. Contact map prediction

Contact Map (CM) prediction is a bioinformatics (and specifi-
cally a protein structure prediction) classification task that is an
ideal test case for a big data challenge for several reasons. As the
next paragraphs will detail, CM data sets easily reach tens of mil-
lions of instances, hundreds (if not thousands) of attributes and
have an extremely high class imbalance. In this section we describe
in detail the steps for the creation of the data set used to train the
CM prediction method of [26].
2.1. Protein structure prediction and contact map

Proteins are crucial molecules for the function of all aspects of
life. Proteins are constructed as a sequence of amino acids. This
sequence folds to create very complex 3D shapes, and the function
of a protein is a consequence of its final 3D structure. Hence, know-
ing the structure of a protein is a crucial step for understanding its
function, but also opens the door to many biotechnologies (protein
engineering, intelligent drug design, etc.). It is very difficult and
extremely costly to experimentally determine the structure of a
protein. Protein structure prediction (PSP) methods have the aim
of estimating complete 3D models (that is, the 3D coordinates of
all atoms in a protein) of a protein’s structure from the amino acid
composition of its sequence. PSP is generally decomposed, using a
divide-and-conquer strategy, into a set of smaller yet very chal-
lenging optimization and machine learning tasks. Among the
machine learning sub-problems of PSP, contact map (CM) predic-
tion is possibly the hardest of them. Two amino acids of a protein
sequence are said to be in contact if their euclidean distance in the
3D structure of the protein is less than a certain threshold (typi-
cally 8 Å). A CM is a binary matrix where rows and columns are
the elements of a protein sequence and each cell indicates whether
that pair of sequence elements are in contact or not. The pairs of
amino acids in a protein that are in contact are generally around
2% of all possible pairs. The goal of a CM predictor is to estimate,
using classification techniques, the whole CM matrix from the
amino acid composition of a protein sequence.
rithm for the ECBDL’14 big data competition: An extremely imbalanced big
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Fig. 1. Representation of the contact map prediction data set. 1: Detail information
of selected positions in the protein sequence. 2: Statistics of the segment
connecting the target pair of amino acids. 3: Global protein information.
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2.2. Selection of proteins for the data set

In order to generate the training set for the CM prediction
method we need proteins with known structure. These are taken
from the Protein Data Bank (PDB) public repository that currently
holds the structures of 80 K proteins. A subset of 2682 proteins
from PDB was selected with the following criteria: (1) Selecting
structures that were experimentally known with good resolution
(less than 2 Å), (2) that no proteins in the set had a pair-wise
amino-acid composition similarity of +30% and (3) that no protein
had breaks in the sequence or non-standard amino acids. From all
proteins matching three criteria we kept all proteins with less than
250 amino acids and a randomly selected 20% of proteins of larger
size (in order to limit the number of pairs of amino acids in the
data set). The set of proteins was split 90–10% into training and test
sets. The training set had 32 M pairs of amino acids and the test set
had 2.9 M.
2.3. Representation

The representation used to characterize pairs of amino acids for
CM prediction is composed of 631 attributes, split in three main
parts that are represented in Fig. 1:

1. Very detailed information about specific elements of a protein
sequence. The amino acids in the two sequence segments
around the pair of amino acids to be tested for contact will be
characterized in detail, as it is assumed that the segments con-
tain most of the information determining the contact.
Moreover, a third segment is placed at the middle point in the
protein sequence between the pair. The two segments around
the target pair of amino acids will include nine amino acids
and the middle-point segment will have size 5. For each posi-
tion in the segment we include five types of information: (1)
an evolutionary profile of the sequence position: 20 continuous
attributes and (2) the predictions of four structural aspects tied
to individual sequence positions: secondary structure [32], con-
tact number [33], solvent accessibility [33] and recursive con-
vex hull [34]: four discrete attributes. Each segment position
has 24 attributes and in total the three segments of 9+9+5 posi-
tions have 552 attributes.

2. Statistics about the sequence segment connecting the target
pair of amino acids. The whole segment between the two amino
acids to be tested for contact is characterized as the frequency
of the 20 amino acids types in the segment, frequency of the
three secondary structure states, five contact number states,
five solvent accessibility states and five recursive convex hull
states: 38 attributes in total.

3. Global protein sequence information. The overall sequence is
also characterized exactly in the same way as the connecting
segment above (38 attributes) plus three extra individual attri-
butes: the length of the protein sequence, the number of amino
acids apart that the target pair are and finally a statistical con-
tact propensity between the amino acid types of the pair of
amino acids to be tested for contact. 41 attributes in total.

2.4. Scoring of predictions for the ECBDL’14 big data challenge

In the ECBDL’14 big data challenge three metrics were used to
asses the prediction results: true positive rate (TPR: TP/P), true
negative rate (TNR: TN/N), accuracy, and the final score of
TPR � TNR.1 The final score was chosen because of the huge class
imbalance of the data set in order to reward methods that try to
1 In this paper we will focus on three of these metrics: TPR, TNR and the final score.
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predict well the minority class of the problem. These evaluation cri-
teria are quite different from the standard criteria used by the PSP
community to evaluate CM prediction methods [35], in which pre-
dictors are asked to submit a confidence interval [0,1] for each pre-
dicted contact, and performance is evaluated separately for each
protein by sorting predictions by confident and then selecting a sub-
set of predictions for each protein proportional to the protein’s size.
The precision of the predictor (TP/(TP+FP)) for a protein is computed
from this subset of predicted contacts. Hence, the results of the
ECBDL’14 competition are not directly comparable to standard CM
prediction methods, but nonetheless it is still a very challenging
big data task.
3. MapReduce

MapReduce [29,36] is one of the most popular frameworks to
deal with Big Data. This programming paradigm was proposed by
Google in 2004 and designed for processing huge amounts of data
over a cluster of machines. The MapReduce model is composed of
two main phases: Map and Reduce. In general terms, the Map
phase processes the input data set, producing some intermediate
results. Then, the Reduce phase combines these intermediate
results in some way to form the final output.

The MapReduce model is based on a basic data structure known
as hkey;valuei pairs. In terms of the hkey;valuei pairs, in the first
phase, the Map function receives a single hkey;valuei pair as input
and generates a list of intermediate hkey;valuei pairs as output.
This is represented by the form:

mapðkey1;value1Þ�!listðkey2;value2Þ ð1Þ

Between the Map and Reduce functions, the MapReduce library
groups by key all intermediate hkey;valuei pairs. Finally, the
Reduce function takes the intermediate hkey;valuei pairs previ-
ously aggregated by key and generates a new hkey;valuei pair as
output. This is depicted by the form:

reduceðkey2; listðvalue2ÞÞ�!ðkey2;value3Þ ð2Þ

Fig. 2 depicts a flowchart of the MapReduce framework.
A typical example about the way of working of MapReduce

could be count how often words occur in a big list of word records.
Each record may be composed by several words. The map function
extracts from each record the pairs hword;1i, which means that
this word has appeared one time, and transmits them as its output.
The shuffle stage groups the hword;1i pairs by its corresponding
word, creating a list of 1’s per word hword; listð1’sÞi. Finally, the
reduce phase performs the sum of all the 1’s contained in the list
of each word, providing the final count of repetition per word.

Apache Hadoop [37,38] is the most popular implementation of
the MapReduce programming model. It is an open-source frame-
work written in Java supported by the Apache Software
Foundation that allows the processing and management of large
data sets in a distributed computing environment. In addition,
Hadoop provides a distributed file system (HDFS) that replicates
the data files in many storage nodes, facilitates rapid data transfer
rates among those nodes and allows the system to continue oper-
ating without interruption when one node fails.
rithm for the ECBDL’14 big data competition: An extremely imbalanced big
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Fig. 2. Flowchart of the MapReduce framework.
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The Apache Foundation is developing the Hadoop Ecosystem
with more than 150 projects. Among them, we must highlight
the scalable machine learning library that runs over Hadoop, called
Mahout [31]. It contains a set of distributed and scalable machine
learning algorithms for clustering, recommendation systems and
classification problems such as Logistic Regression, Bayesian mod-
els, Support Vector Machines, and Random Forest, among others.
4. The ROSEFW-RF algorithm to tackle an extremely imbalanced
big data bioinformatics problem

In this section we explain in detail our ROSEFW-RF method as
well as the partial experimental results that led us to select the
specific algorithms (and adjust them) for each stage in the method.
The description of the method is chronological: we describe the
timeline of the method building process and what design decision
were taken at each point of the process based on our successive
experiments.

We have divided this section in five different steps that corre-
spond to the main milestones (Sections 4.1, 4.2, 4.3, 4.4, 4.5).
Finally, Section 4.6 compares our performance to the results
achieved by the rest of participants in the ECBDL’14 big data
challenge.
Fig. 3. Flowchart of the procedure fo
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Fig. 3 summarizes the procedure we followed in the competi-
tion. In Appendix A we describe the hardware and software sup-
port used in all of our experiments.

4.1. Step 1: Balancing the data and Random Forest runs

This section is devoted to show the initial approach that we fol-
lowed to deal with the proposed problem. Section 4.1.1 defines the
models used and Section 4.1.2 is focused on the experimental
results.

4.1.1. Description of the model
In [23], we conducted an extensive study to evaluate the perfor-

mance of diverse approaches such as oversampling, undersampling
and cost-sensitive learning for imbalance big data classification.

One of the outcomes of this extensive experimental evaluation
was the observation that oversampling is more robust than under-
sampling or cost-sensitive approaches when increasing the num-
ber of maps. Therefore, despite the necessary increment on the
data size produced by oversampling approach its use is preferred
in large scale problems given that the additional cost it introduces
can be compensated by the use of a larger number of maps. The
dataset of the ECBDL’14 challenge is much larger than any of the
datasets used in [23], hence we expected oversampling to perform
better than undersampling and cost-sensitive approaches, and
indeed that was confirmed by our preliminary experiments com-
paring Random Oversampling (ROS) [11] to undersampling and
cost-sensitive learning. Therefore, we will focus only on this class
imbalance strategy for the rest of the paper.

ROS randomly replicates minority class instances from the orig-
inal data set until the number of instances from the minority and
majority classes is the same or a certain replication factor is
reached.

We adapted this model to tackle big data using the MapReduce
parallelization approach. Algorithms 1 and 2 present the
pseudo-code of map and reduce phases, respectively. Specifically,
each Map process is responsible for adjusting the class distribution
in a mapper’s partition through the random replication of minority
class instances. The Reduce process is responsible for collecting the
outputs generated by each mapper to form a new balanced data
set.

To ensure that the resulting data set is appropriately shuffled,
we perform an slightly modification to the algorithm described
in [23]. The main difference regarding our previous development
llowed during the competition.

rithm for the ECBDL’14 big data competition: An extremely imbalanced big
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is on the Map function. It now emits hkey;valuei pairs in which the
key is corresponded to a random number that ranges in the inter-
val ½0; replication factor � 1� and the value is the instance
(Instructions 5–8 in Algorithm 1). In this way, we have scattered
the replicated minority instances through the different reducers
that will write the final data set on disk.

The number of replicas of each instance is referred as the
replication factor. For example, a replication factor of 1 means that
there is only one copy of each instance in a mappers partition, a
replication factor of 2 means two copies of each instance and so
on. This replication factor is calculated with the total majority class
instances and the total instances of the class of the instance that
we want to replicate.

We would like to remark that the class distribution of the
resulting dataset is not influenced by the number of maps used,
and that in all cases the more mappers, the faster this stage will be.

Algorithm 1. Map phase for the ROS algorithm MAP(key, value):
Input: hkey,valuei pair, where key is the offset in bytes and
value is the content of an instance.

Output: hkey’,value’i pair, where key’ is any Long value and
value’ is the content of an instance.

1: instance INSTANCE REPRESENTATIONðvalueÞ
2: class instance:getClassðÞ
3: replication factor  COMPUTE REPLICATION FACTORðclassÞ
4: random newRandomðÞ
5: if class ¼¼ majorityClass then
6: random value random:nexIntðreplication factorÞ
7: key random value
8: EMIT (key, instance)
9: else

10: for i ¼ 0 to replication factor � 1 do
11: key i
12: EMIT (key, instance)
13: end for
14: end if
Algorithm 2. Reduce phase for the ROS algorithm REDUCE(key,
values):

Input: hkey,valuesi pair, where key is any Long value and
values is the content of the instances.

Output: hkey’,value’i pair, where key’ is a null value and value’
is the content of an instance.

1: while values:hasNextðÞ do
2: instance values:getValueðÞ
3: EMIT (null, instance)
4: end while

Initially, we focused on generating a data set with a balanced
class distribution, i.e. an oversampling rate of 100%. Note that
when the data set is balanced we have increased the size of the
original data. Given the high imbalance distribution of the
ECBDL’14 data set, it implies that the preprocessed data set is
almost double-size of the original training data set.

Afterwards, we apply the RF algorithm to this data. To deal with
big data experiments the original RF algorithm needs to be modi-
fied so it can effectively process all the data available. The
Mahout Partial implementation (RF-BigData) [31] is an algorithm
that builds multiple trees for different portions of the data. This
Please cite this article in press as: I. Triguero et al., ROSEFW-RF: The winner algo
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algorithm is divided into two different phases: the first phase is
based on the creation of the model (see Algorithm 3) and the sec-
ond phase will estimate the classes associated with the data set
using the previous learned model (see Algorithm 4).

Algorithm 3. Map phase for the RF-BigData algorithm for the
building of the model phase MAP(key, value):

Input: hkey,valuei pair, where key is the offset in bytes and
value is the content of an instance.

Output: hkey’,value’i pair, where key’ indicates both the tree
id and the data partition id used to grow the tree and value’
contains a tree.

1: instance INSTANCE REPRESENTATIONðvalueÞ {instances
will contain all instances in this mapper’s split}

2: instances instances:addðinstanceÞ
{CLEANUP phase:}

3: bagging  BAGGINGðinstancesÞ
4: for

i ¼ 0 to number of trees to be built by this mapper � 1 do
5: tree bagging:buildðÞ
6: key key:setðpartitionId; treeIdÞ
7: EMIT (key, tree)
8: end for

In the first stage, each Map task builds a subset of the forest
with the data chunk of its partition and generates a file containing
the built trees. Instructions 3–7 in Algorithm 3 detail how the bag-
ging approach is applied on the data chunk corresponding to this
map to build a set of trees. As a result of this phase, each tree is
emitted together with its identifier (partitionId), as key-value pairs.
Finally, all the solutions from the Map phase are stored.

The second stage consists of the classification of the test set. The
map phase will divide the test set in different subsets in which
each mapper estimates the class for the examples available in it
using a majority vote of the predicted class by the trees in the RF
model built in the previous phase. As shown by Instructions 1–5
in Algorithm 4, the actual and predicted classes of all the instances
are returned as key-value pairs. Finally, the predictions generated
by each mapper are concatenated to form the final predictions file.

Algorithm 4. Map phase for the RF-BigData algorithm for classi-
fying phase MAP(key, value):

Input: hkey,valuei pair, where key is the offset in bytes and
value is the content of an instance.

Output: hkey’,value’i pair, where key’ indicates the class of an
instance and value’ contains its prediction.

1: instance INSTANCE REPRESENTATIONðvalueÞ
2: prediction CLASSIFYðinstanceÞ
3: lkey lkey:setðinstance:getClassðÞÞ
4: lvalue lvalue:setðpredictionÞ
5: EMIT (lkey, lvalue)

Please note that neither stage has an explicit Reduce function,
just Mappers. More details about this algorithm can be found in
[23].
4.1.2. Experiments
Since the application of the RF-BigData algorithm over the orig-

inal data (without preprocessing) provided us totally biased results
to the negative class, our initial aim was to check if the random
rithm for the ECBDL’14 big data competition: An extremely imbalanced big
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oversampling approach allowed us to obtain similar TPR and TNR.
We also wanted to analyze the influence of the number of mappers
over the precision and the runtime needed.

To evaluate the performance of our proposal we used the fol-
lowing parameters:

� Number of mappers: 64, 192 and 256.
� Number of used features per tree: log #Features + 1.
� Number of trees: 100.

Table 1 collects the results of this initial experiment that uses a
100% of oversampling ratio and RF as classifier, showing the TPR,
TNR and TPR � TNR. Fig. 4 plots a comparison between the precision
(in terms of TPR � TNR) and the runtime needed (in seconds)
depending on the number of Maps used.

Our conclusions from this initial experiment are:

� Although we previously balanced the class distribution, we can
observe a very low TPR compared to the TNR in all the experi-
ments. We also appreciated that with a lower number of map-
pers this difference tends to be even higher.
� Within the proposed parallel framework, the RF algorithm does

not dispose of the full information about the whole addressed
problem. Hence, it is expected that the precision obtained
decreases according as the number of instances in the training
set is reduced, that is, the number of maps is incremented.
The variability of the TPR and TNR rates avoid to obtain higher
TPR � TNR rates with a lesser number of mappers.
� In terms of runtime, as expected, we can observe a clear reduc-

tion as the number of mappers is increased. Note that due to the
fact that we only disposed of 192 cores for our experiments, we
could not expect an linear speed up when using more than 192
mappers.

In conclusion, the classifier kept biased to the negative class.
Hence, the objective of our experiments is clear: to increase the
TPR rate.
Table 1
Results obtained by ROS (100%) + RF-BigData.

Number of maps TPR TNR TPR � TNR

64 0.564097 0.839304 0.473449
192 0.580217 0.821987 0.476931
256 0.579620 0.820509 0.475584

Best result is highlighted in bold face.

Fig. 4. Runtime v
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4.2. Step 2: Increasing the oversampling rates to increment the true
positive rate

In order to bias our method towards the positive examples to
further balance TPR and TNR, we decided to augment the ratio of
positive instances in the resulting preprocessed data set. To do this,
we increment the oversampling percentage in small steps from
100% to 130%. At this stage, we only focused on 64 and 192 map-
pers, and the parameters for RF-BigData were kept the same of
the previous study.

Table 2 presents the results obtained with the idea of increasing
the oversampling ratio. Fig. 5 shows how the TPR and TNR rates
vary depending on the oversampling rate and the number of
mappers.

The conclusions of this second round of experiments were:

� The increment of the oversampling rate has played an impor-
tant role to find out a balance between the TPR and TNR rates
that results in a higher precision (TPR � TNR). This behavior
has been produced independently on the number of mappers
used. Nevertheless, with a reduced number of mappers (64)
we still obtained greater differences between the TPR and the
TNR in comparison to the results obtained with 192 mappers.
� We were able to almost find a balance in the performance of

both classes when an oversampling ratio of 130% and 192 map-
pers were used. As summary, the higher ROS percentage, the
higher TPR and the lower TNR.

4.3. Step 3: Detecting relevant features via evolutionary featuring
weighting

This section presents the second preprocessing component we
decided to use in order to improve the overall precision.
Section 4.3.1 describes the proposed preprocessing techniques
and Section 4.3.2 shows the experimental results.

4.3.1. Description of the model
Since the ECBDL’14 data set contains a fairly large number of

features (631), we decided to include a new preprocessing compo-
nent to our model that allowed us to consider the relevance of the
features. We aimed at eliminating redundant, irrelevant or noisy
features by computing the importance of them in terms of weights.

To do so, we focused on the evolutionary approach for Feature
Weighting (FW) proposed in [30] called ‘‘Differential Evolution
for Feature Weighting’’ (DEFW). FW can be viewed as a continuous
space search problem in which we want to determine the most
appropriate weights for each feature. The DEFW method is based
s. TPR � TNR.
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Table 2
Results obtained with different ROS oversampling rates.

Oversampling ratio Number of maps TPR TNR TPR � TNR

100% 64 0.564097 0.839304 0.473449
192 0.580217 0.821987 0.476931

105% 64 0.585336 0.824809 0.482791
192 0.603388 0.803819 0.485015

115% 64 0.626581 0.796581 0.499122
192 0.650081 0.768483 0.499576

130% 64 0.670189 0.758622 0.508420
192 0.704772 0.716172 0.504738

Best result is highlighted in bold face.

Fig. 6. MapReduce feature weighting scheme.
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on a self-adaptive differential evolution algorithm [39] to obtain
the best weights.

DEFW starts with a population of individuals. Each one encodes
a weight vector Weights½1 . . . D� ¼ ðW1;W2; . . . ;WD), where D is the
number of features, which is a weight for each feature of the prob-
lem, that are initialized randomly within the range [0,1]. DEFW
enters in a loop in which mutation and crossover operators gener-
ate new potential solutions. Finally, the selection operator must
decide which generated trial vectors should survive in the popula-
tion of the next generation. The Nearest Neighbor rule [40] was
used to guide this operator. To implement a self-adaptive DE
scheme, independent of configuration parameters, DEFW uses
the ideas established in [41].

As such, this method is unable to deal with big data problems.
To the best of our knowledge, there is no any proposed approach
to enable evolutionary FW algorithms to address these volumes
of data. Therefore, we developed a MapReduce Approach for FW.
Algorithms 5 and 6 detail the map and reduce operations,
respectively.

� As usual, the Map phase divides the training set in several sub-
sets that we denote as Mapj, where j ranges in ½0; m�. Each Map
task will perform a whole evolutionary FW cycle. That is, a com-
plete loop of mutation, crossover and selection operators for a
given number of iterations. To do so, we use the DEFW method
over the given subset of examples (Instruction 3 in Algorithm
5). The configuration parameters used are: iterations = 500,
iterSFGSS = 8, iterSFHC = 20, Fl = 0.1 and Fu = 0.9. Please note
that the different mapper instances, although they are applied
with data partitions of similar volume, may have varying run-
times. The MapReduce framework starts transferring data to
the reducer/s as the first mapper has finished its computation.
Fig. 5. TPR and TNR through dif
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It will emit a resulting vector of weights Weightsj½1 . . . D�, mea-
suring the importance of each feature regarding this subset of
the whole training set.
� The reduce phase will consist of the iterative aggregation of all

the Weightsj½1 . . . D�, provided by the maps, as a single one
Weights. Initially the Weights of every feature are established
to 0, Weights½1 . . . D� ¼ f0;0; . . . ;0g. As the maps finish their
computation, the Weights½1 . . . D� variable will sum the feature
importance obtained in each map with the current Weights
(Instruction 6 in Algorithm 6). The proposed scheme only uses
one single reducer that is run when the mappers are completed.
With the adopted strategy, the use of a single reducer is compu-
tationally less expensive than use more than one. It decreases
the MapReduce overhead (especially network overhead)
[42,43].
� At the end of the reduce phase, the resulting Weights will be

used together with a threshold Tf to select those characteristics
that have been ranked as the most important ones.

Fig. 6 illustrates the MapReduce process for FW, differentiating
between the map and reduce phases. It puts emphasis on how the
single reducer works and it forms the final Weights vector.
ferent oversampling ratios.
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Table 3
Results obtained with the subset of 90 features provided by the FW method.

Oversampling ratio Number of maps TPR TNR TPR � TNR

100% 64 0.593334 0.837520 0.496929
192 0.610626 0.818666 0.499899

115% 64 0.641734 0.804351 0.516179
192 0.661616 0.778206 0.514873

130% 64 0.674754 0.777440 0.524580
192 0.698542 0.746241 0.521281

Best result from the previous stages 0.670189 0.758622 0.508420

Best result is highlighted in bold face.
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Algorithm 5. Map phase for the DEFW algorithm MAP(key, value):

Input: hkey,valuei pair, where key is the offset in bytes and
value is the content of an instance.

Output: hkey’,value’i pair, where key’ indicates the data
partition id (partitionId) used to perform the DEFW and
value’ contains the predicted Weightsj½1 . . . D�.

1: instance INSTANCE REPRESENTATIONðvalueÞ
2: instances instances:addðinstanceÞ

{CLEANUP phase:}
3: Weightsj½1 . . . D�= DEFWðinstancesÞ
4: lkey lkey:setðpartitionIdÞ
5: lvalue lvalue:setðWeightsj½1 . . . D�Þ
6: EMIT (lkey, lvalue)
Algorithm 6. Reduce phase for the DEFW algorithm MAP(key,
value):

Input: hkey,valuei pair, where key is the data partition id used
in the Map Phase and value is the content of a
Weightj½1 . . . D� vector.

Output: hkey’,value’i pair, where key’ is a null value and value’
is the resulting feature Weights½1 . . . D� vector.

1: instance INSTANCE REPRESENTATIONðvalueÞ
2: {Initially Weights½1 . . . D� ¼ 0;0; . . . ;0}
3: while values:hasNextðÞ do
4: Weightsj½1 . . . D� ¼ values:getValueðÞ
5: for i = 1 to D do
6: Weights½i� ¼Weights½i� þWeightsj½i�
7: end for
8: end while
9: EMIT (null, Weights½1 . . . D�)
4.3.2. Experiments

We applied the DEFW method to the balanced training data set
generated with the ROS technique. It was necessary because the
DEFW method may be also affected by the class imbalanced distri-
bution. Moreover, due to the wrapper nature of the DEFW method,
we were obliged to use a high number of maps (32,768) that
resulted in less than 1000 original instances per map. Otherwise,
the runtime of the mappers is excessively high. Due to time restric-
tions, we did not investigate further the influence of the number of
maps in the quality of the selected features.
Fig. 7. Runtime obtained with/
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After the FW process we ranked the features by weight and
selected a feature subset of highly ranked features. We performed
preliminary experiments (not reported) to choose the most suit-
able selection threshold. From the original 631 features we only
kept the subset of 90 features with the highest weights.

With the selected features, we repeated the experiment using
the oversampling+RF approach with an oversampling ratio ranging
from 100% to 130%. Table 3 shows the results obtained. Fig. 7 com-
pares the runtime needed to perform the building of the RF classi-
fier by using the original set of features and using the 90 selected
characteristics.

From this third stage of experiments we concluded that:

� The use of DEFW showed to provide a greater precision com-
pared to the previous results. Using a smaller set of features
than before, the RF-BigData model has been able to increase
its performance.
� Comparing Tables 2 and 3, we can observe that the selection of

features has mainly increased the performance in the TPR, but
also we improve the classification done in the negative class.
However, we observed differences between the TPR and the
TNR rates even using 130% of oversampling percentage.
Should we increment more the oversampling rate to balance
the precision obtained in both classes? (see Section 4.5).
� In terms of runtime, the reduction of the number of features has

shown a notable reduction of the time requirements due to the
reduction of the size of the problem.

Hence, the introduction of feature selection has resulting in a
large leap forward in the performance of our algorithm.
4.4. Step 4: Investigating RF parameters

Due to the lack of balance between the TPR and TNR of our
method, even in the best performing variants, we decided to
without FW (64 mappers).
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Table 4
Results obtained varying the number of internal feature used by RF.

Number of
maps

Number of used
features

TPR TNR TPR � TNR

115% 15 0.640253 0.807126 0.516765
115% 25 0.639390 0.808483 0.516936
130% 15 0.671731 0.781033 0.524644
130% 25 0.669531 0.784856 0.525486

Best result from the previous stages 0.674754 0.777440 0.524580

Best result is highlighted in bold face.

Table 5
Result obtained with huge ROS oversampling rates: 64 mappers, 90 features, and 25
internal features for RF.

Oversampling ratio TPR TNR TPR � TNR

130% 0.671279 0.783911 0.526223
140% 0.695109 0.763951 0.531029
150% 0.705882 0.753625 0.531971
160% 0.718692 0.741976 0.533252
170% 0.730432 0.730183 0.533349
180% 0.737381 0.722583 0.532819

Best result from the previous stages 0.669531 0.784856 0.525486

Best result is highlighted in bold face.

Table 6
Comparison with the rest of the participants.

Team TPR TNR TPR � TNR

Efdamis 0.730432 0.730183 0.533349
ICOS 0.703210 0.730155 0.513452
UNSW 0.699159 0.727631 0.508730
HyperEns 0.640027 0.763378 0.488583
PUC-Rio_ICA 0.657092 0.714599 0.469558

Best result is highlighted in bold face.
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investigate the influence of internal number of features used by RF.
We focused on the best two oversampling ratios from the previous
section and we increment the number of features used. Instead of
using the log #Features + 1, that resulted in 8 features, we incre-
mented to 15 and 25. Table 4 presents the results of this
experiment.

As result of this experiment, we realized that the increment of
the internal number of features of RF tended to go further in the
final precision (TPR � TNR). However, if we compare Tables 3 and
4, most of the improvements have been done in the negative class.
Therefore, once again, the question ‘‘how can we balance the TPR
and TNR results?’’ needed to be addressed.
4.5. Step 5: Combining ROS with very large oversampling rates and
feature weighting

Our previous steps produced successful improvements in the
precision of the model. However, we again get high differences
Fig. 8. TPR vs. TNR varying
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among the precision obtained in the positive and the negative
classes. In order to mitigate this issue, we came back to the solu-
tion adopted in the Step 2 (Section 4.2), increasing the ROS rate.

In this last stage of experiments we focused on the specific con-
figuration that had obtained the best performance up to that point:
64 mappers, 90 features selected by the FW model and 25 internal
feature for RF. Afterwards, we increased the ROS ratio until the TPR
was larger than the TNR. Table 5 collects the results of this exper-
iment and Fig. 8 plots the evolution of TPR and TNR when the over-
sampling ratio is augmented.

In conclusion, we observe that we needed a huge oversampling
rate of 170% to balance the TPR and TNR rates. This increment in
conjunction with all the previous steps generated the best overall
submission of the ECBDL’14 big data challenge.
4.6. Comparison with the rest of the methods

In this section we collect the best results achieved from the Top
5 participants of the competition to merely compare the precision
obtained. Table 6 presents these final results. A brief description of
each method as well as a qualitative runtime comparison between
them, based on participant’s self-reported information, is available
at http://cruncher.ncl.ac.uk/bdcomp/BDCOMP-final.pdf.
Moreover, the timeline and ranking of the prediction submissions
made by the participants throughout the competition are available
at http://cruncher.ncl.ac.uk/bdcomp/index.pl?action=

ranking.
This table reflects the difficulties that this bioinformatics prob-

lem has brought to most of the contestants. We can observe that
find a balance between the TPR and TNR rates has been the main
barrier for all of the participants of the competition.
the ROS percentage.
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5. Conclusions

In this work we have presented the winner algorithm of the
ECBDL’14 big data competition, called ROSEFW-RF. We have dealt
with an imbalance bioinformatics big data application with differ-
ent learning strategies. We have combined several preprocessing
stages such as random oversampling and evolutionary feature
weighting before building a learning model. All of our approaches
have been based on MapReduce as parallelization strategy.

In this particular problem, the necessity of balancing the TPR
and TNR ratios emerged as a difficult challenge for most of the par-
ticipants of the competition. In this sense, the results of the compe-
tition have shown the goodness of the proposed MapReduce
methodology. Particularly, our modular ROSEFW-RF methodology
composed of several, highly scalable, preprocessing and mining
methods has shown to be very successful in this challenge and out-
perform the other participants.

As future work, we would like to further investigate the pro-
posed evolutionary feature selection approach, by analyzing the
influence of the number of maps and other base classifiers.
Moreover, the development of mixed strategies between under-
sampling and oversampling approaches or instance reduction tech-
niques (such as [43]) may also boost the classification performance
in imbalanced big data problems.

Acknowledgments

Supported by the Research Projects TIN2014-57251-P,
P10-TIC-6858, P12-TIC-2958, TIN2013-47210-P and P11-TIC-7765.
I. Triguero holds a BOF postdoctoral fellowship from the Ghent
University.

Appendix A. Hardware and software tools

The experiments have been carried out on sixteen nodes in a
cluster: The master node and eleven compute nodes. Each one of
these compute nodes has the following features:

� Processors: 2 x Intel Xeon CPU E5-2620.
� Cores: 6 per processor (12 threads).
� Clock Speed: 2.00 GHz.
� Cache: 15 MB.
� Network: Gigabit Ethernet (1 Gbps).
� Hard drive: 2 TB.
� RAM: 64 GB.

The master node works as the user interface and hosts both
Hadoop master processes: the NameNode and the JobTracker.
The NameNode handles the HDFS, coordinating the slave machines
by the means of their respective DataNode processes, keeping track
of the files and the replications of each HDFS block. The JobTracker
is the MapReduce framework master process that manages the
TaskTrackers of each compute node. Its responsibilities are main-
taining the load-balance and the fault-tolerance in the system,
ensuring that all nodes get their part of the input data chunk and
reassigning the parts that could not be executed.

The specific details of the software used are the following:

� MapReduce implementation:Hadoop 2.0.0-cdh4.4.0. MapReduce
1 runtime(Classic). Cloudera’s open-source Apache Hadoop
distribution [44].
� Maximum maps tasks: 192.
� Maximum reducer tasks: 1.
� Machine learning library: Mahout 0.8.
Please cite this article in press as: I. Triguero et al., ROSEFW-RF: The winner algo
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� Operating system: Cent OS 6.4.

Note that the total number of cores of the cluster is 192.
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