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Abstract Nowadays, it is usual to work with large amounts
of data since our capacity of collecting and storing informa-
tion has increased significantly. The extraction of knowledge
from these scenarios is commonly known as “Big Data,”
and it is performed on large clusters with MapReduce plat-
forms. Imbalanced classification poses a problem both in
traditional and Big Data learning scenarios. Data sampling
is one of the ways that allows to improve the performance on
imbalancedproblems.Acommodity hardware-basedmethod
for Big Data problems can offload these computations from
the expensive and highly demanded hardware that MapRe-
duce platforms require. The characteristics of some sampling
methods make them suitable to be adapted to commod-
ity hardware, taking advantage of the parallel computation
capabilities of graphics processing units. SMOTE is one of
the most popular oversampling methods which is based on
the nearest neighbor rule. The proposed SMOTE-GPU effi-
ciently handles large datasets (several millions of instances)
on a wide variety of commodity hardware, including a laptop
computer.
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1 Introduction

Nowadays, it is usual to work with large amounts of data
since our capacity of collecting and storing information has
increased significantly. The extraction of knowledge from
these scenarios is commonly known under the term “Big
Data” [17,27]. This term applies to situations that tradi-
tionalKnowledgeDiscoverymethods are unable to dealwith.
MapReduce [7] platforms, such as Apache Hadoop [25] or
Apache Spark [26], were created to cope with the computa-
tional challenges that these new scenarios create. There are
machine learning libraries [10,18,19,23] that have been cre-
ated to work with these platforms on Big Data problems,
but there are still challenges that have not been solved, like
imbalanced classification [9].

In traditional knowledge discovery, it is not unusual to
find situations where the number of instances of each class
of a problem is significantly different, this problem is usu-
ally known as imbalanced classification [13,15,20] and poses
challenges to traditional learning algorithms. Considering a
binary problem with a majority class and a minority class,
it is likely that a learning algorithm ignores the later and
still achieves a high accuracy. There are three main ways of
dealing with these situations [16]:

• Algorithmic modificationModifying learning algorithms
in order to tackle the problem by design.

• Cost-sensitive learning Introducing costs for misclassi-
fication of the minority class at data or algorithmic level.

• Data sampling Preprocessing the data in order to reduce
the breach between the number of instances of each class.
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The algorithms that were used to sample the data on tra-
ditional scenarios could be used for Big Data, since the ideas
behind them are not related to the number of instances of
the problem, but traditional implementations cannot handle
the large amounts of data required. These algorithms can
be redesigned to use MapReduce platforms but these plat-
forms require large clusters [7] that are usually expensive
and shared among different users. Usually several configu-
rations are tried in order to obtain the best performance [24].

An interesting alternative would be if the data sampling
could be performed separated from the learning process and
in commodity hardware using theMapReduce platformsonly
to get real classification results.

Graphics processing units (GPUs) are available in almost
every medium or high-end commodity computer. These
devices were created to compute 3D-related computations in
an efficient way, but their parallel architecture makes them
interesting for many other applications as varied as finger-
print identification [12], molecular simulation [22] or data
mining [21]. Libraries like NVIDIA CUDA [6], have made
these devices easier to use for general-purpose applications,
presenting the GPU device as a parallel co-processor. Mod-
ern GPU devices should be powerful enough to perform the
computations required for data sampling algorithms in a rea-
sonable time.

In this paper, we explore the use ofGPUdevices combined
with a proper data handling design in order to perform data
sampling algorithms based on the well-known SMOTE algo-
rithm [5] in a reasonable time and on commodity hardware,
called SMOTE-GPU. Our test covers four different datasets
up to 10millions of instances with imbalanced ratios (the
relation between the numbers of instances of both classes)
up to 49 and hardware configurations ranging from a server
class GPU device to a medium range laptop. All test where
completed in every hardware platform in less than 2h, for the
most time-demanding experiment, while a traditional CPU
implementation could not produce results for any experiment
in more than 8h.

The rest of the paper is organized as follows: Sect. 2
shows the characteristics of GPU devices and comments the
main sampling solutions to deal with imbalanced data and
its suitability to be adapted to commodity hardware; Sect. 3
describes our design; Sect. 4 presents the experiments and
obtained results; Sect. 5 shows the conclusions and future
work.

2 Background

In this section, we describe the main characteristics of
GPU devices (Sect. 2.1), and we discuss the suitability for
commodity hardware of different data sampling algorithms
(Sect. 2.2).

2.1 Graphics processing units

GPUdeviceswere created to offload the computations related
to 3D related computations from the CPU device to a specific
and efficient device. These devices have a parallel architec-
ture, usually single instruction, multiple data (SIMD), which
allows them toperform the sameoperation ondifferent data at
once. This architecture is different to the architecture that we
find in CPU devices, makingGPUdevice programming quite
different from traditional parallel and distributed program-
ming. NVIDIA CUDA is one widely used library that allows
general-purpose programming of NVIDIA GPU devices by
presenting them as parallel co-processors.

The functions that are run on GPU devices are called ker-
nels. When programming a kernel, the kernel code includes
the operations that a single thread is going to perform. When
the kernel is called, the code that calls it specifies a set
of threads that will run the kernel, called grid. The grid
is divided into blocks of threads, each block has a three-
dimensional block identifier, and each thread within a block
has another three-dimensional thread identifier. These iden-
tifiers are accessible in the kernel code and are used to access
data from each thread and to make threads cooperate in com-
putations. The threads that belong to the same block can
cooperate and communicate using a programmable cache
that works as shared memory. The size of this cache is lim-
ited; if a kernel requires a large amount of sharedmemory, the
number of blocks running at once will be reduced, reducing
also the performance obtained.

The grid is distributed on the GPU cores in a transparent
way, but there are some lower level characteristics that have
to be taken into account in order to obtain good performance.
TheGPU cores are organized in streaming processors (SMX)
that run sets of 32 threads, called warps in a synchronous
way. This means that a warp of threads is always running
the same instruction and that if there is code divergence, for
instance an if clause with different results within the warp,
that section of code will be serialized. A block has to be run
on the same SMX, and this is because the shared memory
is implemented at the SMX level. There are also limits to
the maximum number of warps and blocks that an SMX can
handle at once, if a block has a small number of threads
the resources will not be fully used, but a large number of
threads can also create this situation since the SMX only can
handle complete blocks. In both situations, the performance
obtained is reduced.

A proper use of the GPU resources is usually a critical
factor on the performance because of the way the GPU opti-
mizes itsmemory accesses.GPUdevices have a large number
of registers per SMX; this is because each thread is assigned
the registers that is going to need to run the code beforehand.
Because of this, a GPU device can switch from one warp
to another in an extremely fast way since all the required
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information is always in registers. When the main memory
is accessed, the GPU device switches to another warp and
runs it, and in this way, the latencies of memory accesses are
hidden with useful computation.

Since GPU devices are separated from CPU devices,
they have their own memory. This means that the data
used in GPU computations needs to be copied from the
computer’s main memory to the GPU device memory.
These computations can be performed asynchronously at the
same time other computations are performed on the GPU
device. Also, the GPU memory cache system is optimized
for coalescent accesses, subsequent threads are expected
to access subsequent memory positions. If the memory
is not accessed in this way, it can also lead to lower
performance.

A good GPU-based design has to tackle all these restric-
tions and dependencies, identify which parts of the algorithm
are suitable for the GPU device, and try to take advantage of
the asynchronous memory transferences in order to obtain
the best performance.

2.2 Imbalanced classification

Aproblem is imbalancedwhen the amount of instances of one
class is significantly larger than the amount of instances from
the other. The imbalanced ratio (IR) measures how imbal-
anced a dataset is. This ratio is computed dividing the number
of instances of the larger class by the number of instances of
the smaller class. This type of problems poses a challenge for
classification algorithms, especially as the IR increases, since
the information regarding to the minority class is limited.

There are three main ways to deal with imbalanced
classification: modifying the algorithm, introducingmisclas-
sification cost and data sampling. Data sampling is the only
one that can be performed in a separate way from the classifi-
cation algorithm, since the other two require direct or indirect
modifications of the algorithm. When sampling data, there
are two obvious strategies to solve the imbalanced problem:
undersampling themajority class or oversampling theminor-
ity class. However, the memory requirements of each type of
algorithm are quite different making only one type suitable
to be run on commodity hardware.

Undersampling methods, such as random undersam-
pling or instance selection methods, balance the number of
instances of the classes by reducing the number of instances
of the majority class. The instances selected can be chosen
in a random way or using some type of expert knowledge
over the majority class. This requires to manipulate most
of the data in order to perform the selection. In a Big Data
scenario, the resources required to handle the majority class
are virtually the same required to handle the whole problem,
and for this reason, this type of approach is not advised if

we want to perform this data transformation on commodity
hardware.

Oversampling methods, on the other hand, balance the
number of instances of the classes by increasing the number
of instances of the minority class. The new instances can
be obtained by replicating existing instances or using some
type of interpolation between existing instances. Since these
algorithms only need to handle the information referred to the
minority class it is likely that this can be performedon a single
computer. The Synthetic Minority Oversampling Technique
(SMOTE) [5] and the randomoversampling technique (ROS)
are some of the most common techniques of this type. The
first one is an interpolation technique, while the second one
is based on duplicating instances.

The random oversampling technique creates a new inst-
ance by selecting one real instance randomly and duplicating
it. This procedure is repeated until the number of instances of
both classes has been balanced or a user specified parameter
value is reached.

The SMOTE technique is based on the idea of neighbor-
hood of the k-nearest neighbor (kNN) rule. When used in
classification, the kNN rule sets the class of an instance as
the majority class of the k closest instances of the training
set. SMOTE considers that a instance can be interpolated
between an instance and one of its neighbors within the class.
The algorithm computes the neighborhood of each instance
of the minority class, choosing one of its neighbors and ran-
domly interpolates a new instance using the values of each
attribute as limits. If the number of instances to create is
smaller than the size of the original dataset, the algorithm
randomly chooses the original instances used to create the
artificial ones. If that number is larger than the original dataset
size, the algorithm iterates over the dataset creating an artifi-
cial instance per original instance until it reaches the previous
scenario.

The main computational bottleneck of the SMOTE algo-
rithm is the neighborhood computation. The distance
between each pair of instances needs to be measured and
all those distances needs to be compared in order to find the
neighborhood. GPU devices have proven to be efficient in the
computation of the kNN rule, reducing the time required for
its computation in a significant way. Section 3 shows howwe
can run these algorithms on commodity hardware combining
a proper data handling design and a GPU device.

3 Design for preprocessing on commodity
hardware: SMOTE-GPU

In this section, we present how the memory requirements for
SMOTE can be adjusted to fit in commodity hardware and
how the computations can be performed on GPU devices.
First, the memory requirements are tackled (Sect. 3.1)

123



Prog Artif Intell

and, after that, the design of SMOTE-GPU is addressed
(Sect. 3.2).

3.1 Memory requirements

The usual applications that perform oversampling algorithms
work in a pretty naive way, loading the complete dataset in
memory, separating it in different classes, computing all the
new instances and writing the whole result on the hard drive.
This approach works perfectly for traditional problems, but
working on Big Data scenarios, it is unlikely that the whole
dataset fits in device memory.

As commented in Sect. 2.2, oversampling methods only
require to work with the data of the minority class. Our
approach only keeps in memory that data. When reading the
dataset, each instance is written to disk straight away after
it is read, and then, depending on its class, it is only kept in
memory, if the class corresponds with the minority class.

In the sameway, it is not necessary to create all the artificial
instances before writing them to disk. A single extra instance
can be reused to store the results of the interpolation if the
results are stored on the hard drive just after that. Algorithm 1
lines 1–7 and 17–20 correspond to this data management
scheme.

In this way, the memory requirements for the application,
in terms of dataset storage, are reduced to the size of the
instances of the minority class plus one extra instance. An
oversampling method that does not perform much compu-
tation with the data, like ROS, can work with only these
changes, but other methods, like SMOTE, would still require
too much time to perform their computations.

Algorithm 1: Proposed algorithm pseudocode
input : dataset
output: oversampled dataset

1 while There are instances to read do
2 instance ← read Instance
3 wri teT oDisk(instance)
4 if instance.class = minori tyClass then
5 minori ty I nstances ← instance
6 end
7 end
8 for i ← 1 to N do
9 copyMinori ty I nstancesi

10 for j ← 1 to N do
11 copyMinori ty I nstances j
12 computeDistanceMatri xi, j
13 computeSelection j

14 end
15 copyNeighborhoodi
16 end
17 while There are artificial instances to create do
18 instance ← createArti f ical I nstance()

wri teT oDisk(instance)
19 end

3.2 SMOTE-GPU design

Applying the previously mentioned memory scheme, the
SMOTE algorithm needs to compute the neighborhood of
each instance to interpolate. As commented in Sect. 2.2, there
are several GPU implementations for the kNN classification
problem that can be adapted to this situation.

The computation of the kNN rule on GPU devices is split
into two kernels, one kernel that builds a distance matrix
between test and training sets and another kernel that searches
for the k minimum distances obtained. Most GPU-based
designs strugglewhen the distancematrix does not fit onGPU
devicememory. In [11], the different versions that can handle
large amounts of data are studied and compared.GPU–SME–
kNN obtains the best performance among them, being able
to compute the kNN rule in datasets of more than 4.5millions
of instances, so it can be considered a good candidate for the
SMOTE method.

GPU–SME–kNN [11] computes the distancematrix using
a block based scheme. The size of each block can be defined
by user-defined parameters, so it can be adapted to a large
variety ofGPUdevices. Each block of thematrix is computed
in a kernel call, each row corresponds to a thread block, but
the number of threads per block is fixed to a value d, smaller
than the length of the matrix block. Each thread computes
several distances in a coalescent way.

The selection of the neighborhood is computed sequen-
tially after each block of the distance matrix is computed.
For the first matrix block of a strip, the neighborhood is com-
puted, and when the second block of the strip is ready, the
new neighborhood is computed combining the previous one
and the matrix block, and the process continues until the last
block of the matrix strip has been computed. Lines 8–16 on
Algorithm1 correspond to a version ofGPU–SME–kNN that
show the general scheme of the method.

GPU–SME–kNN1 uses a quicksort [14] based selection.
This type of selection allows to discard all the elements of a
block that do not improve the previous neighborhood in lineal
time, using as pivot the furthest neighbor of the previous
block.

Another particularity of GPU–SME–kNN is that it uses a
separate kernel to compute the square root operation required
for the distance computation. The neighborhood comparison
canbeperformedobtaining the same resultswithout perform-
ing that operation that it is only applied to the finally selected
neighbors in order to obtain the real distance results.

Finally, one of the key aspects of GPU–SME–kNN is the
use of asynchronous memory transfers. The data required
for the distance computation corresponds with the instances
attributes values, this data is not used during the selection
process so the data required for the computation of the next

1 http://sci2s.ugr.es/GPU-SME-kNN.
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matrix block can be loaded while the selection is computed.
In the same way, the final neighborhood can be copied to
CPUmainmemorywhile the computations of the nextmatrix
block are performed. This way all the memory transfers
between CPU and GPU devices are overlapped with com-
putation, except the initial transfer for the first matrix block
and the transfer of the last neighborhood.

The last step of the SMOTE technique is the interpolation
of the instances. This part is performed on CPU for two rea-
sons, the first one is to minimize the memory requirements
since each instance needs to be write as soon as is com-
puted; the second one is because it would require to store
large portions of the dataset, if not all of it, on device mem-
ory. Furthermore, the data are not accessed on a coalescent
way which would lead to bad performance, if this step were
computed on GPU devices.

SMOTE-GPU can be adapted to a broad range of GPU
devices and can work with large datasets with the only pre-
requisite that the fit on CPU main memory. The memory
scheme proposed in Sect. 3.1 produces a scenario, where
all the data required for the oversampling process is stored
in main memory, that combined with this GPU-based kNN
computationmakes possible the use of the SMOTE technique
over large datasets in a single machine.

4 Experimental study

Different experiments have been carried out to check the
results obtained by our design for SMOTE-GPU. The section
is organized as follows: The experiments are described in
Sect. 4.1; the different hardware configurations are detailed
in Sect. 4.2; the obtained results are shown and discussed in
Sect. 4.3.

4.1 Experimental framework

Twodifferent types of experiments have been performed. The
first type focuses on the time needed to apply the sampling
technique to different datasets, while the second types studies
the classification results obtained after applying the sampling
method.

Four different datasets have been used: ECBDL14, HEP-
MASS, Higgs, and Susy. The first one from the ECBDL 14
competition [8], after a feature selection process to reduce it
to 90 features [24] and the other three from theUCI repository
[2,3]. TheUCI datasets have beenmodified to create datasets
with different imbalanced ratio, obtained undersampling the
minority class. Table 1 shows the number of instances of each
class, the number of attributes of the problem and the imbal-
ance ratio for each dataset used. These datasets have been
split following a fivefold cross-validation scheme, so every

Table 1 Datasets information

Dataset Majority Minority Att. IR

ECBDL14-05mill-90 470,400 9600 90 49

ECBDL14-10mill-90 9,408,000 192,000 90 49

SUSY_IR_16 2,169,740 135,610 18 16

SUSY_IR_4 2,169,740 542,435 18 4

SUSY_IR_8 2,169,740 271,219 18 8

HIGGS_IR_16 4,663,300 291,457 28 16

HIGGS_IR_4 4,663,300 1,165,825 28 4

HIGGS_IR_8 4,663,300 582,913 28 8

HEPMASS_IR_16 4,200,100 262,507 28 16

HEPMASS_IR_4 4,200,100 1,050,029 28 4

HEPMASS_IR_8 4,200,100 525,013 28 8

result shown in this paper corresponds to the average of the
results obtained on each fold.

SMOTE-GPU and ROS have been used as oversampling
method, with two different configurations. The first configu-
ration balances the number of instances of the minority class
while the second one introduces 50% of overhead for the
minority class. The value of k for the SMOTE-GPU algo-
rithm is set to 5, and the rest of the parameters for the kNN
algorithm have been the same specified in [11].

We also wanted to compare the time performance with
the ones obtained by software available that performs data
preprocessing. We tried to run the SMOTE implementation
available on Keel [1] but we were not able to obtain results
for a single experiment on these datasets after more than 8h
of runtime on a server node.

To check the accuracy of the oversampled datasets, the
decision tree from MLlib has been used. Since the datasets
are large, the depth of the trees has been set to the maxi-
mum value that MLlib allows for this algorithm, which is 30.
The area under the ROC curve (AUC) [4] has been used as
measure to show the quality of the results since the classifi-
cation accuracy of the algorithm is not useful when the data
is imbalanced.

4.2 Hardware configurations

Different hardware configurations have been use for the sam-
pling methods in order to prove their suitability on hardware
of different characteristics.

• Server a cluster node that uses an NVIDIA Tesla
k20GPU with5 GB of memory and 2496 CUDA cores,
an IntelXeonE5-2630 processor at 2.30GHz and 128GB
of main memory.

• Desktop a desktop computer that uses an NVIDIA
GeForce GTX 680 with 2GB of memory and 1532
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Table 2 Time results, in seconds, for the SMOTE-GPU algorithm

Server Desktop Laptop

ECBDL14-05mill-90 99.64 73.19 110.55

ECBDL14-10mill-90 2066.48 1553.82 2546.65

SUSY_IR_16 164.22 128.91 233.99

SUSY_IR_4 308.49 323.20 1149.29

SUSY_IR_8 196.51 169.55 420.34

HIGGS_IR_16 584.09 445.31 930.70

HIGGS_IR_4 1387.20 1508.78 6701.97

HIGGS_IR_8 730.63 661.74 2093.40

HEPMASS_IR_16 504.58 391.31 799.39

HEPMASS_IR_4 1174.35 1238.15 5477.82

HEPMASS_IR_8 637.18 553.78 1742.41

Table 3 Time results, in seconds, for the ROS algorithm

Server Desktop Laptop

ECBDL14-05mill-90 55.90 40.25 58.43

ECBDL14-10mill-90 1101.16 777.76 1197.57

SUSY_IR_16 90.71 63.21 94.88

SUSY_IR_4 107.06 78.95 112.88

SUSY_IR_8 97.60 68.47 102.82

HIGGS_IR_16 281.42 204.17 305.73

HIGGS_IR_4 340.56 245.06 362.14

HIGGS_IR_8 301.10 215.81 324.14

HEPMASS_IR_16 254.42 180.47 269.97

HEPMASS_IR_4 299.76 214.69 317.97

HEPMASS_IR_8 268.01 190.02 283.71

CUDA cores, an Intel core i7 3820 processor at 3.60GHz
and 24GB of main memory.

• Laptop a laptop computer that uses an NVIDIA GeForce
GTX 740m with 384 CUDA cores, an Intel Core i5
3337U processor at 1.8GHz and 8GB of main memory.

The accuracy measurements of the MLlib experiments
have been performed on a small spark cluster with four
worker nodes, and each worker has 8 threads and 28GB of
main memory.

4.3 Analysis of the results

Tables 2, 3, 4 and 5 show the average time results, in seconds,
obtained on each cluster for each algorithm.

The time to perform the complete process is included in
these results, considering also the time spent in reading the
dataset and writing the results on the hard disk. As expected,
the largest time is obtained by the laptop computer. However,
even for more time-demanding experiment, it is shorter than

Table 4 Time results, in seconds, for the SMOTE-GPU algorithm with
extra 50% of minority class

Server Desktop Laptop

ECBDL14-05mill-90 122.35 91.58 134.15

ECBDL14-10mill-90 2535.94 1858.10 3087.82

SUSY_IR_16 196.21 148.13 267.96

SUSY_IR_4 333.55 332.90 1183.28

SUSY_IR_8 226.92 185.30 447.18

HIGGS_IR_16 648.01 512.93 1034.11

HIGGS_IR_4 1440.68 1549.95 6782.25

HIGGS_IR_8 803.61 710.07 2186.71

HEPMASS_IR_16 582.31 448.76 910.48

HEPMASS_IR_4 1233.46 1292.08 5561.03

HEPMASS_IR_8 717.06 612.99 1840.47

Table 5 Time results, in seconds, for the ROS algorithm with extra
50% of minority class

Server Desktop Laptop

ECBDL14-05mill-90 56.34 39.30 59.28

ECBDL14-10mill-90 1105.64 787.02 1181.07

SUSY_IR_16 90.67 64.75 97.82

SUSY_IR_4 106.89 76.13 112.46

SUSY_IR_8 96.73 69.72 101.96

HIGGS_IR_16 286.13 208.64 300.95

HIGGS_IR_4 332.43 241.33 356.74

HIGGS_IR_8 300.47 221.16 322.44

HEPMASS_IR_16 262.08 180.08 270.22

HEPMASS_IR_4 303.07 212.66 317.32

HEPMASS_IR_8 269.94 192.54 285.68

2h, and it is only around four times slower than the fastest
time obtained for the same experiment.

The desktop configuration is faster than the server one
in many cases. The reason for this is that the interpolation
process is performed on CPU device, and single thread per-
formance of the CPU device on the desktop is higher than the
CPU device on the server, as it was shown in the hardware
description. This behavior could be expected for the ROS
algorithm but it also happens in SMOTE-GPU.

The NVIDIA Tesla k20GPU from the server delivers a
higher performance than the NVIDIA GTX 680 from the
desktop but the faster CPU of the desktop compensates these
differences in most cases. The number of instances to cre-
ate has more importance now, comparing the results for the
dataset SUSY_IR_4 in Tables 2 and 4, corresponding to both
SMOTE-GPU configurations. The server is faster that the
desktop in the first case but slower in the second. The only
difference between both settings is the number of artificial
instances created. This means that, if the GPU device is pow-
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Table 6 Time results, in seconds, for the neighborhood computation
in the SMOTE-GPU algorithm

Server Desktop Laptop

ECBDL14-05mill-90 0.34 0.33 1.65

ECBDL14-10mill-90 57.75 64.85 390.17

SUSY_IR_16 10.63 13.50 64.81

SUSY_IR_4 149.77 201.35 979.60

SUSY_IR_8 38.81 51.16 247.95

HIGGS_IR_16 56.24 71.20 390.14

HIGGS_IR_4 862.24 1119.96 6149.25

HIGGS_IR_8 218.75 281.32 1543.06

HEPMASS_IR_16 47.39 59.44 327.08

HEPMASS_IR_4 701.65 911.01 4997.47

HEPMASS_IR_8 180.41 230.96 1269.28

Fig. 1 SMOTE-GPU time performance in hours and minutes

erful enough, the bottleneck moves from the neighborhood
computation to the interpolation and data reading and stor-
age.

Table 6 shows the time required for the kNN algorithm on
each dataset and confirms what could be expected consider-
ing the different capabilities of the GPU devices used. It can

be seen how the server configuration is faster than any other
in this step. It also shows that the importance of this step,
in terms of time, is much higher than in the other configu-
rations, reaching up to 90% of the total time in some cases.
However, the fact that a medium range 3-year-old laptop can
handle these datasets in less than 2h, as can be seen in Fig. 1,
shows how powerful this design can be.

Considering that the time required to read and store the
data has now a significant importance on the global perfor-
mance of the algorithm it is important to state that in all the
experiments the data was stored in a traditional magnetic
hard drive. It is likely that using a solid-state disk these times
would be reduced, especially for the server and desktop con-
figurations.

Table 7 shows the values for the area under the ROC
curve obtained using theMLlib decision treewith the original
dataset and the sampled datasets.

These results showhow the oversamplingmethods outper-
form the results obtained by the original dataset. SMOTE-
GPUwith an extra 50%of theminority class achieves the best
results in all datasets. We can also observe how the results
of the first configuration of SMOTE-GPU are better than
ROS and than the original problem for all datasets except for
HIGGS. The ROS algorithm seems to be leading to overfit-
ting when an extra 50% of the minority class is created. In
that case, only four experiments improve the results obtained
by the first configuration of ROS.

5 Conclusions

In this work, we have shown that it is possible to perform
data oversampling for BigData datasets on commodity hard-
ware by combining an efficient data handling scheme and the
computational capacities of GPU devices. Different settings
for the methods have been tested on different datasets up to
10millions of instances and imbalanced ratios up to 51.

Table 7 Area under the ROC
classifying with decision tree

Original SMOTE-GPU ROS SMOTE-GPU+50% ROS+50%

ECBDL14-05mill-90 .5449 .5673 .5451 .5730 .5479

ECBDL14-10mill-90 .5636 .5942 .5641 .6059 .5642

SUSY_IR_16 .6657 .7176 .6798 .7233 .6660

SUSY_IR_4 .7116 .7347 .7122 .7355 .7116

SUSY_IR_8 .6911 .7270 .6976 .7297 .6918

HIGGS_IR_16 .5709 .5239 .5975 .6196 .5713

HIGGS_IR_4 .6288 .5279 .6359 .6376 .6294

HIGGS_IR_8 .5981 .5257 .6137 .6260 .5986

HEPMASS_IR_16 .7696 .8088 .7698 .8128 .7700

HEPMASS_IR_4 .8080 .8181 .8079 .8189 .8080

HEPMASS_IR_8 .7915 .8136 .7911 .8163 .7910
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The area under the ROC curve results show that the use of
oversamplingmethods improves the detection of theminority
class in Big Data datasets. We have also shown how our
design can successfully work on a wide range of devices,
including a laptop, while requiring reasonable times, around
25min on high-end devices, and less than 2h on the laptop,
for the most time-demanding experiment.
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