
From Big data to Smart Data with the K-Nearest
Neighbours algorithm

Isaac Triguero, Jesús Maillo, Julián Luengo, Salvador Garcı́a, and Francisco Herrera

Abstract—The k-nearest neighbours algorithm is one of the
most widely used data mining models because of its simplicity
and accurate results. However, when it comes to deal with
big datasets, with potentially noisy and missing information,
this technique becomes ineffective and inefficient. Due to its
drawbacks to tackle large amounts of imperfect data, plenty of
research has aimed at improving this algorithm by means of data
preprocessing techniques. These weaknesses have turned out as
strengths and the k-nearest neighbours rule has become a core
model to actually detect and correct imperfect data, eliminating
noisy and redundant data, as well as correcting missing values.

In this work, we delve and review the role of the k nearest
neighbour algorithm can play to come up with smart data from
big datasets. We analyse how this model is affected by the big data
problem, but at the same time, how it can be used to transform
raw data into useful data. Concretely, we discuss the benefits of
recent big data technologies (Hadoop and Spark) to enable this
model to address large amounts of data, as well as the usefulness
of prototype reduction and missing values imputation techniques
based on it. As a result, guidelines on the use of the k-nearest
neighbour to obtain Smart data are provided and new potential
research trends are discussed.

Index Terms—k-Nearest Neighbours, Prototype Reduction,
Data Preprocessing, Smart Data, Big Data.

I. INTRODUCTION

THE great advances on technology allow us to auto-

matically gather information in a relatively inexpensive

manner. This has resulted in a severe increment of the amount

of available data. The impact of handling this data may be

reflected in competitive benefits for companies and firms or

important discoveries in multiple science fields [1]. Never-

theless, both companies and researchers are facing major

difficulties to store and analyse vast amounts of data. These

issues are being referred as the big data problem.

Extracting valuable knowledge from big data datasets with

machine learning techniques [2] may provide more accurate

models than ever before. The leverage of recent advances

achieved in distributed technologies enables us to discover

unknown patterns or hidden relations in data-intensive ap-

plications [3] more rapidly. However, most of the existing

methods fail to directly tackle the new data space, as the issues

posed by (real-world) complex data go beyond computational

complexity, and big data mining techniques are confronted

with multiple challenges w.r.t. scalability, dimensionality, in-

accurate data (noisy, or incomplete), etc.

I. Triguero is with the School of Computer Science, University of Notting-
ham, United Kingdom

J. Maillo, J. Luengo, S. Garcı́a, and F. Herrera are with Department of
Computer Science and Artificial Intelligence, University of Granada, Spain

The term of smart data [4] is increasingly being used to refer

to the challenge of transforming raw data into data that can be

later processed to obtain valuable insights [5]. According to the

report presented by Gartner, Inc in 20151, smart data discovery

is “a next-generation data discovery capability that provides

business users or citizen data scientists with insights from

advanced analytics”. Therefore, smart data discovery consists

of filtering big data holding useful information, becoming a

subset of data (big or not) that is important for companies and

researchers. Obtaining a reduced/filtered amount of data may

imply a great reduction in terms of data storage costs (i.e.

less disk space requirements), as well as a great impact in the

successful application of data mining techniques.

Data preprocessing [6] is clearly linked to (and resembles)

the smart data concept. This is one of the most relevant

stages in data mining that aims to clean and correct original

data in order to apply machine learning algorithms faster and

more accurately. As such, these techniques should enable data

mining algorithms to address big data problems with greater

ease, but these methods are also affected by the increase in

size and complexity of datasets and they may be unable to

provide a preprocessed dataset in a bounded time.

A well-known data mining technique is the k-Nearest

Neighbour algorithm (k-NN) [7]. This is based on the concept

of similarity, and in classification problems, for example, it

means that patterns that are similar have to be assigned to the

same class. As a lazy learning algorithm, it does not explicitly

perform a training phase, and unseen cases are classified by

finding the class labels of the closest instances to them. Due

to this way of working, the k-NN algorithm may suffer from

several disadvantages to tackle big datasets, such as high

computational cost, high storage requirements, sensitivity to

noise and inability to deal with incomplete information.

Several distributed alternatives have been proposed to enable

k-NN to handle big data [8], [9]. Most of them are based on

the MapReduce [10] programming paradigm, and its open-

source implementation in Hadoop, to transparently parallelise

the k-NN processing, alleviating memory and computational

cost limitations. Very recently, in [11], a new design that goes

beyond the standard Hadoop MapReduce approach provides a

flexible scheme to classify big amounts of unseen cases against

a big training dataset, based on Apache Spark [12].

Another way to tackle some weaknesses of the k-NN algo-

rithm is by means of data reduction models. These techniques

reduce the original training data at the level of instances

1Smart Data Discovery Will Enable a New Class of Citizen Data Scientist.
https://www.gartner.com/doc/3084217/smart-data-discovery-enable-new

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.177

858

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.177

859

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.177

859

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.177

859

2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

978-1-5090-5880-8/16 $31.00 © 2016 IEEE

DOI 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.177

859

(prototype reduction (PR) [13], [14]), or at the attributes level

(feature selection [15]), eliminating redundant and noisy infor-

mation. In the literature, we find many works in which the k-

NN algorithm takes an important part of the data preprocessing

process, especially those using evolutionary algorithms [16].

Dealing with incomplete information is a big challenge for

most data mining techniques [17]. The k-NN model is not an

exception and it may not be able to compute distances between

examples containing missing values. However, the underlying

idea of the k-NN has been used to impute missing values

(KNNI, [18]) based on the k nearest neighbours.

Interestingly, the resulting preprocessed dataset provided by

the above approaches can be used not only by the k-NN

algorithm but also by other kind of algorithms. This work

discusses the applications of the k-NN algorithm to come up

with smart data. First, we will detail the main challenges to

deal with big data and existing solutions so far (Section II).

Next, we will dig into how the k-NN algorithm has been used

as a core model for data preprocessing (Section III). Later,

we will show some interesting experiments, discussing how

transform big data into smart data (Section IV). Finally, we

will point out open research lines (Section V).

II. K-NN ALGORITHM AND BIG DATA

This section introduces the k-NN algorithm and its main

drawbacks to work with big data (Section II-A), as well as

new designs based on big data technologies to speed up its

processing (Section II-A).

A. k-NN background

The k-NN algorithm is a non-parametric method that can

manage classification and regression problems. This section

defines the k-NN rule and its drawbacks to deal with big

datasets. A formal notation for k-NN is as follows:

Let TR be a training dataset and TS a test set, they

are formed by a determined number n and t of samples,

respectively. Each sample xp is a vector (xp1, xp2, ..., xpD, ω),
where, xpf is the value of the f -th feature of the p-th sample.

Every sample of TR belongs to a known class ω, while it

is unknown for TS. For every sample included in the TS,

the k-NN algorithm calculates the distance between this and

all the samples of TR. Euclidean distance is the most used

distance function. Thus, k-NN takes the k closest samples in

TR by ranking in ascending order according to the distance.

Then, it computes a majority voting with the class label of the

k nearest neighbours. The chosen value of k may influence

the performance and the noise tolerance of this technique.

Although the k-NN is known because its good performance

in a wide variety of problems, it presents issues to handle

large-scale datasets. The two main problems found are:

• Memory consumption: If it has training and test data

stored in memory, it will get a rapid computation of the

distances. However, when TR and TS sets are really big,

they easily exceed the available main memory.

• Computation complexity: The complexity to obtain the

nearest neighbour samples of a single test instance in

the training set is O((n · D)), where n is the number

of training examples and D the number of features. In

order to find the k closest neighbours, the computational

complexity is increased on O(n · log(n)) because of

the necessary sorting. Note that this computational effort

must be repeated for each test sample.

B. k-NN design for Hadoop and Spark

The MapReduce programming paradigm is a scale-out data

processing tool. It defines three stages to handle distributed

data: Map, Shuffle and Reduce. Map stage reads the raw

data in form of key-value pairs and it is distributed among

the different computing nodes that are available. Then, it

computes the same function for each data split. Shuffle phase is

responsible for merging all the values associated with the same

intermediate key. Finally, reduce stage aggregates the pairs

with the same key into smaller key-value pairs. MapReduce

automatically processes data in a cluster, distributing the data,

releasing the developer from technical issues such as data

partitioning, fault-tolerance or job communication.

Apache Hadoop is the most popular open-source implemen-

tation of MapReduce paradigm. In [19] authors proposed an

approach of k-NN using Hadoop. First, it splits the TR set

and it is distributed over the computing nodes. The map phase

computes the k nearest neighbours between TS for each TR
part. Then, it sends a vector of pairs (Pair<distance, class>)

to reduce stage. After shuffle phase, the reducer aggregates all

the candidate of each test sample and calculates a majority

voting to obtain the predicted label.

Fig. 1. MapReduce workflow of the kNN-IS algorithm in Apache Spark.

However, Hadoop cannot reuse data through successive

iteration, becoming an issue to handle very big (test) datasets.

Apache Spark may solve some of the Hadoop drawbacks.

The most important feature is the type of data structure

that parallelise the computations in a transparent way. For

859860860860860

this reason, a k-NN developed over Spark is faster than the

Hadoop-based implementation.

Figure 1 shows an improved version of Hadoop-based k-

NN approach, which was designed for Spark [11]. Map and

reduce phases do not change their duties. However, in-memory

primitives boost the runtime. In addition, Spark provides the

necessary mechanisms to efficiently split the TS set when it

does not fit in main memory.

These two approaches obtain exactly the same results as

the original k-NN algorithm, but they soften the runtime

and memory consumption issues. The Spark-based version

becomes faster than Hadoop’s version mainly because of the

in-memory primitives of Spark, which allow us to process

different chunks of the TS set iteratively.

III. DATA PREPROCESSING WITH THE K-NN ALGORIHTM

As stated before, the k-NN algorithm has been widely used

to perform data preprocessing. In many cases motivated on

addressing the own k-NN drawbacks, researchers have made

many data preprocessing contributions towards the allevia-

tion of such problems. Nevertheless, these techniques are in

essence general data preprocessing techniques that allow us to

refine imperfect raw data, obtaining useful (smart) data (free of

noise, missing values and/or redundant information). In what

follows, we briefly discuss two different scenarios in which

the k-NN has been used for correcting data imperfection and

data reduction (Section III-B).

A. Handling Imperfect data with k-NN based algorithms

The underlying idea of the k-NN algorithm have served of

inspiration to tackle data imperfection. Here, we distinguish

between two main kinds of data imperfection that need to be

addressed: noisy data and incomplete data.

1) Noise filtering and correction: The presence of noise in

real world data is an unavoidable problem, which heavily af-

fects the data collection preparation processes in data mining.

Noise information may form small clusters of examples of a

particular class in areas of the instance space that originally

belong to another class. It may also remove instances located

in a key region within a specific class or disrupt the boundaries

of the classes and increase the overlapping among them.

Under these circumstances, data mining models may not be

sufficiently robust to extract valuable knowledge. Therefore,

identifying noisy instances which can be eliminated from the

training data is an important step.

In the specialised literature, two different kinds of noise are

defined: class and attribute noise. The former occurs when a

sample is incorrectly labelled. The latter refers to corruptions

in the values of one or more attributes. While the class noise

problem has been tackled in many different way, attribute noise

remains to be an under-explored field.

As we mentioned before, the original k-NN classifier is also

affected by noisy data, however, the distance-based similarity

idea of the k-NN has been widely applied to detect and

remove class noise. For instance, the well-known Edited

Nearest Neighbour (ENN, [20]) consists of removing all those

training examples whose class label does not agree with the

majority of their k nearest neighbours. In [21], the authors

proposed a variant of the ENN that rather than eliminating

all potential noisy examples, it may change the class label of

clearly erroneous examples. More examples of k-NN based

noise filters can be found in [14] and [13] under the name of

edition-based models.

2) Missing values imputation: Rather than erroneous data,

many datasets also contain missing values (MVs) in their

attribute values. Intuitively, a MV is simply a value for an

attribute that was not annotated or was missing. Human or

equipment errors are some of the reasons of their existence.

Once again, this imperfection on the data influence the mining

process and its outcome.

The simplest way of dealing with MVs is to discard the

examples that contain them. However, this method is imprac-

tical when the number of affected examples is too big. The

imputation of MVs is a procedure that aims to fill in the

MVs by estimating them. In most cases, attributes are not

independent from each other and therefore, identifying that

relationships among attributes, MVs can be approximated.

One of the most used imputation methods is based on the

k-NN algorithm (named as KNNI) [18]. For each instance

containing one or more MVs, KNNI calculates the k nearest

neighbours, and the MVs are imputed based on the existing

values of these neighbours. For nominal values, the most

common value among all neighbours is selected, and for

numerical values the average value is used. Note that to

compute the distances of the attributes with MVs are ignored.

B. Data reduction with the k-NN algorithm

Data reduction approaches aim to obtain a smaller rep-

resentative set of examples from raw data without losing

important information. This process allows us to alleviate data

storage necessities as well as improving the later data mining

process. This process may result on the elimination of noisy

information, but also redundant or irrelevant data.

From the perspective of attributes, the most popular data

reduction processes are feature selection and feature extraction

[15]. At the instance level, we find instance reduction methods

[14], [13]. This latter is usually divided into instance selection

[13], which are limited to take a subset from the original

training data, and instance generation [14] that may generate

artificial data if needed to better represent the training set.

Most of the proposed instance reduction techniques were

originally designed to improve the k-NN algorithm. Existing

models are usually based on the k-NN algorithm and its way

of computing similarities between examples. Among the most

relevant proposals, evolutionary algorithms highlight as good

performing approaches in which the fitness function consists

of classifying the entire training set using the k-NN algorithm.

For feature selection, we can also find that the k-NN

algorithm has been the core idea of many proposals [22].

As in the case of instance reduction, many evolutionary-based

feature selection models [23] have been also focused on k-NN.

As we mentioned previously, these techniques are supposed

to ease data mining algorithms to address with big data

problems, however, these methods are also affected by the

860861861861861

increase of the size and complexity of datasets and they are

unable to provide a preprocessed dataset in a reasonable time.

For this reason, several approaches have been proposed to

enable data reduction techniques to tackle big datasets based

on Hadoop MapReduce. Concretely, based on k-NN, we can

find an approach in [24] to perform feature selection on big

datasets using the k-NN rule within a evolutionary mode. And

in [25], a framework named MRPR was designed to enable

instance reduction techniques to be applied on big datasets.

IV. FROM BIG DATA TO SMART DATA: K-NN AS A

KEYSTONE

This section presents different cases of study that show

the potential of the k-NN algorithm as a unique model to

obtain smart data from large amounts of potentially imperfect

data. First, Section IV-A shows the weaknesses of the k-NN

algorithm in the big data context, and how parallel strategies

may help us to mitigate them. Second, we analyse the problem

of MVs and the role of k-NN to tackle it. Finally, Section IV-C

presents a case of study on instance reduction for big datasets

based on k-NN.

A. k-NN in the big data context

This section illustrates the necessity of a scalable design of

the k-NN algorithm as well as the issue of k-NN with noisy

data. Part of this experimental study is focused on our previous

contribution in [11].

To do this, we make use of Susy dataset which is available

on the UCI machine learning repository2. In order to analyse

the speed up between sequential and distributed approaches,

we could not go further than Susy dataset to obtain the results

of the sequential k-NN. It has 5 million of samples with 18

features that may belong to 2 different classes.

Table I shows the runtime of original k-NN version (Sequen-

tial), the runtime of distributed k-NN version (kNN-IS) and

the speed up achieved with the Spark-based implementation.

Both runtimes are displayed in seconds. From this table, it can

be concluded that kNN-IS provides the necessary scalability

to handle big data problems without losing the exact results

reported by the original k-NN algorithm.

Figure 2 presents the accuracy for k parameter equal to 1,

3, 5 and 7 versus the percentage of noise data.

TABLE I
SPEED UP BETWEEN SEQUENTIAL K-NN AND KNN-IS APPROACHES.

NUMBER OF MAPS SET TO 256

k Sequential kNN-IS Speed up
1 3,258,848.81 1,900.03 1,715.14
3 3,259,619.49 2,615.01 1,246.20
5 3,265,185.90 2,273.63 1,436.10
7 3,325,338.14 2,372.41 1,401.67

Therefore, it is clear that noisy data must be treated in

order to improve the accuracy. Nevertheless, there is a lack

of methods to preprocess noisy data in big data problems,

where the runtime matters.

2http://archive.ics.uci.edu/ml/

Fig. 2. Influence of noisy data on the k-NN method for big datasets

TABLE II
DATA WITH MVS PROPERTIES

Dataset #Inst. #Atts. #Cl. %MV % Inst. with MV

Wisconsin 699 10 2 0.23 2.29

Credit 689 16 2 0.61 5.37

Autos 205 26 6 1.11 22.44

Dermatology 365 35 6 0.06 2.19

Sponge 76 46 12 0.63 28.95

Bands 540 40 2 4.63 48.7

Horse-colic 368 24 2 21.82 98.1

Audiology 226 71 24 1.98 98.23

Hepatitis 155 20 2 5.39 48.39

Ozone 2534 73 2 8.07 27.11

B. A case of study: Missing values imputation

In this section, we study the influence of MVs to perform

a proper classification, and how the KNNI algorithm may be

used to successfully impute MVs. Part of this study comes

from our previous paper in [17].

For this experiment, we take 10 small datasets from UCI

Machine learning repository. In all the experiments, we have

adopted a 10-fold cross-validation model. Table II summarises

the properties of the selected datasets. It presents for each data-

set the number of Instances (#Inst.), the number of attributes

(#Atts.), the number of classes (#Cl.), the total percentage of

MVs (% MV) and the percentage of instances with at least

one MV (% Inst. with MV).

To analyse the validity of the imputation produced by the

KNNI algorithm, we compare it with:

1) Example deletion or Ignore Missing (IM). All instances

with at least one MV are removed from the dataset.

2) Most Common Attribute Value for Symbolic Attributes,

and Global Average Value for Numerical Attributes

(MC). For nominal attributes, the MV is replaced with

the most common attribute value, and numerical values

are replaced with the average of all values of the

corresponding attribute.

To show that the preprocessing performed by KNNI goes

beyond the improvement of the k-NN rule, we test the different

imputation mechanisms on three different classifiers: one

nearest neighbour (1-NN) , decision trees (C4.5) and Support

861862862862862

TABLE III
MISSING VALUES IMPUTATION RESULTS

1-NN C4.5 SVM

Datasets IM KNNI MC IM KNNI MC IM KNNI MC

Wisconsin 95.90 95.42 96.13 94.73 93.71 94.14 96.77 96.57 96.71

Credit 81.02 80.13 80.27 84.70 84.91 84.62 86.02 84.77 84.77

Autos 76.44 77.02 76.48 80.93 82.19 80.74 72.81 71.33 69.53

Dermatology 92.71 92.86 92.86 93.53 93.42 93.42 96.94 97.00 97.00

Sponge 82.86 80.54 81.96 63.14 65.89 65.89 86.29 85.36 85.36

Bands 72.47 73.33 72.78 64.62 69.44 69.34 75.36 80.37 80.74

Horse-colic 40.00 81.53 80.68 40.00 83.41 82.60 40.00 82.58 82.33

Audiology 20.00 78.79 74.80 0.00 78.42 78.20 20.00 79.29 78.44

Hepatitis 81.65 82.00 80.71 82.98 76.79 80.04 82.84 80.67 81.38

Ozone 91.50 92.62 92.19 91.12 91.71 90.81 93.05 93.69 93.69

Average 73.45 83.42 82.89 69.58 81.99 81.98 75.01 85.16 84.99

Vector Machines (SVM). Parameter configuration for these

classifier is as in [17].
Table III collects the obtained results classifying the test

set with the different classifier and imputation techniques. The

average result for each pair classifier, imputation can be found

in the last row in order to analyse the global behaviour.
According to this table, we can see that IM reports the

lowest accuracy for the three classifiers, while both MVs

imputation mechanisms seem to be clearly better than ignore

them. Moreover, the imputation performed by the KNNI

algorithm systematically provides the best results for every

single classifier. This shows how the preprocessing capabilities

of this model go beyond improving the k-NN algorithm.
However, the use of KNNI in the big data context is still an

under-explored area. It has to handle the same problems that

we defined in Section II-A for the standard k-NN algorithm:

memory consumption and runtime. In addition, the distance

function has restrictions because of the missing values, com-

plicating the parallelisation process.

C. A case of study: Instance Reduction based on k-NN
Rather than tackling directly the original training data with

a classifier, instance reduction techniques will reduce the

size of the input data to later classify more efficiently and

even more effectively. In [25], the scheme MRPR allows any

instance reduction model to be applied in big datasets. Here,

we show some results that illustrate the benefits of applying

such scheme in terms of runtime and storage requirements.
For this study, we take the Poker-Hand dataset from UCI

repository, which consists of 1 million instances and 10

attributes. Again, we apply a 10 fold cross validation. We se-

lected a number of representative variety of instance reduction

methods: LVQ3, FCNN, DROP3, RSP3 and SSMASFLSDE,

which possess different characteristics (See [25] for more

details). These methods are used within the big data framework

MRPR to quickly handle this dataset. After the preprocessing

stage, the resulting reduced set is used by a k-NN algorithm

(k = 1) as training set in order to classify the test set.
Table IV summarises the results obtained with all the con-

sidered instance reduction techniques. It shows test accuracy,

reduction rate obtained (comparing the resulting preprocessed

set and the original training set), runtime in seconds. For each

one of these measures, average (Avg.) and standard deviation

(Std.) results are collected. In addition, the required time to

classify the entire test set using the resulting preprocessed

dataset. As a baseline, we include the classification done with

the k-NN algorithm (k = 1), using the whole TR set to

classify all the instances of TS.

Figure 3 depicts the data storage reduction (in Megabytes)

on this dataset for each of the instance reduction techniques

used.

Fig. 3. Storage requirements reduction

We can observe how all the analysed instance reduction

techniques provide a great reduction rate which results in high

reduction of storage requirements and classification time of

test instances. In Figure 3, we can check the significant reduc-

tion in Megabytes required to store the training. Nevertheless,

the main goal of instance reduction techniques is to reduce

the space requirements without losing accuracy. In Table IV,

we can see that none of the preprocessing methods are losing

that much accuracy w.r.t to the baseline algorithm (1-NN).

Actually, some of them are able to obtain better performance

as they have possibly removed noisy and redundant examples.

We can also notice that the runtime required to do the

preprocessing varies from one model to another. Specially, best

performing approaches may take a long time to produce an ap-

862863863863863

TABLE IV
INSTANCE REDUCTION RESULTS WITH DIFFERENT METHODS INCORPORATED IN MRPR (64 MAPPERS - POKER-HAND DATASET)

Test Reduction Time Clasif.

AccTst StdTst AvgRed StdRed AvgTime StdTime Time.

1-NN 0.5001 0.0011 0.0000 0.0000 0.0000 0.0000 48760.8242

LVQ3 0.4918 0.0012 99.3811 0.0067 83.7830 4.8944 273.4192

FCNN 0.4862 0.0006 72.5604 0.0080 3207.8540 37.2208 9854.8956

DROP3 0.5011 0.0005 92.3467 0.0043 198.1450 5.2750 1811.0866

RSP3 0.5107 0.0010 84.3655 0.0189 1448.4272 60.5462 5741.6588

SSMASFLSDE 0.5181 0.0015 99.1413 0.0217 14419.3926 209.9481 374.8814

propriate reduced set. In practice, however, the preprocessing

process would only need to be carried out once.

V. CONCLUSIONS

In this work, we have discussed the influence of the well-

known k-nearest neighbour algorithm to transform big datasets

into smart datasets.

After stating the main drawbacks of the standard k-NN

algorithm, we have analysed how to enable this technique

to manage large amounts of data by means of big data

technologies. Then, we have covered how the main weaknesses

of this technique have been used in the specialised literature

to obtain cleaner (smart) data. Concretely, we have shown k-

NN based strategies to correct data imperfection (noisy and/or

missing values), and its role to perform data reduction.

From the studies presented in this work, we can conclude

that the k-NN algorithm is a very promising technique to

obtain smart data from big data. As future work, we consider

the use of k-NN to deal with data imperfection in big datasets.

ACKNOWLEDGEMENT

This work has been partially supported by the Spanish

National Research Project TIN2014-57251-P. J. Maillo holds

FPU scholarships from the Spanish Ministry of Education.

REFERENCES

[1] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498,
no. 7453, pp. 255–260, Jun. 2013.

[2] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, vol. 6, no. 1, pp. 37–66, 1991.

[3] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on big data,” Information Sci-
ences, vol. 275, pp. 314 – 347, 2014.

[4] F. Iafrate, “A journey from big data to smart data,” in Digital Enterprise
Design & Management: Proceedings of the Second International Con-
ference on Digital Enterprise Design and Management DED&M 2014,
Cham, 2014, pp. 25–33.

[5] A. Lenk, L. Bonorden, A. Hellmanns, N. Roedder, and S. Jaehnichen,
“Towards a taxonomy of standards in smart data,” in Proceedings of the
2015 IEEE International Conference on Big Data. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 1749–1754.

[6] S. Garcı́a, J. Luengo, and F. Herrera, Data Preprocessing in Data
Mining. Springer Publishing Company, Incorporated, 2014.

[7] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27,
1967.

[8] C. Zhang, F. Li, and J. Jestes, “Efficient parallel knn joins for large data
in mapreduce,” in Proceedings of the 15th International Conference on
Extending Database Technology. New York, NY, USA: ACM, 2012,
pp. 38–49.

[9] K. Sun, H. Kang, and H.-H. Park, “Tagging and classifying facial
images in cloud environments based on kNN using mapreduce,” Optik
- International Journal for Light and Electron Optics, vol. 126, no. 21,
pp. 3227 – 3233, 2015.

[10] J. Dean and S. Ghemawat, “Map reduce: A flexible data processing
tool,” Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[11] J. Maillo, S. Ramirez, I. Triguero, and F. Herrera, “kNN-IS: An iterative
spark-based design of the k-nearest neighbors classifier for big data,”
Knowledge-Based Systems., vol. in press, 2016.

[12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation, 2012, pp. 1–14.

[13] S. Garcı́a, J. Derrac, J. Cano, and F. Herrera, “Prototype selection for
nearest neighbor classification: Taxonomy and empirical study,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 3, pp. 417–435, 2012.

[14] I. Triguero, J. Derrac, S. Garcı́a, and F. Herrera, “A taxonomy and
experimental study on prototype generation for nearest neighbor clas-
sification,” IEEE Transactions on Systems, Man, and Cybernetics–Part
C: Applications and Reviews, vol. 42, no. 1, pp. 86–100, 2012.

[15] H. Liu and H. Motoda, Eds., Computational Methods of Feature Selec-
tion, ser. Chapman & Hall/Crc Data Mining and Knowledge Discovery
Series, 2007.

[16] S. Garcia, J. R. Cano, and F. Herrera, “A memetic algorithm for evolu-
tionary prototype selection: A scaling up approach,” Pattern Recognition,
vol. 41, no. 8, pp. 2693 – 2709, 2008.

[17] J. Luengo, S. Garcı́a, and F. Herrera, “On the choice of the best
imputation methods for missing values considering three groups of
classification methods,” Knowledge and Information Systems, vol. 32,
no. 1, pp. 77–108, 2012.

[18] G. Batista and M. Monard, “An analysis of four missing data treatment
methods for supervised learning,” Applied Artificial Intelligence, vol. 17,
no. 5, pp. 519–533, 2003.

[19] J. Maillo, I. Triguero, and F. Herrera, “A mapreduce-based k-nearest
neighbor approach for big data classification,” in 9th International
Conference on Big Data Science and Engineering, 2015, pp. 167–172.

[20] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on System, Man and Cybernetics, vol. 2,
no. 3, pp. 408–421, 1972.

[21] J. S. Sánchez, R. Barandela, A. I. Marqués, R. Alejo, and J. Badenas,
“Analysis of new techniques to obtain quality training sets,” Pattern
Recognition Letters, vol. 24, no. 7, pp. 1015–1022, 2003.

[22] A. Navot, L. Shpigelman, N. Tishby, and E. Vaadia, “Nearest neighbor
based feature selection for regression and its application to neural
activity,” in Advances in Neural Information Processing Systems 18.
MIT Press, 2006, pp. 995–1002.

[23] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 4, pp. 606–626, Aug 2016.

[24] D. Peralta, S. del Rio, S. Ramirez-Gallego, I. Triguero, J. M. Benitez,
and F. Herrera, “Evolutionary feature selection for big data classification:
A mapreduce approach,” Mathematical Problems in Engineering, 2016,
article ID 246139.

[25] I. Triguero, D. Peralta, J. Bacardit, S. Garcı́a, and F. Herrera, “MRPR:
A mapreduce solution for prototype reduction in big data classification,”
Neurocomputing, vol. 150, pp. 331–345, 2015.

863864864864864

