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Abstract

Ant Colony Optimization (ACO) is a recent metaheuristic method that
is inspired by the behavior of real ant colonies. In this paper, we review the
underlying ideas of this approach that lead from the biological inspiration
to the ACO metaheuristic, which gives a set of rules of how to apply ACO
algorithms to challenging combinatorial problems. We present some of the
algorithms that were developed under this framework, give an overview of
current applications, and analyze the relationship between ACO and some of
the best known metaheuristics. In addition, we describe recent theoretical
developments in the field and we conclude by showing several new trends and
new research directions in this field.

1 Introduction

Complex combinatorial optimization problems arise in many different fields such
as economy, commerce, engineering, industry or medicine. However, often these
kinds of problems are very hard to solve in practice. This inherent difficulty of
solving such problems is captured in theoretical computer science by the fact that
many of them are known to be A"P-hard, which means that there is no algorithm
known for solving them in polynomial time [40].

Still, many of these problems have to be solved in a huge number of practical
settings and therefore a large number of algorithmic approaches were proposed
to tackle them. The existing techniques can roughly be classified into exact and
approximate algorithms. FExact algorithms try to find an optimal solution and
to prove that the solution obtained is actually an optimal one; these algorithms
include techniques such as backtracking, branch and bound, dynamic programming,
etc. [75, 10]. Because exact algorithms show poor performance for many problems,
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several types of approximate algorithms were developed that provide high quality
solutions to combinatorial problems in short computation time.

Approximate algorithms can be classified into to main types: construction algo-
rithms and local search algorithms. The former are based on generating solutions
from scratch by adding solution components step by step. The best known example
are greedy construction heuristics [10]. Their advantage is speed: they are typi-
cally very quick and, in addition, often return reasonably good solutions. However,
these solutions are not guaranteed to be optimal with respect to small local changes.
Therefore, a typical approach is to further improve the solutions returned by greedy
heuristics by a local search. Local search algorithms repeatedly try to improve the
current solution by movements to (hopefully better) neighboring solutions. The
simplest case are iterative improvement algorithms: if in the neighborhood of the
current solution s, a better solution s’ is found, it replaces the current solution
and the search is continued from s'; if no better solution is found, the algorithm
terminates in a local optimum.

Unfortunately, iterative improvement algorithms may become stuck in poor
quality local optima. To allow for a further improvement in solution quality, in
the last two decades the research in this field has moved attention to the design of
general-purpose techniques for guiding underlying, problem-specific construction or
local search heuristics. These techniques are often called metaheuristics [74, 41, 93]
and they consist of concepts that can be used to define heuristic methods. In other
words, a metaheuristic can be seen as a general algorithmic framework which can
be applied to different (combinatorial) optimization problems with relatively few
modifications if given some underlying, problem specific heuristic method. In fact,
metaheuristics are now widely recognized as the most promising approaches for
attacking hard combinatorial optimization problems [2, 67, 79].

Metaheuristics incorporate concepts from very different fields such as genet-
ics, biology, artificial intelligence, mathematics and physics, and neuro-sciences,
among others. Examples of metaheuristics include simulated annealing [1, 55],
tabu search [42], iterated local search [57], variable neighborhood search algorithms
[51], greedy randomized adaptive search procedures (GRASP) [34, 35], and evo-
lutionary algorithms [4, 43, 52]. A rather recent metaheuristic is ant colony opti-
mization (ACO), which is inspired by shortest path searching behavior of various
ant species. However, since the initial work of Dorigo, Maniezzo, and Colorni on
Ant System [28], ACO is now quickly becoming a mature research field: a large
number of authors have developed more sophisticated models that were used to
successfully solve a large number of complex combinatorial optimization problems
and theoretical insights into the algorithm are now becoming available.

This paper reviews the basis of ACO algorithms. We first present the behavior
of real ant colonies, which inspired ACO, in Section 2. Next, the transition from
real to artificial ants is described in Section 3; there we discuss the kinds of problems
solved by ACO, we summarize the similarities and differences between natural and
artificial ants and the generic operation mode of an ACO algorithm, and finally
indicate the required steps to solve a combinatorial optimization problem by ACO.
Section 4 describes several of the existing ACO algorithms, while their applications
are reviewed in Section 5. The relationship between ACO and other metaheuristics
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is analyzed in Section 6, and theoretical aspects of ACO are addressed in Section
7. Finally, Section 8 discusses some new trends in ACO and Section 9 presents the
concluding remarks.

2 Natural ant colonies

Ants are social insects that live in colonies and, because of their collaborative
interaction, they are capable of showing complex behaviors and to perform difficult
tasks from an ant’s local perspective. A very interesting aspect of the behavior of
several ant species is their ability to find shortest paths between the ants’ nest and
the food sources. This fact is specially noticeable having in mind that in many ant
species ants are almost blind, which avoids the exploitation of visual clues.

While walking between their nest and food sources, some ant species deposit a
chemical called pheromone (an odorous substance). If no pheromone trails are avail-
able, ants move essentially at random, but in the presence of pheromone they have
a tendency to follow the trail. In fact, experiments by biologists have shown [78, 44]
that ants probabilistically prefer paths that are marked by a high pheromone con-
centration. In practice, choices between different paths occur when several paths
intersect. Then, ants choose the path to follow by a probabilistic decision biased
by the amount of pheromone: the stronger the pheromone trail, the higher its
desirability. Because ants in turn deposit pheromone on the path they are follow-
ing, this behavior results in a self-reinforcing process leading to the formation of
paths marked by high pheromone concentrations. This behavior also allows ants
to identify shortest paths between their nest and a food source [44].!

How this mechanism allows the ants to reach shortest paths is illustrated in
Figure 1. Initially, there is no pheromone trail on the environment and, when the
ants arrive at an intersection, they randomly choose one of the branches. How-
ever, as ants are traveling, the most promising paths receive a greater amount of
pheromone after some time. This is due to the fact that, because these paths are
shorter, the ants following them are able to reach the goal (i.e., the food) quicker
and to start their return-trip earlier. Since on the shorter branch already a slightly
stronger pheromone trail exists, the ants’ decision is biased towards the shorter
branch, which, thus, receives a larger proportion of the pheromone of the returning
ants than the longer branch. This process finally results in an increasingly stronger
bias towards the shorter branch and, in the end, to convergence to the shortest.

The latter procedure is complemented in the natural environment by the fact
that the pheromone evaporates after some time. This way, less promising paths
progressively loose pheromone because of being visited by less and less ants. How-
ever, several biological studies show that the pheromone trails are very persistent
(the pheromone can stay from several hours to several months depending on as-
pects such as the ant species, the floor type, ... [9]), thus making less significant
the influence of the evaporation in the shortest path searching behavior.

I Note that ants only communicate indirectly, through modifications of the physical environ-
ment they perceive. This form of communication is called artificial stigmergy in [25].
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Figure 1: Emergent behavior of the colony that ends by obtaining the shortest
path between two points (mass recruitment). Based on the figure in [9]

In [9], several experiments are reported showing that the mass recruitment in
Nature is restrictive since, as a result of the long persistence of the pheromone, it
is difficult that ants forget a path with a high level of pheromone, although they
have found a shorter one. Notice that, if this behavior is directly translated into
the computer to design a search algorithm, we can get an algorithm quickly getting
stuck in local optima. We will come back to this issue later.

3 From natural ants to the Ant Colony Optimiza-
tion metaheuristic

ACO algorithms take inspiration from the behavior of real ant colonies to solve
combinatorial optimization problems. They are based on a colony of artificial ants,
that is, simple computational agents that work cooperatively and communicate
through artificial pheromone trails.

ACO algorithms are essentially construction algorithms: in each algorithm iter-
ation, every ant constructs a solution to the problem by traveling on a construction
graph. Each edge of the graph, representing the possible steps the ant can make,
has associated two kinds of information that guide the ant movement:

e Heuristic information, which measures the heuristic preference of moving
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from node r to node s, i.e., of traveling the edge a,s. It is denoted by 7,.s.
This information is not modified by the ants during the algorithm run.

(Artificial) pheromone trail information, which measures the “learned desir-
ability” of the movement and mimics the real pheromone that natural ants
deposit. This information is modified during the algorithm run depending on
the solutions found by the ants. It is denoted by 7.

This section introduces the steps leading from real ants to ACO. It should be
noted for the following that ACO algorithms present a double perspective:

3.1

On the one hand, they are an abstraction of some behavioral patterns of
natural ants related to the shortest path searching behavior.

On the other hand, they include several features that do not have a natural
counterpart, but that allow to develop algorithms for obtaining good solutions
to the problem tackled (for example, the use of heuristic information to guide
the ant movement).

Kinds of problems solved by ACO

The type of problems being solved by artificial ants belongs to the group of (con-
strained) shortest path problems that can be characterized by the following aspects
(we follow mainly the presentation in [25] and [31]):

There is a set of constraints ) defined for the problem under solution.
There is a finite set of components N = {ny, na,...,n;}.

The problem presents several states defined upon ordered component se-
quences 0 =< Ty, Mgy« -y My, > (< T,8,...,u,... > to simplify) over the
elements of N. If A is the set of all possible sequences, we denote by A the set
of feasible (sub)sequences with respect to the constraints 2. The elements in
A define the feasible states. |0] is the length of a sequence 4, i.e., the number
of components in the sequence.

There is a neighborhood structure defined as follows: d5 is a neighbor of ¢§; if
(i) both §; and 02 belong to A, (ii) the state do can be reached from d; in
one logical movement, i.e., if r is the last component of the sequence d;, there
must exist a component s € N such that §, =< d;,s >, i.e., there exists a
valid transition between r and s. The feasible neighborhood of §; is the set
containing all sequences 8, € A; if d, ¢ A, we say that &, is in the infeasible
neighborhood of ;.

A solution S is an element of A verifying all the problem requirements.
There is a cost C(S) associated to each solution S.

In some cases, a cost or an estimate of the cost may be associated to states.
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As said, all the previous characteristics hold in combinatorial optimization prob-
lems that can be represented in the form of a weighted graph G = (N, A), where
A is the set of edges that connects the set of components N. The graph G is also
called construction graph G.2 Hence, we have that

e the components n, are the nodes of the graph,

e the states § (and hence the solutions S) correspond to paths in the graph,
i.e., sequences of nodes or edges,

e the edges of the graph, a,s, are connections/transitions defining the neigh-
borhood structure. d, =< d;1,s > is a neighbor of 4; if node r is the last
component of §; and edge a,s exists in the graph,

e there may be explicit transition costs c,s associated to each edge, and

e the components and connections may have associated pheromone trails 7,
which represent some form of indirect, long term memory of the search pro-
cess, and heuristic values 7, which represent some heuristic information avail-
able on the problem under solution.

3.2 The artificial ant

The artificial ant is a simple, computational agent that tries to build feasible solu-
tions to the problem tackled exploiting the available pheromone trails and heuristic
information. However, if necessary, it may also build infeasible solutions that may
be penalized depending on the amount of infeasibility. It has the following proper-
ties [25, 31]:

e It searches minimum cost feasible solutions for the problem being solved.

e It has a memory L storing information about the path followed until that
moment, i.e., L stores the generated sequence. This memory can be used to:
(i) build feasible solutions, (ii) evaluate the generated solution, and (iii) to
retrace the path the ant has followed.

e It has an initial state d;nitiar, that usually corresponds to a unitary sequence,
and one or more termination conditions ¢ associated.

e It starts in the initial state and moves towards feasible states, building its
associated solution incrementally.

e When it is in a state d, =< d,_1,7 > (i.e., it is located in node r and has
previously followed the sequence 6,1 ), it can move to any node s of its feasible
neighborhood N (r), defined as N'(r) = {s | (a,s € A) and (< 6,,s > € A)}.

2 As said in [31], the set of edges may fully connect the components. In this case, the imple-
mentation of the constraints is fully integrated into the construction policy of the ants.
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e The movement is made by applying a transition rule, which is a function of
the locally available pheromone trails and heuristic values, the ants private
memory, and the problem constraints.

e When, during the construction procedure, an ant moves from node r to s, it
can update the pheromone trail 7,.; associated to the edge a,s. This process
is called online step-by-step pheromone trail update.

e The construction procedure ends when any termination condition is satisfied,
usually when an objective state is reached.

e Once the solution has been built, the ant can retrace the traveled path and
update the pheromone trails on the visited edges/components by means of a
process called online delayed pheromone trail update.

This way, the only communication mechanism among the ants is the data
structure storing the pheromone levels of each edge/component (shared mem-

ory).

3.3 Similarities and differences between natural and artifi-
cial ants

Real and artificial ant colonies share a number of characteristics. The most impor-
tant ones can be summarized as follows (see [26] for a more detailed discussion):

e Use of a colony of individuals that interact and collaborate to solve a given
task.

e Both, natural and artificial ants modify their “environment” through stig-
mergic communication based on pheromones. In the case of artificial ants,
the (artificial) pheromone trail is a numeric information which is only locally
available.

e Both, natural and artificial ants share a common task: the search of the short-
est path (iterative construction of a minimum cost solution) from an origin,
the ant nest (initial decision), to some goal state, the food (last decision).

e Artificial ants build the solutions iteratively by applying a local stochastic
transition policy to move between adjacent states, as real ants do.

However, these characteristics alone do not allow to develop efficient algorithms
for hard combinatorial problems. Therefore, artificial ants live in a discrete world
and have additional capabilities:

e Artificial ants can make use of heuristic information (and not only pheromone
trail information) in the stochastic transition policy they apply.

e They have a memory that stores the path followed by the ant.
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e The amount of pheromone deposited by the artificial ants is a function of
the quality of the solution found by each of them.®> A major difference also
concerns the timing of the pheromone deposit. Artificial ants usually only
deposit pheromone after generating a complete solution.*

e As said in Section 2, pheromone evaporation in ACO algorithms is different
than in nature, since the inclusion of an evaporation mechanism is a key
question to avoid the algorithm getting stuck in local optima. Pheromone
evaporation allows the artificial ant colony to softly forget its past history
and to direct its search towards new space regions. This avoids a premature
convergence of the algorithm to local optima.

e In order to improve the efficiency and efficacy of the system, ACO algorithms
can be enriched with additional capabilities. Examples are the ability to look
further than the next transition ( “lookahead”) [68], local optimization [27, 87]
and “backtracking” (whose use is not very extended), or so-called candidate
list which contain a set of the most promising neighbor states [27, 25] to
improve the efficiency of the algorithm.

3.4 Operation mode and generic structure of an ACO algo-
rithm

As seen in the previous sections, the basic operation mode of an ACO algorithm
is as follows: the m (artificial) ants of the colony move, concurrently and asyn-
chronously, through adjacent states of a problem (that can be represented in the
form of a weighted graph). This movement is made according to a transition rule
which is based on local information available at the components (nodes). This local
information comprises heuristic and memoristic (pheromone trails) information to
guide the search. By moving on the construction graph, ants incrementally build
solutions. Optionally, ants can release pheromone each time they cross an edge
(connection) while constructing solutions (online step-by-step pheromone trail up-
date). Once every ant has generated a solution, it is evaluated and it can deposit
an amount of pheromone which is a function of the quality of the ant’s solution
(online delayed pheromone trail update). This information will guide the search of
the other ants of the colony in the future.

Moreover, the generic operation mode of the ACO algorithm also includes
two additional procedures, pheromone trail evaporation and daemon actions. The
pheromone evaporation is triggered by the environment and it is used as a mecha-
nism to avoid search stagnation and to allow the ants to explore new space regions.
Daemon actions are optional actions —without a natural counterpart— to im-
plement tasks from a global perspective that is lacking to the local perspective
of the ants. The additional capabilities mentioned in Section 3.3 are included in

3 However, this difference is relative as some natural ant species deposit a higher quantity of
pheromone when they found a richer food source [9].

4 Nevertheless, as we will see in the following, few ACO algorithms also modify the pheromone
trails while constructing a solution.
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these actions. Examples are observing the quality of all the solutions generated
and releasing an additional pheromone amount only on the transitions/components
associated to some of the solutions, or applying a local search procedure to the so-
lutions generated by the ants before updating the pheromone trails. In both cases,
the daemon replaces the online delayed pheromone update and the process is called
offline pheromone trail update.

The structure of a generic ACO algorithm for is as follows [25, 26].

1 Procedure ACO Metaheuristic
2 parameter_initialization

3 while (termination criterionnot_satisfied)
4 schedule_activities

5 ants_generation_and_activity()

6 pheromone_evaporation()

7 daemon_actions() {optional}

8 end schedule_activities

9 end while
1

0 end Procedure

1 Procedure ants_generation and activity()

2  repeat in parallel for k=1 to m (number_of_ants)
3 new_ant (k)

4 end repeat in parallel

5 end Procedure

1 Procedure new_ant(ant_id)
2 initialize_ant(ant_id)
3 L = update_ant_memory()
4 while (current_state # target_state)
5 P = compute_transition probabilities(A,L,(2)
6 next_state = apply.ant_decision _policy(P,{2)
7 move_to_next_state(next_state)
if (on_line_step-by-step_pheromone update)

8 deposit_pheromone on_the visited_edge()
end if
9 L = update_internal _state()

10 end while
if (online delayed pheromone update)

11 for each visited edge
12 deposit_pheromone on_the visited_edge()
13 end for
end if
14 release_ant_resources(ant_id)

15 end Procedure
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The first step involves the initialization of the parameter values considered by
the algorithm. Among others, the initial pheromone trail value associated to each
transition, 7y, which is a small positive value that is typically the same for all con-
nections/components, the number of ants in the colony, m, and the weights defining
the balance between the heuristic and memoristic information in the probabilistic
transition rule have to be set.’

The main procedure of the ACO metaheuristic manages, by means of the sched-
ule_activities construct, the scheduling of the three components mentioned in this
section: (i) the generation and operation of the artificial ants, (ii) the pheromone
evaporation, and (iii) the daemon actions. The implementation of this construct
will define the existing syncronism between the three components. While the ap-
plication to “classical” A'P-hard (non distributed) problems typically uses rather
a sequential schedule, in distributed problems like network routing parallelism can
be easily and efficiently exploited.

As said, several components are either optional, such as the daemon actions, or
strictly dependent on the specific ACO algorithm, e.g., when and where the phero-
mone is deposited. Generally, the online step-by-step pheromone trail update and
the online delayed pheromone trail update are mutually exclusive and they both
are not usually present or missing at the same time (if both are missing, typically
the daemon updates the pheromone trails).

On the other hand, notice that the procedure update_ant _memory involves spec-
ifying the initial state from which the ant starts its path and storing the correspond-
ing component in the ant memory L. The decision on which will be that node (it
can be a random choice or a fixed one for the whole colony, a random choice or a
fixed one for each ant, etc.) depends on the specific application.

Finally, note that the procedures compute_transition_probabilities and
apply.-ant_decision_policy consider the current state of the ant, the current
values of the pheromones visible in that node and the problem constraints ) to
establish the probabilistic transition process to other feasible states.

3.5 Relation between ACO and ant algorithms

It is important to notice that the term ACO metaheuristic stands for the generic
operation mode of ACO. The name ACO algorithm is used to refer to any spe-
cific instance of the generic algorithm shown in Section 3.4, such as those that are
analyzed in the following Section 4. It should be noted that the ACO metaheuris-
tic comprises a very wide class of algorithms that can have very different shapes.
This is mainly due to the rather complex types of interactions possible through the
schedule_activities construct among the activities ants_generation_and act-
ivity (), pheromone_evaporation(), and daemon_actions(). It should be noted,
however, that in many applications ants typically move in a synchronized way and
the algorithmic outline of actual ACO algorithms follows a much simpler flow of
activities [84, 85]. The main reason for the greater generality of the ACO meta-
heuristic is that it was defined a posteriori as a common framework to already

5 This aspect will be analyzed in depth in the next section when introducing specific ACO
algorithms.
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existing applications to N'P-hard optimization problems and routing in telecom-
munications networks, an inherently dynamic problem (see also Section 5 for a
short overview). While these two types of applications are similar from a high-level
perspective, due to the very different application domains, the algorithms and, in
particular, the interactions among the three activities ants_generation_and _act-
ivity (), pheromone_evaporation(), and daemon_actions(), are very different
from a low-level perspective.

However, the ACO metaheuristic is not general enough to cover the full family
of ant algorithms, which can loosely be defined as approximate methods to solve
combinatorial problems based on characteristics of the generic behavior of natural
ants. Examples of ant algorithms not covered by ACO are Fast Ant System [92]
and Hybrid Ant System [39]. While the former is a construction algorithm based
on the operation of a single ant without using explicit pheromone evaporation, the
latter is a local search procedure that makes use of pheromone trail information to
generate the neighbor solutions. In [90], an experimental study of these two ant
algorithms for the TSP is presented.

3.6 Steps to solve a problem by ACO

From the currently known ACO applications, we can identify some guidelines of
how to attack problems by ACO. These guidelines can be summarized by the
following six design tasks:

1. Represent the problem in the form of sets of components and transitions or
by means of a weighted graph (see Section 3.1), that is traveled by the ants
to build solutions.

2. Appropriately define the meaning of the pheromone trails 7., i.e., the type
of decision they bias. This is a crucial step in the implementation of an ACO
algorithm and often, a good definition of the pheromone trails is not a trivial
task and it typically requires insight into the problem under the solution.

3. Appropriately define the heuristic preference to each decision that an ant has
to take while constructing a solution, i.e., define the heuristic information ,.¢
associated to each component or transition. Notice that heuristic information
is crucial for good performance if local search algorithms are not available or
can not be applied.

4. If possible, implement an efficient local search algorithm for the problem un-
der solution, because the results of many ACO applications to AP-hard com-
binatorial optimization problems show that the best performance is achieved
when coupling ACO with local optimizers [25, 31].

5. Choose a specific ACO algorithm (some of the available ones are described
in the next section) and apply it to the problem being solved, taking the
previous aspects into account.

6 Note that every ACO algorithm is also an ant algorithm but the opposite is not true.
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6. Tune the parameters of the ACO algorithm. A good starting point for pa-
rameter tuning is to use parameter settings that were found to be good when
applying the ACO algorithm to similar problems or to a variety of other prob-
lems. An alternative to time-consuming personal involvement in the tuning
task is to use automatic procedures for parameter tuning [6].

It should be clear that the above steps can only give a very rough guide to
the implementation of ACO algorithms. In addition, often the implementation is
an iterative process, where with some further insight into the problem and the
behavior of the algorithm, some initially taken choices need to be revised. Finally,
we want to insist in the fact that probably the most important of these steps are
the first four, because a poor choice at this stage typically can not be made up
with pure parameter fine-tuning.

4 Ant Colony Optimization models

Several algorithms have been proposed in the literature following the ACO meta-
heuristic. Among the available ACO algorithms for NP-hard combinatorial op-
timization problems are Ant System [28], Ant Colony System [27], Maz-Min Ant
System [88], Rank-based Ant System [12], and Best-Worst Ant System [20]. In the
following, we give a short description of these algorithms.” While Ant System
is mainly of historical interest because it was the first ACO algorithm, the other
four typically achieve much better computational results. A major omission in
our description is AntNet, a successful ACO algorithm for network routing. How-
ever, this algorithm is rather application specific and we refer to [24] for a detailed
description.

Notice that in the following we consider the case, where pheromones and heuris-
tic information are only attached to the connections, which is the case for many
applications of ACO to sequencing or assignment problems. It is straightforward
to extend the description to the case in which pheromones are associated to com-
ponents.

4.1 Ant System

Ant System (AS) [28], developed by Dorigo, Maniezzo and Colorni in 1991, was
the first ACO algorithm. Initially, three different variants, AS-density, AS-quantity
and AS-cycle, differing in the way in which the pheromone trails are updated, were
proposed. In the former two ones, ants release pheromone while building their
solutions (i.e., they apply an online step-by-step pheromone update), with the dif-
ference that the amount deposited in AS-density is constant while the one released
in AS-quantity directly depends on the heuristic desirability of the transition 7;;.
Finally, in AS-cycle, the pheromone deposit is done once the solution is completed
(online delayed pheromone update). This latter variant was the one performing

"For a more detailed description of these algorithms, including some comparisons of their
performance when applied to the traveling salesman problem, we refer to [25, 26, 30, 85].
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best and actually this is the variant that is now referred to as AS in the literature
(and in the remainder of this paper).

AS is characterized by the fact that the pheromone update is triggered once all
ants have completed their solutions and it is done as follows. First, all pheromone
trails are reduced by a constant factor, implementing in this way the pheromone
evaporation. Second, every ant of the colony deposits an amount of pheromone
which is a function of the quality of its solution. Initially, AS did not use any
daemon actions, but it is very straightforward to, for example, add a local search
procedure to refine the solutions generated by the ants.

Solutions in AS are constructed as follows. At each construction step, an ant k
in AS chooses to go to a next node with a probability that is computed as

[rrs]® [0rs]® .
pfs - { EuEN}? [Trw]® [Mru]?? if s S Nk (7')

0, otherwise

where N (r) is the feasible neighborhood of ant k£ when located at node r, and
«, B € R are two parameters that weight the relative importance of the pheromone
trail and the heuristic information. Each ant k& stores the sequence it has followed
so far and this memory Ly is, as explained before, exploited to determine Ny (r) in
each construction step.

As regards parameters a and £, their role is as follows: if @ = 0, those nodes
with better heuristic preference have a higher probability of being selected, thus
making the algorithm close to a classical probabilistic greedy algorithm (with mul-
tiple starting points in case ants are located in different nodes at the beginning of
each iteration). However, if § = 0, only the pheromone trails are considered to
guide the constructive process, which can cause a quick stagnation, i.e., a situation
where the pheromone trails associated to some transitions are significantly higher
than the remainder, thus making the ants always build the same solutions, usually
local optima. Hence, there is a need to establish a proper balance between the
importance of heuristic and pheromone trail information.

As said, the pheromone deposit is made once all ants have finished to construct
their solutions. First, the pheromone trail associated to every arc is evaporated by
reducing all pheromones by a constant factor:

Trs (]- - P) *Trs,

where p € (0,1] is the evaporation rate. Next, each ant retraces the path it has
followed (this path is stored in its local memory Lj) and deposits an amount of
pheromone A7k on each traversed connection:

k
Trs < Trs + AT, Ya,.s € Sk,

where A7 = f(C(Sk)), i.e., the amount of pheromone released depends on the
quality C(Sy) of the solution Sy of ant k.

To summarize the description of the AS, we will show the composition of pro-
cedure new_ant for this particular ACO algorithm:
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1 Procedure new_ant(ant_id)
2 k = ant_id; r = generate_initial state; Sy =1
b Lk =r

4 while (current_state # target_state)
5

6

7

ko [TFS]Q'[WN]B
for each s € Ni(r) do pf, = PN LR

next_state = apply._ant_decision policy(P,N(r))
r = next_state; S =< Sg,r >

8 _—
9 Ly=L,Ur
10 end while
{the pheromone_evaporation() procedure triggers and
evaporates pheromone in every edge ars: Tps = (1 —p) Trs}
11 for each edge a,; € S do

12 Trs = Trs + f(C(Sk))
13 end for
14 release_ant_resources(ant_id)

15 end Procedure

Notice that the empty line § is included to remark that no online step-by-step
pheromone update is made and that before the line 12, the pheromone evaporation
must have been applied by the daemon. In fact, this is one example, where the
schedule_activities construct interferes with the functioning of the single main
procedures of the ACO metaheuristic, as indicated on page 9.

Before concluding this section, it is important to notice that the creators of the
AS also proposed a typically better performing, extended version of this algorithm
called elitist AS [28]. In elitist AS, once the ants have released pheromone on
the connections associated to their generated solutions, the daemon performs an
additional pheromone deposit on the edges belonging to the best solution found
until that moment in the search process (this solution is also called global-best
solution in the following). The amount of pheromone deposited, which depends on
the quality of that global best solution, is weighted by the number of elitist ants
considered, e, as follows:

Trs < Trs + €+ f(C(Sglobalfbest)); vars S Sglobalfbest

4.2 Ant Colony System

Ant Colony System (ACS) [27] is one of the first successors of AS. It introduces
three major modifications into AS:

1. ACS uses a different transition rule, which is called pseudo-random propor-
tional rule: Let k be an ant located at a node r, go € [0,1] be a parameter,
and ¢ a random value in [0, 1]. The next node s is randomly chosen according
to the following probability distribution



A Iveview on tne ACU lvietaneuristic

If ¢ < qo:

Prs = A

)

1, ifs= - 1P
k { ) 1 S a’rg Hjl\/a)((r){T nru}

0, otherwise

else (¢ > qo):

Yuenkmral® na]??
0, otherwise

ko
Prs =

{ [ros]” (1] if 5 € Nj(r)

As can be seen, the rule has a double aim: when ¢ < ¢o, it exploits the
available knowledge, choosing the best option with respect to the heuris-
tic information and the pheromone trail. However, if ¢ > qo, it applies a
controlled exploration, as done in AS. In summary, the rule establishes a
trade-off between the exploration of new connections and the exploitation of
the information available at that moment.

2. Only the daemon (and not the individual ants) trigger the pheromone update,
i.e., an offline pheromone trail update is done. To do so, ACS only considers
one single ant, the one who generated the global best solution, Sgiopai—best
(although in early papers, an update based on the iteration-best ant was
considered as well [27], ACS almost always applies a global-best update).

The pheromone update is done by first evaporating the pheromone trails on
all the connections used by the global-best ant (it is important to notice
that in ACS, pheromone evaporation is only applied to the connections of the
solution that is also used to deposit pheromone) as follows:

Trs € (]- - P) *Trs, Vars € Sglobalfbest

Next, the daemon deposits pheromone by the rule:
Trs < Trs TP f(C(Sglobal—best)): Va,s € Sglobal—best

Additionally, the daemon can apply a local search algorithm to improve the
ants’ solutions before updating the pheromone trails.

3. Ants apply an online step-by-step pheromone trail update that encourages the
generation of different solutions to those yet found. Each time an ant travels
an edge a,s, it applies the rule:

Trse(l—QO)'Trs"'SD'TO,

where ¢ € (0,1] is a second pheromone decay parameter. As can be seen,
the online step-by-step update rule includes both, pheromone evaporation
and deposit. Because the amount of pheromone deposited is very small (in
fact, 7o is the initial pheromone trail value which is chosen in such a way
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that, in practice, it corresponds to a lower pheromone trail limit, i.e., by
the choice of the ACS pheromone update rules, no pheromone trail value
can fall below 79), the application of this rule makes the pheromone trail
on the connections traversed by an ant decrease.®. Hence, this results in an
additional exploration technique of ACS by making the connections traversed
by an ant less attractive to following ants and helps to avoid that every ant
follows the same path.

The procedures new_ant and daemon_actions (which in this case interacts with
the pheromone_evaporation procedure) for ACS are as follows:

1 Procedure new_ant(ant_id)

2 k = ant_id; r = generate_initial state; Sy =17
3 Lk =r
4 while (current_state # target_state)
5 for each s € Ni(r) do compute b.s = Tps - 12,
6 q = generate random value_in_[0,1]
if (¢ <=qo)
next_state = max (b5, Nj(r))
else
for each s € Ni(r) do
ko _ brs
brs = = 5.
wEN, (r)
next_state = apply ant decision policy(P,Ny(r))
end if
7 r = next_state; Sp =< Sg,r >
8 Trs:(l_(P)'Trs‘l'(P'TO
9 Ly =LyUr
10  end while
11 -—=
12 -—=
13 -—=
14 release_ant_resources(ant_id)

15 end Procedure

1 Procedure daemon_actions

2 for each S, do local_search(S;) {optional}
3 Securrent—best = best_solution (Sg)

4 if (better(scurrentfbestySglobalfbest))
5

6

Sglobalfbest = Scurrentfbest
end if

8 ACS is actually based on Ant-Q, an earlier algorithm proposed by Gambardella and Dorigo
[36] The only difference between ACS and Ant-Q is in the definition of the term 79 in the online
step-by-step update rule, which in Ant-Q is the discounted evaluation of the next state, set to
v -maxgen, (r)17rs }- However, experimental results suggested that ACS results in the same level
of performance and, because of its greater simplicity, it was preferred.
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7 for each edge a,s; € Sgiobai—best dO
{the pheromone evaporation() procedure triggers and
evaporates pheromone in edge a,s: Tps = (1 —p)-Tps}
8 Trs =Trs TP f(C(Sglobalfbest))
9 end for

10 end Procedure

4.3 Max-Min Ant System

Max-Min Ant System (MMAS) [89, 84, 88|, developed by Stiitzle and Hoos in
1996, is one of the best performing extensions of AS. It extends the basic AS in
the following aspects:

1. An offline pheromone trail update is applied, similar to ACS. After all ants
have constructed a solution, first every pheromone trail is evaporated:

Trs < (]- - P) “Trs,
and next pheromone is deposited according to:
Trs < Trs + f(C(Sbest)); Vars € Sbest

The best ant that is allowed to add pheromone may be the iteration-best
or the global-best solution. Experimental results have shown that the best
performance is obtained by gradually increasing the frequency of choosing
the global-best solution for the pheromone trail update [84, 88].

In addition, in MMAS typically the ants’ solutions are improved using local
optimizers before the pheromone update.

2. The possible values for the pheromone trails are limited to the range [Tymin,
Tmaz]. The chance of algorithm stagnation is thus decreased by giving each
connection some, although very small, probability of being chosen. In prac-
tice, heuristics exist for setting Ti,i, and Tp,q.. First, it can be shown that,
because of the pheromone evaporation, the maximal possible pheromone trail
level is limited to 7%,, = 1/(p- C(S*)), where S* is the optimal solution.
Based on this result, the global-best solution can be used to estimate 7,4, by
replacing S* with Sgiopai—pest in the equation for 75,,,. For 7,4, it is often
enough to choose it as some constant factor lower than 7,4, (see also [88] for

details on possible ways to define 7,,4,,).

As a means for further increasing the exploration of solutions, MMAS also
uses the occasional re-initialization of the pheromone trails [87, 84, 88].

3. Instead of initializing the pheromones to a small amount, in MMAS the
pheromone trails are initialized to an estimate of the maximum allowed
pheromone trail value (the estimate can be obtained by first generating some
solution S’ by a greedy construction heuristic and then replacing S’ in the

equation for 7% ,.). This leads to an additional diversification component
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in the algorithm, because at the beginning the relative differences of the
pheromone trails will not be very marked, which is different when initializing
the pheromone trails to some very small value.

The structure of procedure daemon_actions in MMAS is shown below:

1 Procedure daemon_actions

18
14

for each S;, do local_search(Sg)
Scurrent—best = best_solution (Sy)
if (best (Scur’r’entfbest; Sglobalfbest) )
Sglobal—best = Scurrent—best
end if
Sbest = deCiSion(Sglobalfbest;Scurrentfbest)
for each edge a,s5 € Spest do
Trs = Trs + 'f(C(Sbest))
if (775 < Timin) Trs = Tiin
end for
if (stagnation condition)
for each edge a,s do 7,5 = Tias

end if

15 end Procedure

4.4 Rank-based Ant System

The rank-based Ant System (AS,qnk) [12] is another extension of the AS proposed
by Bullnheimer, Hartl and Strauss in 1997. It incorporates the idea of ranking into
the pheromone update, which is again developed offline by the daemon as follows:

1. The m ants are ranked according to decreasing quality of their solutions:

’

(S.,...

,'S..), with S} being the best solution built in the current generation.

2. The daemon deposits pheromone on the connections passed by the o — 1 best,
ants (elitist ants). The amount of pheromone deposited directly depends on
the ant’s rank and on the quality of its solution.

3. The connections crossed by the global-best solution receive an additional
amount of pheromone which depends on the quality of that solution. This
pheromone deposit is considered to be the most important, hence, it receives
a weight of o.

This operation mode is put into effect by means of the following pheromone
update rule, which is applied to every edge once all the pheromone trails have been

evaporated:

where AT,?: — { f(C(Sglobalfbest))a if Qrs € Sglobalfbest

b k
Trs & Trs + 0 - ATI) + AT

)

0, otherwise
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T8

o—1 , . ,
Agrank — NZ::l(U - /1’) ’ f(C(Su))a if ars € SN
0, otherwise

Hence, the AS,..,r daemon procedure presents the following structure:

1 Procedure daemon_actions

2 for each S; do local_search(S;) {optional}

3 rank (Si,...,Sp) in decreasing order of solution
quality into (Sll,..., S;n)

4 if (best (S, Syiopat—best))

5 Sglobal—best - Si

6 end if

7 for p=1 to (¢ —1) do

8 for each edge a5 € S;L do

!

9 Trs = Trs + (0 — ) 'f(C(SN))
10 end for

11 end for

12 for each edge a,s € Syiobai—best do

13 Trs =Tps +0 - f(C(Sglobal—best))

14 end for

15 end Procedure

4.5 Best-Worst Ant System

Best-Worst Ant System (BWAS) [20], proposed by Cordén et al. in 1999, is an ACO
algorithm which incorporates evolutionary computation concepts.” It constitutes
another extension of AS, which uses its transition rule and pheromone evaporation
mechanism (the evaporation is applied to every transition as in AS, AS,.nr and
MMAS). Besides, as done in MMAS, BWAS always considers the systematic
exploitation of local optimizers to improve the ants’ solutions. At the core of
BWAS, the three following daemon actions are found:

1. The best-worst pheromone trail update rule, which reinforces the edges con-
tained in the global best solution. In addition, the update rule penalizes
every connection of the worst solution generated in the current iteration,
Scurrent—worst, that are not present in the global-best one through an ad-
ditional evaporation of the pheromone trails. Hence, BWAS update rule
becomes:

Trs < Trs + P f(C(Sglobal—best)): Va,,s € Sglobal—best:

Trs < (]- - P) “Trsy,  Vaps € Scurrent—worst and dpg € Sglobal—best

9 The relation between these two metaheuristics will be analyzed in Section 6.1.
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2. A pheromone trail mutation is performed to introduce diversity in the search
process. To do so, the pheromone trail associated to one of the transitions
starting from each node (i.e., each row of the pheromone trail matrix) is mu-
tated with probability P,, by considering any real-coded mutation operator.

The original BWAS proposal applied an operator altering the pheromone trail
of every mutated transition by adding or subtracting the same amount in
each iteration. The mutation range mut(it, T¢preshota), which depends on the
average of the pheromone trails in the transitions of the global best solution,
Tehreshold, 1S less strong in the early stages of the algorithm—when there is
no risk of stagnation—and stronger in the latter ones, when the danger of
stagnation is stronger:

T’ V. Trs + mUt(Zta Tthreshold); ifa=0
e Trs — mUt(Zt; Tthreshold); ifa=1

with a being a random value in {0,1} and it being the current iteration.

3. Asother ACO models, BWAS considers the re-initialization of the pheromone
trails when it gets stuck, which is done by setting every pheromone trail to
T0-

The BWAS daemon_actions procedure is as follows:

1 Procedure daemon_actions

2 for each S; do local_search(Sy)

3 Securrent—best = best_solution (Sg)

—4 if (best (Scur’r’entfbest; Sglobalfbest) )

5 Sglobalfbest = Scurrentfbest

6 end if

7 for each edge ays € Sgiobai—best do

8 Trs =Trs 0 f(C(Sglobal—best))

9 sum = sum + T,

10 end for

11 Tthreshold = \ngoizlrﬁbesd

12 Securrent—worst = worst_solution (Sg)
13 for each edge ars € Scurrentfworst and a,g ¢ Sglobalfbest do
14 Trs = (1= p) - Trs

15 end for

16 mut = mut(it,7preshold)
17 for each node/component r € {1,...,l} do

18 z = generate random value_in [0,1]

19 if (z<=P,)

20 s = generate random value_in [1,...,1]
21 a = generate_random value_in_[0,1]

22 if (a=0) 75 =75 + mut

23 else 7.4 = 7,5 - mut

24 end if
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25  end for

26  if (stagnation_condition)

27 for each edge a,s do 7, =79
28  end if

29 end Procedure

The interested reader can refer to the paper [19] for an analysis of the individual
performance of each of the three BWAS components and the different combinations
of them on the traveling salesman problem. In that study, it is shown that the
version of BWAS that includes all three components performs better than other
variants that include only a single component or a combination of two of the three
components in the most of the cases. A similar study was done for BWAS applied
to the quadratic assignment problem in [18]. Moreover, a new, well-performing
ACO model called Best-Worst Ant Colony System, which is based on introducing
the three BWAS components into the ACS, is proposed in [18].

5 Applications of Ant Colony Optimization

ACO algorithms have been applied to a large number of different combinatorial
optimization problems. Current ACO applications follow into two classes of appli-
cations. The first class of problems comprises A/P-hard combinatorial optimization
problems, for which classical techniques often show poor behavior. Characteristic
for almost all successful ACO applications to these problems is that ants are cou-
pled with local search algorithms that fine-tune the ants’ solutions. The second
class of applications comprises dynamic shortest path problems, where the problem
instance under solution changes at algorithm run-time. These changes may affect
the topology of the problem such as the availability of links etc. or, if the problem
topology is fixed, characteristics such as edge costs, vary with time. In this case
the algorithm has to adapt to the problem’s dynamics. This latter class comprises
applications of ACO to routing in telecommunication networks.

Instead of giving a detailed account of the various ACO applications, we shortly
describe the (early) historical development of the applications; for more extensive
overviews on applications of ACO we refer to [25, 26, 30, 31].

The first combinatorial problem tackled by an ACO algorithm was the traveling
salesman problem (TSP), because this problem is probably the best known instance
of an N"P-hard, constrained shortest path problem, thus, making it easy to adapt
the real ant’s behavior to solve it. Since the first application of AS in Dorigo’s
PhD dissertation in 1991, it became a common test-bed of several contributions
proposing better performing ACO models than AS [27, 88, 12, 20].

Chronologically, the next two applications were the quadratic assignment prob-
lem (QAP) [60, 28] (the best performing ACO algorithms for the QAP are de-
scribed in [88, 59]) and the job-shop scheduling problem [17] in 1994. Among the
next applications are the first network routing applications, starting in 1996 with
the work of Schoonderwoerd et al. [81] and the work on AntNet by Di Caro and
Dorigo [24]. Already in 1997, one year after the publication of the first journal
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article on ACO in 1996 [28], the number of ACO applications started to increase
strongly. Early applications from 1997 (although sometimes published later) in-
clude classical vehicle routing problems [11], sequential ordering [37], flow shop
scheduling [82], and graph coloring [21] problems. Since then, many different au-
thors have used the ACO meta-heuristic to solve a large number of combinatorial
optimization problems such as shortest common supersequence, generalized assign-
ment, set covering, multiple knapsack and constraint satisfaction problems, among
others. The interested reader can find a summary of available applications as of
end 2000 in [31]. Apart from the previous applications, ACO recently was used also
for machine learning purposes, concretely to the design of learning algorithms for
knowledge representation structures such as classical logic rules [76, 77], fuzzy logic
rules [15, 3, 16] and Bayesian networks [23, 22], showing very promising results.

Nowadays, ACO reaches state-of-the-art results for several of the problems to
which it was applied: QAP, sequential ordering, vehicle routing, scheduling, and
packet-switched network routing, among others. The available computational re-
sults for many other problems are often very good and close to state-of-the-art,
which is noteworthy, because many of these problems have already attracted a
huge amount of research effort. Besides, the ACO meta-heuristic is being applied
to novel real-world problems with very promising results (for an example, see the
application to design combinatorial logic circuits in this issue [62]).

6 Relation of ACO to other metaheuristics

ACO algorithms have several similarities with other general optimization, learning
and modeling approaches such as heuristic graph search, Monte Carlo simulation
methods and neural networks that are analyzed in [26]. Moreover, the ACO meta-
heuristic also shares several common aspects with other metaheuristics such as
evolutionary computation and Estimation of Distribution Algorithms, on the one
hand, and GRASP and multi-start local search, on the other hand.

6.1 Relation between ACO, Evolutionary Computation and
Estimation of Distribution Algorithms

As already noted in [26], there are similarities between the operation mode of
ACO algorithms and evolutionary algorithms such as the use of a population of
individuals encoding problem solutions that are stochastically generated.

One main difference is that in evolutionary computation, the knowledge about
the problem is contained in the current population, whilst in ACO it is stored
in the memoristic structure collecting the pheromone trails. However, there ex-
ists also a specific class of evolutionary algorithms, the so-called Estimation of
Distribution Algorithms (EDAs) [56], which, as ACO, are based on maintaining
a memoristic structure that represents a probability distribution defined on the
problem variables. This probability distribution is adapted at algorithm run-time
by generating solutions based on the current distribution that are in a second step
used to update the probability distribution. This process is repeated iteratively.
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The best known EDA algorithm, the Population-Based Incremental Learning
(PBIL) [5], is also the most similar to ACO algorithms [20], and specifically to
the ACS. PBIL deals with a probability array P = (p1,...,p,) of dimension n
equal to the number of problem variables, which encodes a probability distribution
representing a prototype for good quality solutions and which is used to generate a
population of possible solutions (binary arrays) in each iteration. This probability
array undergoes adaption during the algorithm run. In the basic PBIL model, it
is updated depending on the quality of the best solution generated in the current
iteration using an ACS-like offline pheromone update rule. On the other hand, the
components of P also suffer random mutations to avoid the chance of premature
convergence.

The similarities between ACO algorithms and PBIL were also analyzed by Mon-
marché et al. [71]. They presented a common framework, which they called Prob-
abilistic Search Metaheuristic, which also includes one further EDA model, the
Bit-Simulated Crossover [91]. Besides, Dorigo et al. have also studied similarities
between ACO and other techniques and they identified a larger group of algo-
rithms with common characteristics that they called Model-based Search [94] (see
also Section 7).

Finally, we should remind that the similarities between ACO and evolutionary
computation-EDAs have motivated the integration of some aspects of the latter into
ACQO algorithms to improve their performance. This is the case, in particular, for
BWAS (see Section 4.5). In fact, BWAS incorporates several EDA concepts, mainly
from PBIL, like the mutation of pheromone trails and the punishment (removal of
pheromone) by the worst solution of an iteration.

6.2 Relation between ACO, GRASP, and multi-start

Many metaheuristics for AP-hard combinatorial optimization problems implement
some form of a multi-start local search, where iteratively starting solutions for
a local search are generated. These metaheuristics include iterated local search
(ILS) [57], variable neighborhood search (VNS) [51], GRASP [34, 35], and memetic
algorithms (MA) [72]. In fact, many ACO algorithms also belong to this class of
metaheuristics.!® In this case, the operation mode of ACO algorithms can be
represented as follows:

While (not stopping condition) do
1. Probabilistic construction of solutions by a colony of ants.
2. Local optimization of these solutions.
3. Offline pheromone trail update.

A main difference between ACO and ILS, VNS, or MA is the way solutions
are generated. While ACO constructs solutions from scratch, ILS, VNS, and MA

10 Notice that this is true for most of the best performing ACO algorithms when applied to N'P-
hard problems, but not for ACO algorithms applied, for example, to routing in telecommunication
networks.
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modify existing solutions by the application of appropriate operators that, when
applied to one or several solutions, return a solution that represents a perturbation
of the initial solution(s). Additionally, ACO uses an explizit form of memory (in
the form of pheromone trails), which is typically not the case for the other three
metaheuristics.

However, ACO shares the particularity of solution construction with GRASP
that probabilistically constructs solutions and then applies local search to them. In
GRASP, this two-phase process is repeated many times and the best solution found
is returned. In the GRASP construction phase, at each construction step a candi-
date set is built by first ordering solution components according to some heuristic
information, and then including the most promising components (greedy compo-
nent). Next, a random decision is made among the components of the candidate
set, typically with all members of the candidate set having the same probability
of being selected (randomized component). A particularity of GRASP is that the
heuristic information at each step takes into account the already available partial
solution (adaptive component). From this description, it is clear that GRASP
and ACO are different. While ACO uses memoristic information on the algorithm
history provided by the pheromone trails, GRASP does not use such a type of
information to bias the construction process. On the other side, ACO does not
necessarily use heuristic information which is dependent on the partial solution,
which is always done by GRASP. However, using adaptive (dynamic) heuristic in-
formation was shown to improve ACO performance for several applications; we
refer to [31] for a discussion of this issue.

7 Theoretical developments

Current theoretical results on ACO concern mainly two aspects, (i) proofs on the
convergence behavior of ACO algorithms and (ii) the establishment of formally well
founded links between ACO algorithms and related algorithmic techniques.

Stiitzle and Dorigo have proven convergence properties for a class of ACO al-
gorithms called ACO,,,, [86]. Characteristic of algorithms in ACO,, ,, is that they
use an elitist pheromone update strategy and lower limits on the values of any
pheromone trail. For ACO,, . they proved that for any small constant € > 0 and
for a sufficiently large number of algorithm iterations ¢, the probability of finding at
least once an optimal solution is P*(t) > 1 — e and that this probability tends to 1
for ¢ — oo. The major importance of this result is that it applies to at least two of
the (experimentally) most successful ACO algorithms: ACS [27] and MMAS [88].

However, the first to proof convergence of a particular ACO algorithm, the so
called graph-based Ant System (GBAS), was Gutjahr [48]. He proved that (i) for
each € > 0, for a fixed p, and for a sufficiently large number of ants, the probability
P that a fixed ant constructs the optimal solution at iteration ¢ is P > 1 — € for
all t > to, with t9 = to(€) and (ii) for each € > 0, for a fixed number of ants, and
for an evaporation rate p sufficiently close to zero, the probability P that a fixed
ant constructs the optimal solution at iteration t is P > 1 — € for all ¢ > ¢y, with
to = to (6)

Tmin
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Yet, GBAS is an ACO algorithm which was never applied to any combinatorial
optimization problem so far. Nevertheless, from the description of the algorithm
and some calculations on parameter settings for low values of €, which are implied
by the theorem, the algorithm would result in an extremely slow progress towards
good solutions and therefore, most likely, it will not be relevant to ACO practice.

In a very recent paper, Gutjahr [49] extended the convergence results for GBAS
[48] to two variants of GBAS obtaining the same type of convergence results as for
Simulated Annealing [50]: convergence of the current solution to an optimal solu-
tion with probability one. This result is established for two GBAS variants with (i)
time-dependent pheromone evaporation and (ii) time-dependent lower pheromone
bounds.

There are a number of differences between the proofs for ACO, ., and GBAS.
The most important concerns the type of convergence proved. While for ACO, .
convergence in value is proven (that is, the algorithm will eventually find the op-
timal solution), for GBAS Gutjahr proves convergence in solution (that is, the
algorithm will converge to a situation in which it generates the optimal solution
over and over again). It is clear that for practical purposes it is enough to proof
convergence in value, because basically all metaheuristics return the best solution
found during the search process and therefore it is enough to generate the optimal
solution at least once.

Formal relationships between ACO algorithms and stochastic gradient descent
(SGD), a technique which has been extensively used in machine learning [80, 70],
are established by Meuleau and Dorigo [66]. They show that a variant of AS
can be interpreted as a SGD algorithm, which performs a gradient descent in the
space of the pheromone trails. As mentioned in Section 6.1, Dorigo et al. [32]
give an interpretation of ACO as a model-based search method. These kinds of
techniques are characterized by the fact that candidate solutions are generated by a
parameterized probabilistic model that is updated after each iteration by previously
seen solutions. This feedback is used to bias the probability distribution for the
following iterations. In this framework, links between ACO and EDAs, SGD, the
cross-entropy method, and model-based genetic algorithms [73] are established.

8 New trends in Ant Colony Optimization

Two still very active research directions in ACO are the the application of ACO al-
gorithms to challenging combinatorial optimization problems and the development
of new, better performing algorithmic variants of ACO algorithms. In particular,
the application of ACO to a steadily increasing variety of (in most cases N'P-hard)
application problems accounts for the largest part of new contributions. Most
noteworthy regarding the various applications are papers concerned with multi-
objective problems and those to dynamic optimization problems. In multi-objective
optimization problems, several competing objectives have to be optimized. First
approaches to multi-objective optimization include the two-colony approach by
Gambardella, Taillard and Agazzi to vehicle routing problems with time win-
dows, where two hierarchically ordered objectives are considered [38]. Mariano and
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Morales considered the application of ACO to a multi-objective optimization prob-
lem arising in the design of water irrigation networks. In their approach one colony
is assigned to each objective and the objectives are ranked by importance [61].
Iredi, Merkle and Middendorf explored the application of ACO for finding Pareto-
optimal solutions to a bi-criterion single-machine scheduling problem [53].

Some of the greatest successes of ACO algorithms so far were obtained in appli-
cations to highly dynamic problems like those to telecommunications routing with
AntNet by Di Caro and Dorigo being the best performing variant [24]. For such ap-
plications, ACO algorithms are well suited, because they match very well the prob-
lem characteristics like stochastic state transitions and that only local information
is available. Another research direction in dynamic problems is the application of
ACO to time-varying variants of classical AP-hard optimization problems like the
TSP or the QAP. Examples are the papers by Guntsch and Middendorf [46, 45, 47]
and Eyckelhof and Snoek [33].

With respect to algorithmic techniques in general, a hot recent trend is the de-
velopment of hybrid techniques combining ideas from exact algorithms and meta-
heuristics. In ACO, one particular algorithms has actually be designed with as
such a hybrid: the Approximate Nondeterministic Tree-Search (ANTS) procedure
by Maniezzo [58] combines ACO algorithms with lower bounding techniques from
mathematical programming. In particular, lower bounds on the cost of completing
a partial solution are computed that are used as the heuristic information on the
attractiveness of adding solution components. This offers advantages like the pos-
sible elimination of extensions of partial solutions, if these would lead to a larger
cost than the best solution already found.

Some research efforts in ACO were also directed towards speeding up the algo-
rithm by using parallel processing. ACO appears to be naturally suited for parallel
processing because of the use of a population of solutions. However, the com-
munication overhead through the exchange of the pheromone evaporation makes
difficult the realization of fine-grained parallelization schemes. Therefore, most par-
allelization schemes focus on course-grained parallelization [13, 68, 69, 83], which
is implemented typically in a way similar to the island-model in evolutionary al-
gorithms [14]. One recent exception to these (rather standard) parallelization ap-
proaches is the adaptation of an ACO algorithm to run on reconfigurable processor
arrays [64].

Finally, as ACO becomes more and more widely used, several researchers also
have shifted the attention for examining the reasons of ACO’s success, towards a
deeper understanding of the search behavior. Stiitzle and Hoos have linked the
reasons of ACO success to results of the search space analysis of combinatorial
optimization problems. In particular, ACO appears to perform particularly well
on problems which show a high correlation between the fitness of solutions and
the distance to global optima (measured by the so called fitness-distance correla-
tion [54]) [88]. Studies of ACO behavior on simple problems like shortest path
problems or (polynomially solvable) permutation problems shed some light on the
importance of some design features of ACO such as the quality-based pheromone
update or different strategies for solution construction [29, 63]. The dynamics of
ACO algorithms is studied by Merkle and Middendorf [65]. Finally, Blum, Sam-
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ples and Zlochin have shown that particular definitions of the pheromone trails
may lead to the unexpected situation that the performance of Ant System may
even degrade at run time [8]. Also when using more performing ACO algorithms
than AS, Blum and Sampels show that the way pheromone trails are defined has
(as it may be expected) an enormous influence on ACO algorithms’ behavior [7].

9 Concluding remarks

Nowadays, ACO is a well defined and good performing metaheuristic that is more
and more often applied to solve a variety of complex combinatorial problems. In this
paper, we have reviewed the underlying ideas of this approach that lead from the
biological inspiration to the ACO metaheuristic. Most of the existing approaches
have been described and some results regarding topics such as the relationship to
other metaheuristics and theoretical aspects have been summarized. Moreover, we
have identified some recent trends in the field, trying to put some light on the
possible future development of ACO.
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