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tAnt Colony Optimization (ACO) is a re
ent metaheuristi
 method thatis inspired by the behavior of real ant 
olonies. In this paper, we review theunderlying ideas of this approa
h that lead from the biologi
al inspirationto the ACO metaheuristi
, whi
h gives a set of rules of how to apply ACOalgorithms to 
hallenging 
ombinatorial problems. We present some of thealgorithms that were developed under this framework, give an overview of
urrent appli
ations, and analyze the relationship between ACO and some ofthe best known metaheuristi
s. In addition, we des
ribe re
ent theoreti
aldevelopments in the �eld and we 
on
lude by showing several new trends andnew resear
h dire
tions in this �eld.1 Introdu
tionComplex 
ombinatorial optimization problems arise in many di�erent �elds su
has e
onomy, 
ommer
e, engineering, industry or medi
ine. However, often thesekinds of problems are very hard to solve in pra
ti
e. This inherent diÆ
ulty ofsolving su
h problems is 
aptured in theoreti
al 
omputer s
ien
e by the fa
t thatmany of them are known to be NP-hard, whi
h means that there is no algorithmknown for solving them in polynomial time [40℄.Still, many of these problems have to be solved in a huge number of pra
ti
alsettings and therefore a large number of algorithmi
 approa
hes were proposedto ta
kle them. The existing te
hniques 
an roughly be 
lassi�ed into exa
t andapproximate algorithms. Exa
t algorithms try to �nd an optimal solution andto prove that the solution obtained is a
tually an optimal one; these algorithmsin
lude te
hniques su
h as ba
ktra
king, bran
h and bound, dynami
 programming,et
. [75, 10℄. Be
ause exa
t algorithms show poor performan
e for many problems,1



2 Cord�on, Herrera, and St�utzleseveral types of approximate algorithms were developed that provide high qualitysolutions to 
ombinatorial problems in short 
omputation time.Approximate algorithms 
an be 
lassi�ed into to main types: 
onstru
tion algo-rithms and lo
al sear
h algorithms. The former are based on generating solutionsfrom s
rat
h by adding solution 
omponents step by step. The best known exampleare greedy 
onstru
tion heuristi
s [10℄. Their advantage is speed: they are typi-
ally very qui
k and, in addition, often return reasonably good solutions. However,these solutions are not guaranteed to be optimal with respe
t to small lo
al 
hanges.Therefore, a typi
al approa
h is to further improve the solutions returned by greedyheuristi
s by a lo
al sear
h. Lo
al sear
h algorithms repeatedly try to improve the
urrent solution by movements to (hopefully better) neighboring solutions. Thesimplest 
ase are iterative improvement algorithms: if in the neighborhood of the
urrent solution s, a better solution s0 is found, it repla
es the 
urrent solutionand the sear
h is 
ontinued from s0; if no better solution is found, the algorithmterminates in a lo
al optimum.Unfortunately, iterative improvement algorithms may be
ome stu
k in poorquality lo
al optima. To allow for a further improvement in solution quality, inthe last two de
ades the resear
h in this �eld has moved attention to the design ofgeneral-purpose te
hniques for guiding underlying, problem-spe
i�
 
onstru
tion orlo
al sear
h heuristi
s. These te
hniques are often 
alled metaheuristi
s [74, 41, 93℄and they 
onsist of 
on
epts that 
an be used to de�ne heuristi
 methods. In otherwords, a metaheuristi
 
an be seen as a general algorithmi
 framework whi
h 
anbe applied to di�erent (
ombinatorial) optimization problems with relatively fewmodi�
ations if given some underlying, problem spe
i�
 heuristi
 method. In fa
t,metaheuristi
s are now widely re
ognized as the most promising approa
hes foratta
king hard 
ombinatorial optimization problems [2, 67, 79℄.Metaheuristi
s in
orporate 
on
epts from very di�erent �elds su
h as genet-i
s, biology, arti�
ial intelligen
e, mathemati
s and physi
s, and neuro-s
ien
es,among others. Examples of metaheuristi
s in
lude simulated annealing [1, 55℄,tabu sear
h [42℄, iterated lo
al sear
h [57℄, variable neighborhood sear
h algorithms[51℄, greedy randomized adaptive sear
h pro
edures (GRASP) [34, 35℄, and evo-lutionary algorithms [4, 43, 52℄. A rather re
ent metaheuristi
 is ant 
olony opti-mization (ACO), whi
h is inspired by shortest path sear
hing behavior of variousant spe
ies. However, sin
e the initial work of Dorigo, Maniezzo, and Colorni onAnt System [28℄, ACO is now qui
kly be
oming a mature resear
h �eld: a largenumber of authors have developed more sophisti
ated models that were used tosu

essfully solve a large number of 
omplex 
ombinatorial optimization problemsand theoreti
al insights into the algorithm are now be
oming available.This paper reviews the basis of ACO algorithms. We �rst present the behaviorof real ant 
olonies, whi
h inspired ACO, in Se
tion 2. Next, the transition fromreal to arti�
ial ants is des
ribed in Se
tion 3; there we dis
uss the kinds of problemssolved by ACO, we summarize the similarities and di�eren
es between natural andarti�
ial ants and the generi
 operation mode of an ACO algorithm, and �nallyindi
ate the required steps to solve a 
ombinatorial optimization problem by ACO.Se
tion 4 des
ribes several of the existing ACO algorithms, while their appli
ationsare reviewed in Se
tion 5. The relationship between ACO and other metaheuristi
s
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 3is analyzed in Se
tion 6, and theoreti
al aspe
ts of ACO are addressed in Se
tion7. Finally, Se
tion 8 dis
usses some new trends in ACO and Se
tion 9 presents the
on
luding remarks.2 Natural ant 
oloniesAnts are so
ial inse
ts that live in 
olonies and, be
ause of their 
ollaborativeintera
tion, they are 
apable of showing 
omplex behaviors and to perform diÆ
ulttasks from an ant's lo
al perspe
tive. A very interesting aspe
t of the behavior ofseveral ant spe
ies is their ability to �nd shortest paths between the ants' nest andthe food sour
es. This fa
t is spe
ially noti
eable having in mind that in many antspe
ies ants are almost blind, whi
h avoids the exploitation of visual 
lues.While walking between their nest and food sour
es, some ant spe
ies deposit a
hemi
al 
alled pheromone (an odorous substan
e). If no pheromone trails are avail-able, ants move essentially at random, but in the presen
e of pheromone they havea tenden
y to follow the trail. In fa
t, experiments by biologists have shown [78, 44℄that ants probabilisti
ally prefer paths that are marked by a high pheromone 
on-
entration. In pra
ti
e, 
hoi
es between di�erent paths o

ur when several pathsinterse
t. Then, ants 
hoose the path to follow by a probabilisti
 de
ision biasedby the amount of pheromone: the stronger the pheromone trail, the higher itsdesirability. Be
ause ants in turn deposit pheromone on the path they are follow-ing, this behavior results in a self-reinfor
ing pro
ess leading to the formation ofpaths marked by high pheromone 
on
entrations. This behavior also allows antsto identify shortest paths between their nest and a food sour
e [44℄.1How this me
hanism allows the ants to rea
h shortest paths is illustrated inFigure 1. Initially, there is no pheromone trail on the environment and, when theants arrive at an interse
tion, they randomly 
hoose one of the bran
hes. How-ever, as ants are traveling, the most promising paths re
eive a greater amount ofpheromone after some time. This is due to the fa
t that, be
ause these paths areshorter, the ants following them are able to rea
h the goal (i.e., the food) qui
kerand to start their return-trip earlier. Sin
e on the shorter bran
h already a slightlystronger pheromone trail exists, the ants' de
ision is biased towards the shorterbran
h, whi
h, thus, re
eives a larger proportion of the pheromone of the returningants than the longer bran
h. This pro
ess �nally results in an in
reasingly strongerbias towards the shorter bran
h and, in the end, to 
onvergen
e to the shortest.The latter pro
edure is 
omplemented in the natural environment by the fa
tthat the pheromone evaporates after some time. This way, less promising pathsprogressively loose pheromone be
ause of being visited by less and less ants. How-ever, several biologi
al studies show that the pheromone trails are very persistent(the pheromone 
an stay from several hours to several months depending on as-pe
ts su
h as the ant spe
ies, the 
oor type, ... [9℄), thus making less signi�
antthe in
uen
e of the evaporation in the shortest path sear
hing behavior.1 Note that ants only 
ommuni
ate indire
tly, through modi�
ations of the physi
al environ-ment they per
eive. This form of 
ommuni
ation is 
alled arti�
ial stigmergy in [25℄.
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Figure 1: Emergent behavior of the 
olony that ends by obtaining the shortestpath between two points (mass re
ruitment). Based on the �gure in [9℄In [9℄, several experiments are reported showing that the mass re
ruitment inNature is restri
tive sin
e, as a result of the long persisten
e of the pheromone, itis diÆ
ult that ants forget a path with a high level of pheromone, although theyhave found a shorter one. Noti
e that, if this behavior is dire
tly translated intothe 
omputer to design a sear
h algorithm, we 
an get an algorithm qui
kly gettingstu
k in lo
al optima. We will 
ome ba
k to this issue later.3 From natural ants to the Ant Colony Optimiza-tion metaheuristi
ACO algorithms take inspiration from the behavior of real ant 
olonies to solve
ombinatorial optimization problems. They are based on a 
olony of arti�
ial ants,that is, simple 
omputational agents that work 
ooperatively and 
ommuni
atethrough arti�
ial pheromone trails.ACO algorithms are essentially 
onstru
tion algorithms: in ea
h algorithm iter-ation, every ant 
onstru
ts a solution to the problem by traveling on a 
onstru
tiongraph. Ea
h edge of the graph, representing the possible steps the ant 
an make,has asso
iated two kinds of information that guide the ant movement:� Heuristi
 information, whi
h measures the heuristi
 preferen
e of moving
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 5from node r to node s, i.e., of traveling the edge ars. It is denoted by �rs.This information is not modi�ed by the ants during the algorithm run.� (Arti�
ial) pheromone trail information, whi
h measures the \learned desir-ability" of the movement and mimi
s the real pheromone that natural antsdeposit. This information is modi�ed during the algorithm run depending onthe solutions found by the ants. It is denoted by �rs.This se
tion introdu
es the steps leading from real ants to ACO. It should benoted for the following that ACO algorithms present a double perspe
tive:� On the one hand, they are an abstra
tion of some behavioral patterns ofnatural ants related to the shortest path sear
hing behavior.� On the other hand, they in
lude several features that do not have a natural
ounterpart, but that allow to develop algorithms for obtaining good solutionsto the problem ta
kled (for example, the use of heuristi
 information to guidethe ant movement).3.1 Kinds of problems solved by ACOThe type of problems being solved by arti�
ial ants belongs to the group of (
on-strained) shortest path problems that 
an be 
hara
terized by the following aspe
ts(we follow mainly the presentation in [25℄ and [31℄):� There is a set of 
onstraints 
 de�ned for the problem under solution.� There is a �nite set of 
omponents N = fn1; n2; : : : ; nlg.� The problem presents several states de�ned upon ordered 
omponent se-quen
es Æ =< nr; ns; : : : ; nu; : : : > (< r; s; : : : ; u; : : : > to simplify) over theelements of N . If � is the set of all possible sequen
es, we denote by ~� the setof feasible (sub)sequen
es with respe
t to the 
onstraints 
. The elements in~� de�ne the feasible states. jÆj is the length of a sequen
e Æ, i.e., the numberof 
omponents in the sequen
e.� There is a neighborhood stru
ture de�ned as follows: Æ2 is a neighbor of Æ1 if(i) both Æ1 and Æ2 belong to �, (ii) the state Æ2 
an be rea
hed from Æ1 inone logi
al movement, i.e., if r is the last 
omponent of the sequen
e Æ1, theremust exist a 
omponent s 2 N su
h that Æ2 =< Æ1; s >, i.e., there exists avalid transition between r and s. The feasible neighborhood of Æ1 is the set
ontaining all sequen
es Æ2 2 ~�; if Æ2 =2 ~�, we say that Æ2 is in the infeasibleneighborhood of Æ1.� A solution S is an element of ~� verifying all the problem requirements.� There is a 
ost C(S) asso
iated to ea
h solution S.� In some 
ases, a 
ost or an estimate of the 
ost may be asso
iated to states.



6 Cord�on, Herrera, and St�utzleAs said, all the previous 
hara
teristi
s hold in 
ombinatorial optimization prob-lems that 
an be represented in the form of a weighted graph G = (N;A), whereA is the set of edges that 
onne
ts the set of 
omponents N . The graph G is also
alled 
onstru
tion graph G.2 Hen
e, we have that� the 
omponents nr are the nodes of the graph,� the states Æ (and hen
e the solutions S) 
orrespond to paths in the graph,i.e., sequen
es of nodes or edges,� the edges of the graph, ars, are 
onne
tions/transitions de�ning the neigh-borhood stru
ture. Æ2 =< Æ1; s > is a neighbor of Æ1 if node r is the last
omponent of Æ1 and edge ars exists in the graph,� there may be expli
it transition 
osts 
rs asso
iated to ea
h edge, and� the 
omponents and 
onne
tions may have asso
iated pheromone trails � ,whi
h represent some form of indire
t, long term memory of the sear
h pro-
ess, and heuristi
 values �, whi
h represent some heuristi
 information avail-able on the problem under solution.3.2 The arti�
ial antThe arti�
ial ant is a simple, 
omputational agent that tries to build feasible solu-tions to the problem ta
kled exploiting the available pheromone trails and heuristi
information. However, if ne
essary, it may also build infeasible solutions that maybe penalized depending on the amount of infeasibility. It has the following proper-ties [25, 31℄:� It sear
hes minimum 
ost feasible solutions for the problem being solved.� It has a memory L storing information about the path followed until thatmoment, i.e., L stores the generated sequen
e. This memory 
an be used to:(i) build feasible solutions, (ii) evaluate the generated solution, and (iii) toretra
e the path the ant has followed.� It has an initial state Æinitial, that usually 
orresponds to a unitary sequen
e,and one or more termination 
onditions t asso
iated.� It starts in the initial state and moves towards feasible states, building itsasso
iated solution in
rementally.� When it is in a state Ær =< Ær�1; r > (i.e., it is lo
ated in node r and haspreviously followed the sequen
e Ær�1), it 
an move to any node s of its feasibleneighborhood N (r), de�ned as N (r) = fs j (ars 2 A) and (< Ær; s > 2 ~�)g.2 As said in [31℄, the set of edges may fully 
onne
t the 
omponents. In this 
ase, the imple-mentation of the 
onstraints is fully integrated into the 
onstru
tion poli
y of the ants.
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 7� The movement is made by applying a transition rule, whi
h is a fun
tion ofthe lo
ally available pheromone trails and heuristi
 values, the ants privatememory, and the problem 
onstraints.� When, during the 
onstru
tion pro
edure, an ant moves from node r to s, it
an update the pheromone trail �rs asso
iated to the edge ars. This pro
essis 
alled online step-by-step pheromone trail update.� The 
onstru
tion pro
edure ends when any termination 
ondition is satis�ed,usually when an obje
tive state is rea
hed.� On
e the solution has been built, the ant 
an retra
e the traveled path andupdate the pheromone trails on the visited edges/
omponents by means of apro
ess 
alled online delayed pheromone trail update.This way, the only 
ommuni
ation me
hanism among the ants is the datastru
ture storing the pheromone levels of ea
h edge/
omponent (shared mem-ory).3.3 Similarities and di�eren
es between natural and arti�-
ial antsReal and arti�
ial ant 
olonies share a number of 
hara
teristi
s. The most impor-tant ones 
an be summarized as follows (see [26℄ for a more detailed dis
ussion):� Use of a 
olony of individuals that intera
t and 
ollaborate to solve a giventask.� Both, natural and arti�
ial ants modify their \environment" through stig-mergi
 
ommuni
ation based on pheromones. In the 
ase of arti�
ial ants,the (arti�
ial) pheromone trail is a numeri
 information whi
h is only lo
allyavailable.� Both, natural and arti�
ial ants share a 
ommon task: the sear
h of the short-est path (iterative 
onstru
tion of a minimum 
ost solution) from an origin,the ant nest (initial de
ision), to some goal state, the food (last de
ision).� Arti�
ial ants build the solutions iteratively by applying a lo
al sto
hasti
transition poli
y to move between adja
ent states, as real ants do.However, these 
hara
teristi
s alone do not allow to develop eÆ
ient algorithmsfor hard 
ombinatorial problems. Therefore, arti�
ial ants live in a dis
rete worldand have additional 
apabilities:� Arti�
ial ants 
an make use of heuristi
 information (and not only pheromonetrail information) in the sto
hasti
 transition poli
y they apply.� They have a memory that stores the path followed by the ant.



8 Cord�on, Herrera, and St�utzle� The amount of pheromone deposited by the arti�
ial ants is a fun
tion ofthe quality of the solution found by ea
h of them.3 A major di�eren
e also
on
erns the timing of the pheromone deposit. Arti�
ial ants usually onlydeposit pheromone after generating a 
omplete solution.4� As said in Se
tion 2, pheromone evaporation in ACO algorithms is di�erentthan in nature, sin
e the in
lusion of an evaporation me
hanism is a keyquestion to avoid the algorithm getting stu
k in lo
al optima. Pheromoneevaporation allows the arti�
ial ant 
olony to softly forget its past historyand to dire
t its sear
h towards new spa
e regions. This avoids a premature
onvergen
e of the algorithm to lo
al optima.� In order to improve the eÆ
ien
y and eÆ
a
y of the system, ACO algorithms
an be enri
hed with additional 
apabilities. Examples are the ability to lookfurther than the next transition (\lookahead") [68℄, lo
al optimization [27, 87℄and \ba
ktra
king" (whose use is not very extended), or so-
alled 
andidatelist whi
h 
ontain a set of the most promising neighbor states [27, 25℄ toimprove the eÆ
ien
y of the algorithm.3.4 Operation mode and generi
 stru
ture of an ACO algo-rithmAs seen in the previous se
tions, the basi
 operation mode of an ACO algorithmis as follows: the m (arti�
ial) ants of the 
olony move, 
on
urrently and asyn-
hronously, through adja
ent states of a problem (that 
an be represented in theform of a weighted graph). This movement is made a

ording to a transition rulewhi
h is based on lo
al information available at the 
omponents (nodes). This lo
alinformation 
omprises heuristi
 and memoristi
 (pheromone trails) information toguide the sear
h. By moving on the 
onstru
tion graph, ants in
rementally buildsolutions. Optionally, ants 
an release pheromone ea
h time they 
ross an edge(
onne
tion) while 
onstru
ting solutions (online step-by-step pheromone trail up-date). On
e every ant has generated a solution, it is evaluated and it 
an depositan amount of pheromone whi
h is a fun
tion of the quality of the ant's solution(online delayed pheromone trail update). This information will guide the sear
h ofthe other ants of the 
olony in the future.Moreover, the generi
 operation mode of the ACO algorithm also in
ludestwo additional pro
edures, pheromone trail evaporation and daemon a
tions . Thepheromone evaporation is triggered by the environment and it is used as a me
ha-nism to avoid sear
h stagnation and to allow the ants to explore new spa
e regions.Daemon a
tions are optional a
tions |without a natural 
ounterpart| to im-plement tasks from a global perspe
tive that is la
king to the lo
al perspe
tiveof the ants. The additional 
apabilities mentioned in Se
tion 3.3 are in
luded in3 However, this di�eren
e is relative as some natural ant spe
ies deposit a higher quantity ofpheromone when they found a ri
her food sour
e [9℄.4 Nevertheless, as we will see in the following, few ACO algorithms also modify the pheromonetrails while 
onstru
ting a solution.
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 9these a
tions. Examples are observing the quality of all the solutions generatedand releasing an additional pheromone amount only on the transitions/
omponentsasso
iated to some of the solutions, or applying a lo
al sear
h pro
edure to the so-lutions generated by the ants before updating the pheromone trails. In both 
ases,the daemon repla
es the online delayed pheromone update and the pro
ess is 
alledo�ine pheromone trail update.The stru
ture of a generi
 ACO algorithm for is as follows [25, 26℄.1 Pro
edure ACO Metaheuristi
2 parameter initialization3 while (termination 
riterion not satisfied)4 s
hedule a
tivities5 ants generation and a
tivity()6 pheromone evaporation()7 daemon a
tions() foptionalg8 end s
hedule a
tivities9 end while10 end Pro
edure1 Pro
edure ants generation and a
tivity()2 repeat in parallel for k=1 to m (number of ants)3 new ant(k)4 end repeat in parallel5 end Pro
edure1 Pro
edure new ant(ant id)2 initialize ant(ant id)3 L = update ant memory()4 while (
urrent state 6= target state)5 P = 
ompute transition probabilities(A,L,
)6 next state = apply ant de
ision poli
y(P,
)7 move to next state(next state)if (on line step-by-step pheromone update)8 deposit pheromone on the visited edge()end if9 L = update internal state()10 end whileif (online delayed pheromone update)11 for ea
h visited edge12 deposit pheromone on the visited edge()13 end forend if14 release ant resour
es(ant id)15 end Pro
edure



10 Cord�on, Herrera, and St�utzleThe �rst step involves the initialization of the parameter values 
onsidered bythe algorithm. Among others, the initial pheromone trail value asso
iated to ea
htransition, �0, whi
h is a small positive value that is typi
ally the same for all 
on-ne
tions/
omponents, the number of ants in the 
olony,m, and the weights de�ningthe balan
e between the heuristi
 and memoristi
 information in the probabilisti
transition rule have to be set.5The main pro
edure of the ACOmetaheuristi
 manages, by means of the s
hed-ule a
tivities 
onstru
t, the s
heduling of the three 
omponents mentioned in thisse
tion: (i) the generation and operation of the arti�
ial ants, (ii) the pheromoneevaporation, and (iii) the daemon a
tions. The implementation of this 
onstru
twill de�ne the existing syn
ronism between the three 
omponents. While the ap-pli
ation to \
lassi
al" NP-hard (non distributed) problems typi
ally uses rathera sequential s
hedule, in distributed problems like network routing parallelism 
anbe easily and eÆ
iently exploited.As said, several 
omponents are either optional, su
h as the daemon a
tions, orstri
tly dependent on the spe
i�
 ACO algorithm, e.g., when and where the phero-mone is deposited. Generally, the online step-by-step pheromone trail update andthe online delayed pheromone trail update are mutually ex
lusive and they bothare not usually present or missing at the same time (if both are missing, typi
allythe daemon updates the pheromone trails).On the other hand, noti
e that the pro
edure update ant memory involves spe
-ifying the initial state from whi
h the ant starts its path and storing the 
orrespond-ing 
omponent in the ant memory L. The de
ision on whi
h will be that node (it
an be a random 
hoi
e or a �xed one for the whole 
olony, a random 
hoi
e or a�xed one for ea
h ant, et
.) depends on the spe
i�
 appli
ation.Finally, note that the pro
edures 
ompute transition probabilities andapply ant de
ision poli
y 
onsider the 
urrent state of the ant, the 
urrentvalues of the pheromones visible in that node and the problem 
onstraints 
 toestablish the probabilisti
 transition pro
ess to other feasible states.3.5 Relation between ACO and ant algorithmsIt is important to noti
e that the term ACO metaheuristi
 stands for the generi
operation mode of ACO. The name ACO algorithm is used to refer to any spe-
i�
 instan
e of the generi
 algorithm shown in Se
tion 3.4, su
h as those that areanalyzed in the following Se
tion 4. It should be noted that the ACO metaheuris-ti
 
omprises a very wide 
lass of algorithms that 
an have very di�erent shapes.This is mainly due to the rather 
omplex types of intera
tions possible through thes
hedule a
tivities 
onstru
t among the a
tivities ants generation and a
t-ivity(), pheromone evaporation(), and daemon a
tions(). It should be noted,however, that in many appli
ations ants typi
ally move in a syn
hronized way andthe algorithmi
 outline of a
tual ACO algorithms follows a mu
h simpler 
ow ofa
tivities [84, 85℄. The main reason for the greater generality of the ACO meta-heuristi
 is that it was de�ned a posteriori as a 
ommon framework to already5 This aspe
t will be analyzed in depth in the next se
tion when introdu
ing spe
i�
 ACOalgorithms.
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 11existing appli
ations to NP-hard optimization problems and routing in tele
om-muni
ations networks, an inherently dynami
 problem (see also Se
tion 5 for ashort overview). While these two types of appli
ations are similar from a high-levelperspe
tive, due to the very di�erent appli
ation domains, the algorithms and, inparti
ular, the intera
tions among the three a
tivities ants generation and a
t-ivity(), pheromone evaporation(), and daemon a
tions(), are very di�erentfrom a low-level perspe
tive.However, the ACO metaheuristi
 is not general enough to 
over the full familyof ant algorithms, whi
h 
an loosely be de�ned as approximate methods to solve
ombinatorial problems based on 
hara
teristi
s of the generi
 behavior of naturalants.6 Examples of ant algorithms not 
overed by ACO are Fast Ant System [92℄and Hybrid Ant System [39℄. While the former is a 
onstru
tion algorithm basedon the operation of a single ant without using expli
it pheromone evaporation, thelatter is a lo
al sear
h pro
edure that makes use of pheromone trail information togenerate the neighbor solutions. In [90℄, an experimental study of these two antalgorithms for the TSP is presented.3.6 Steps to solve a problem by ACOFrom the 
urrently known ACO appli
ations, we 
an identify some guidelines ofhow to atta
k problems by ACO. These guidelines 
an be summarized by thefollowing six design tasks:1. Represent the problem in the form of sets of 
omponents and transitions orby means of a weighted graph (see Se
tion 3.1), that is traveled by the antsto build solutions.2. Appropriately de�ne the meaning of the pheromone trails �rs, i.e., the typeof de
ision they bias. This is a 
ru
ial step in the implementation of an ACOalgorithm and often, a good de�nition of the pheromone trails is not a trivialtask and it typi
ally requires insight into the problem under the solution.3. Appropriately de�ne the heuristi
 preferen
e to ea
h de
ision that an ant hasto take while 
onstru
ting a solution, i.e., de�ne the heuristi
 information �rsasso
iated to ea
h 
omponent or transition. Noti
e that heuristi
 informationis 
ru
ial for good performan
e if lo
al sear
h algorithms are not available or
an not be applied.4. If possible, implement an eÆ
ient lo
al sear
h algorithm for the problem un-der solution, be
ause the results of many ACO appli
ations to NP-hard 
om-binatorial optimization problems show that the best performan
e is a
hievedwhen 
oupling ACO with lo
al optimizers [25, 31℄.5. Choose a spe
i�
 ACO algorithm (some of the available ones are des
ribedin the next se
tion) and apply it to the problem being solved, taking theprevious aspe
ts into a

ount.6 Note that every ACO algorithm is also an ant algorithm but the opposite is not true.



12 Cord�on, Herrera, and St�utzle6. Tune the parameters of the ACO algorithm. A good starting point for pa-rameter tuning is to use parameter settings that were found to be good whenapplying the ACO algorithm to similar problems or to a variety of other prob-lems. An alternative to time-
onsuming personal involvement in the tuningtask is to use automati
 pro
edures for parameter tuning [6℄.It should be 
lear that the above steps 
an only give a very rough guide tothe implementation of ACO algorithms. In addition, often the implementation isan iterative pro
ess, where with some further insight into the problem and thebehavior of the algorithm, some initially taken 
hoi
es need to be revised. Finally,we want to insist in the fa
t that probably the most important of these steps arethe �rst four, be
ause a poor 
hoi
e at this stage typi
ally 
an not be made upwith pure parameter �ne-tuning.4 Ant Colony Optimization modelsSeveral algorithms have been proposed in the literature following the ACO meta-heuristi
. Among the available ACO algorithms for NP-hard 
ombinatorial op-timization problems are Ant System [28℄, Ant Colony System [27℄, Max-Min AntSystem [88℄, Rank-based Ant System [12℄, and Best-Worst Ant System [20℄. In thefollowing, we give a short des
ription of these algorithms.7 While Ant Systemis mainly of histori
al interest be
ause it was the �rst ACO algorithm, the otherfour typi
ally a
hieve mu
h better 
omputational results. A major omission inour des
ription is AntNet, a su

essful ACO algorithm for network routing. How-ever, this algorithm is rather appli
ation spe
i�
 and we refer to [24℄ for a detaileddes
ription.Noti
e that in the following we 
onsider the 
ase, where pheromones and heuris-ti
 information are only atta
hed to the 
onne
tions, whi
h is the 
ase for manyappli
ations of ACO to sequen
ing or assignment problems. It is straightforwardto extend the des
ription to the 
ase in whi
h pheromones are asso
iated to 
om-ponents.4.1 Ant SystemAnt System (AS) [28℄, developed by Dorigo, Maniezzo and Colorni in 1991, wasthe �rst ACO algorithm. Initially, three di�erent variants, AS-density, AS-quantityand AS-
y
le, di�ering in the way in whi
h the pheromone trails are updated, wereproposed. In the former two ones, ants release pheromone while building theirsolutions (i.e., they apply an online step-by-step pheromone update), with the dif-feren
e that the amount deposited in AS-density is 
onstant while the one releasedin AS-quantity dire
tly depends on the heuristi
 desirability of the transition �ij .Finally, in AS-
y
le, the pheromone deposit is done on
e the solution is 
ompleted(online delayed pheromone update). This latter variant was the one performing7For a more detailed des
ription of these algorithms, in
luding some 
omparisons of theirperforman
e when applied to the traveling salesman problem, we refer to [25, 26, 30, 85℄.
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 13best and a
tually this is the variant that is now referred to as AS in the literature(and in the remainder of this paper).AS is 
hara
terized by the fa
t that the pheromone update is triggered on
e allants have 
ompleted their solutions and it is done as follows. First, all pheromonetrails are redu
ed by a 
onstant fa
tor, implementing in this way the pheromoneevaporation. Se
ond, every ant of the 
olony deposits an amount of pheromonewhi
h is a fun
tion of the quality of its solution. Initially, AS did not use anydaemon a
tions, but it is very straightforward to, for example, add a lo
al sear
hpro
edure to re�ne the solutions generated by the ants.Solutions in AS are 
onstru
ted as follows. At ea
h 
onstru
tion step, an ant kin AS 
hooses to go to a next node with a probability that is 
omputed aspkrs = ( [�rs℄��[�rs℄�Pu2Nkr [�ru℄��[�ru℄� ; if s 2 Nk(r)0; otherwise ;where Nk(r) is the feasible neighborhood of ant k when lo
ated at node r, and�; � 2 R are two parameters that weight the relative importan
e of the pheromonetrail and the heuristi
 information. Ea
h ant k stores the sequen
e it has followedso far and this memory Lk is, as explained before, exploited to determine Nk(r) inea
h 
onstru
tion step.As regards parameters � and �, their role is as follows: if � = 0, those nodeswith better heuristi
 preferen
e have a higher probability of being sele
ted, thusmaking the algorithm 
lose to a 
lassi
al probabilisti
 greedy algorithm (with mul-tiple starting points in 
ase ants are lo
ated in di�erent nodes at the beginning ofea
h iteration). However, if � = 0, only the pheromone trails are 
onsidered toguide the 
onstru
tive pro
ess, whi
h 
an 
ause a qui
k stagnation, i.e., a situationwhere the pheromone trails asso
iated to some transitions are signi�
antly higherthan the remainder, thus making the ants always build the same solutions, usuallylo
al optima. Hen
e, there is a need to establish a proper balan
e between theimportan
e of heuristi
 and pheromone trail information.As said, the pheromone deposit is made on
e all ants have �nished to 
onstru
ttheir solutions. First, the pheromone trail asso
iated to every ar
 is evaporated byredu
ing all pheromones by a 
onstant fa
tor:�rs  (1� �) � �rs;where � 2 (0; 1℄ is the evaporation rate. Next, ea
h ant retra
es the path it hasfollowed (this path is stored in its lo
al memory Lk) and deposits an amount ofpheromone ��krs on ea
h traversed 
onne
tion:�rs  �rs +��krs; 8ars 2 Sk;where ��krs = f(C(Sk)), i.e., the amount of pheromone released depends on thequality C(Sk) of the solution Sk of ant k.To summarize the des
ription of the AS, we will show the 
omposition of pro-
edure new ant for this parti
ular ACO algorithm:
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edure new ant(ant id)2 k = ant id; r = generate initial state; Sk = r3 Lk = r4 while (
urrent state 6= target state)5 for ea
h s 2 Nk(r) do pkrs = [�rs℄��[�rs℄�Pu2Nkr [�ru℄��[�ru℄�6 next state = apply ant de
ision poli
y(P,Nk(r))7 r = next state; Sk =< Sk; r >8 ---9 Lk = Lk [ r10 end whilefthe pheromone evaporation() pro
edure triggers andevaporates pheromone in every edge ars: �rs = (1� �) � �rsg11 for ea
h edge ars 2 Sk do12 �rs = �rs + f(C(Sk))13 end for14 release ant resour
es(ant id)15 end Pro
edureNoti
e that the empty line 8 is in
luded to remark that no online step-by-steppheromone update is made and that before the line 12, the pheromone evaporationmust have been applied by the daemon. In fa
t, this is one example, where thes
hedule a
tivities 
onstru
t interferes with the fun
tioning of the single mainpro
edures of the ACO metaheuristi
, as indi
ated on page 9.Before 
on
luding this se
tion, it is important to noti
e that the 
reators of theAS also proposed a typi
ally better performing, extended version of this algorithm
alled elitist AS [28℄. In elitist AS, on
e the ants have released pheromone onthe 
onne
tions asso
iated to their generated solutions, the daemon performs anadditional pheromone deposit on the edges belonging to the best solution founduntil that moment in the sear
h pro
ess (this solution is also 
alled global-bestsolution in the following). The amount of pheromone deposited, whi
h depends onthe quality of that global best solution, is weighted by the number of elitist ants
onsidered, e, as follows:�rs  �rs + e � f(C(Sglobal�best)); 8ars 2 Sglobal�best4.2 Ant Colony SystemAnt Colony System (ACS) [27℄ is one of the �rst su

essors of AS. It introdu
esthree major modi�
ations into AS:1. ACS uses a di�erent transition rule, whi
h is 
alled pseudo-random propor-tional rule: Let k be an ant lo
ated at a node r, q0 2 [0; 1℄ be a parameter,and q a random value in [0; 1℄. The next node s is randomly 
hosen a

ordingto the following probability distribution
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 15If q � q0: pkrs = ( 1; if s = arg maxu2Nk(r)f�ru � ��rug0; otherwise ;else (q > q0): pkrs = ( [�rs℄��[�rs℄�Pu2Nkr [�ru℄��[�ru℄� ; if s 2 Nk(r)0; otherwiseAs 
an be seen, the rule has a double aim: when q � q0, it exploits theavailable knowledge, 
hoosing the best option with respe
t to the heuris-ti
 information and the pheromone trail. However, if q > q0, it applies a
ontrolled exploration, as done in AS. In summary, the rule establishes atrade-o� between the exploration of new 
onne
tions and the exploitation ofthe information available at that moment.2. Only the daemon (and not the individual ants) trigger the pheromone update,i.e., an o�ine pheromone trail update is done. To do so, ACS only 
onsidersone single ant, the one who generated the global best solution, Sglobal�best(although in early papers, an update based on the iteration-best ant was
onsidered as well [27℄, ACS almost always applies a global-best update).The pheromone update is done by �rst evaporating the pheromone trails onall the 
onne
tions used by the global-best ant (it is important to noti
ethat in ACS, pheromone evaporation is only applied to the 
onne
tions of thesolution that is also used to deposit pheromone) as follows:�rs  (1� �) � �rs; 8ars 2 Sglobal�bestNext, the daemon deposits pheromone by the rule:�rs  �rs + � � f(C(Sglobal�best)); 8ars 2 Sglobal�bestAdditionally, the daemon 
an apply a lo
al sear
h algorithm to improve theants' solutions before updating the pheromone trails.3. Ants apply an online step-by-step pheromone trail update that en
ourages thegeneration of di�erent solutions to those yet found. Ea
h time an ant travelsan edge ars, it applies the rule:�rs  (1� ') � �rs + ' � �0;where ' 2 (0; 1℄ is a se
ond pheromone de
ay parameter. As 
an be seen,the online step-by-step update rule in
ludes both, pheromone evaporationand deposit. Be
ause the amount of pheromone deposited is very small (infa
t, �0 is the initial pheromone trail value whi
h is 
hosen in su
h a way
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ti
e, it 
orresponds to a lower pheromone trail limit, i.e., bythe 
hoi
e of the ACS pheromone update rules, no pheromone trail value
an fall below �0), the appli
ation of this rule makes the pheromone trailon the 
onne
tions traversed by an ant de
rease.8. Hen
e, this results in anadditional exploration te
hnique of ACS by making the 
onne
tions traversedby an ant less attra
tive to following ants and helps to avoid that every antfollows the same path.The pro
edures new ant and daemon a
tions (whi
h in this 
ase intera
ts withthe pheromone evaporation pro
edure) for ACS are as follows:1 Pro
edure new ant(ant id)2 k = ant id; r = generate initial state; Sk = r3 Lk = r4 while (
urrent state 6= target state)5 for ea
h s 2 Nk(r) do 
ompute brs = �rs � ��rs6 q = generate random value in [0,1℄if (q <= q0)next state = max(brs;Nk(r))elsefor ea
h s 2 Nk(r) dopkrs = brsPu2Nk(r) brunext state = apply ant de
ision poli
y(P,Nk(r))end if7 r = next state; Sk =< Sk; r >8 �rs = (1� ') � �rs + ' � �09 Lk = Lk [ r10 end while11 ---12 ---13 ---14 release ant resour
es(ant id)15 end Pro
edure1 Pro
edure daemon a
tions2 for ea
h Sk do lo
al sear
h(Sk) foptionalg3 S
urrent�best = best solution (Sk)4 if (better(S
urrent�best; Sglobal�best))5 Sglobal�best = S
urrent�best6 end if8 ACS is a
tually based on Ant-Q, an earlier algorithm proposed by Gambardella and Dorigo[36℄ The only di�eren
e between ACS and Ant-Q is in the de�nition of the term �0 in the onlinestep-by-step update rule, whi
h in Ant-Q is the dis
ounted evaluation of the next state, set to
 �maxs2Nk(r)f�rsg. However, experimental results suggested that ACS results in the same levelof performan
e and, be
ause of its greater simpli
ity, it was preferred.
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h edge ars 2 Sglobal�best dofthe pheromone evaporation() pro
edure triggers andevaporates pheromone in edge ars: �rs = (1� �) � �rsg8 �rs = �rs + � � f(C(Sglobal�best))9 end for10 end Pro
edure4.3 Max-Min Ant SystemMax-Min Ant System (MMAS) [89, 84, 88℄, developed by St�utzle and Hoos in1996, is one of the best performing extensions of AS. It extends the basi
 AS inthe following aspe
ts:1. An o�ine pheromone trail update is applied, similar to ACS. After all antshave 
onstru
ted a solution, �rst every pheromone trail is evaporated:�rs  (1� �) � �rs;and next pheromone is deposited a

ording to:�rs  �rs + f(C(Sbest)); 8ars 2 SbestThe best ant that is allowed to add pheromone may be the iteration-bestor the global-best solution. Experimental results have shown that the bestperforman
e is obtained by gradually in
reasing the frequen
y of 
hoosingthe global-best solution for the pheromone trail update [84, 88℄.In addition, inMMAS typi
ally the ants' solutions are improved using lo
aloptimizers before the pheromone update.2. The possible values for the pheromone trails are limited to the range [�min;�max℄. The 
han
e of algorithm stagnation is thus de
reased by giving ea
h
onne
tion some, although very small, probability of being 
hosen. In pra
-ti
e, heuristi
s exist for setting �min and �max. First, it 
an be shown that,be
ause of the pheromone evaporation, the maximal possible pheromone traillevel is limited to ��max = 1=(� � C(S�)), where S� is the optimal solution.Based on this result, the global-best solution 
an be used to estimate �max byrepla
ing S� with Sglobal�best in the equation for ��max. For �min it is oftenenough to 
hoose it as some 
onstant fa
tor lower than �max (see also [88℄ fordetails on possible ways to de�ne �min).As a means for further in
reasing the exploration of solutions,MMAS alsouses the o

asional re-initialization of the pheromone trails [87, 84, 88℄.3. Instead of initializing the pheromones to a small amount, in MMAS thepheromone trails are initialized to an estimate of the maximum allowedpheromone trail value (the estimate 
an be obtained by �rst generating somesolution S0 by a greedy 
onstru
tion heuristi
 and then repla
ing S0 in theequation for ��max). This leads to an additional diversi�
ation 
omponent



18 Cord�on, Herrera, and St�utzlein the algorithm, be
ause at the beginning the relative di�eren
es of thepheromone trails will not be very marked, whi
h is di�erent when initializingthe pheromone trails to some very small value.The stru
ture of pro
edure daemon a
tions inMMAS is shown below:1 Pro
edure daemon a
tions2 for ea
h Sk do lo
al sear
h(Sk)3 S
urrent�best = best solution (Sk)4 if (best(S
urrent�best; Sglobal�best))5 Sglobal�best = S
urrent�best6 end if7 Sbest = de
ision(Sglobal�best; S
urrent�best)8 for ea
h edge ars 2 Sbest do9 �rs = �rs + �f(C(Sbest))10 if (�rs < �min) �rs = �min11 end for12 if (stagnation 
ondition)13 for ea
h edge ars do �rs = �max14 end if15 end Pro
edure4.4 Rank-based Ant SystemThe rank-based Ant System (ASrank) [12℄ is another extension of the AS proposedby Bullnheimer, Hartl and Strauss in 1997. It in
orporates the idea of ranking intothe pheromone update, whi
h is again developed o�ine by the daemon as follows:1. The m ants are ranked a

ording to de
reasing quality of their solutions:(S01; : : : ; S0m), with S01 being the best solution built in the 
urrent generation.2. The daemon deposits pheromone on the 
onne
tions passed by the � � 1 bestants (elitist ants). The amount of pheromone deposited dire
tly depends onthe ant's rank and on the quality of its solution.3. The 
onne
tions 
rossed by the global-best solution re
eive an additionalamount of pheromone whi
h depends on the quality of that solution. Thispheromone deposit is 
onsidered to be the most important, hen
e, it re
eivesa weight of �.This operation mode is put into e�e
t by means of the following pheromoneupdate rule, whi
h is applied to every edge on
e all the pheromone trails have beenevaporated: �rs  �rs + � ���gbrs +��rankrs ;where ��gbrs = � f(C(Sglobal�best)); if ars 2 Sglobal�best0; otherwise ;
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��rankrs =8<: ��1P�=1(� � �) � f(C(S0�)); if ars 2 S0�0; otherwiseHen
e, the ASrank daemon pro
edure presents the following stru
ture:1 Pro
edure daemon a
tions2 for ea
h Sk do lo
al sear
h(Sk) foptionalg3 rank (S1; : : : ; Sm) in de
reasing order of solutionquality into (S01; : : : ; S0m)4 if (best(S01; Sglobal�best))5 Sglobal�best = S016 end if7 for � = 1 to (� � 1) do8 for ea
h edge ars 2 S0� do9 �rs = �rs + (� � �) � f(C(S0�))10 end for11 end for12 for ea
h edge ars 2 Sglobal�best do13 �rs = �rs + � � f(C(Sglobal�best))14 end for15 end Pro
edure4.5 Best-Worst Ant SystemBest-Worst Ant System (BWAS) [20℄, proposed by Cord�on et al. in 1999, is an ACOalgorithm whi
h in
orporates evolutionary 
omputation 
on
epts.9 It 
onstitutesanother extension of AS, whi
h uses its transition rule and pheromone evaporationme
hanism (the evaporation is applied to every transition as in AS, ASrank andMMAS). Besides, as done in MMAS, BWAS always 
onsiders the systemati
exploitation of lo
al optimizers to improve the ants' solutions. At the 
ore ofBWAS, the three following daemon a
tions are found:1. The best-worst pheromone trail update rule, whi
h reinfor
es the edges 
on-tained in the global best solution. In addition, the update rule penalizesevery 
onne
tion of the worst solution generated in the 
urrent iteration,S
urrent�worst, that are not present in the global-best one through an ad-ditional evaporation of the pheromone trails. Hen
e, BWAS update rulebe
omes: �rs  �rs + � � f(C(Sglobal�best)); 8ars 2 Sglobal�best;�rs  (1� �) � �rs; 8ars 2 S
urrent�worst and ars 62 Sglobal�best9 The relation between these two metaheuristi
s will be analyzed in Se
tion 6.1.



20 Cord�on, Herrera, and St�utzle2. A pheromone trail mutation is performed to introdu
e diversity in the sear
hpro
ess. To do so, the pheromone trail asso
iated to one of the transitionsstarting from ea
h node (i.e., ea
h row of the pheromone trail matrix) is mu-tated with probability Pm by 
onsidering any real-
oded mutation operator.The original BWAS proposal applied an operator altering the pheromone trailof every mutated transition by adding or subtra
ting the same amount inea
h iteration. The mutation range mut(it; �threshold), whi
h depends on theaverage of the pheromone trails in the transitions of the global best solution,�threshold, is less strong in the early stages of the algorithm|when there isno risk of stagnation|and stronger in the latter ones, when the danger ofstagnation is stronger:� 0rs  � �rs +mut(it; �threshold); if a = 0�rs �mut(it; �threshold); if a = 1with a being a random value in f0; 1g and it being the 
urrent iteration.3. As other ACO models, BWAS 
onsiders the re-initialization of the pheromonetrails when it gets stu
k, whi
h is done by setting every pheromone trail to�0.The BWAS daemon a
tions pro
edure is as follows:1 Pro
edure daemon a
tions2 for ea
h Sk do lo
al sear
h(Sk)3 S
urrent�best = best solution (Sk)4 if (best(S
urrent�best; Sglobal�best))5 Sglobal�best = S
urrent�best6 end if7 for ea
h edge ars 2 Sglobal�best do8 �rs = �rs + � � f(C(Sglobal�best))9 sum = sum + �rs10 end for11 �threshold = sumjSglobal�bestj12 S
urrent�worst = worst solution (Sk)13 for ea
h edge ars 2 S
urrent�worst and ars 62 Sglobal�best do14 �rs = (1� �) � �rs15 end for16 mut = mut(it,�threshold)17 for ea
h node/
omponent r 2 f1; : : : ; lg do18 z = generate random value in [0,1℄19 if (z <= Pm)20 s = generate random value in [1,...,l℄21 a = generate random value in [0,1℄22 if (a = 0) �rs = �rs + mut23 else �rs = �rs - mut24 end if
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 2125 end for26 if (stagnation 
ondition)27 for ea
h edge ars do �rs = �028 end if29 end Pro
edureThe interested reader 
an refer to the paper [19℄ for an analysis of the individualperforman
e of ea
h of the three BWAS 
omponents and the di�erent 
ombinationsof them on the traveling salesman problem. In that study, it is shown that theversion of BWAS that in
ludes all three 
omponents performs better than othervariants that in
lude only a single 
omponent or a 
ombination of two of the three
omponents in the most of the 
ases. A similar study was done for BWAS appliedto the quadrati
 assignment problem in [18℄. Moreover, a new, well-performingACO model 
alled Best-Worst Ant Colony System, whi
h is based on introdu
ingthe three BWAS 
omponents into the ACS, is proposed in [18℄.5 Appli
ations of Ant Colony OptimizationACO algorithms have been applied to a large number of di�erent 
ombinatorialoptimization problems. Current ACO appli
ations follow into two 
lasses of appli-
ations. The �rst 
lass of problems 
omprisesNP-hard 
ombinatorial optimizationproblems, for whi
h 
lassi
al te
hniques often show poor behavior. Chara
teristi
for almost all su

essful ACO appli
ations to these problems is that ants are 
ou-pled with lo
al sear
h algorithms that �ne-tune the ants' solutions. The se
ond
lass of appli
ations 
omprises dynami
 shortest path problems, where the probleminstan
e under solution 
hanges at algorithm run-time. These 
hanges may a�e
tthe topology of the problem su
h as the availability of links et
. or, if the problemtopology is �xed, 
hara
teristi
s su
h as edge 
osts, vary with time. In this 
asethe algorithm has to adapt to the problem's dynami
s. This latter 
lass 
omprisesappli
ations of ACO to routing in tele
ommuni
ation networks.Instead of giving a detailed a

ount of the various ACO appli
ations, we shortlydes
ribe the (early) histori
al development of the appli
ations; for more extensiveoverviews on appli
ations of ACO we refer to [25, 26, 30, 31℄.The �rst 
ombinatorial problem ta
kled by an ACO algorithm was the travelingsalesman problem (TSP), be
ause this problem is probably the best known instan
eof an NP-hard, 
onstrained shortest path problem, thus, making it easy to adaptthe real ant's behavior to solve it. Sin
e the �rst appli
ation of AS in Dorigo'sPhD dissertation in 1991, it be
ame a 
ommon test-bed of several 
ontributionsproposing better performing ACO models than AS [27, 88, 12, 20℄.Chronologi
ally, the next two appli
ations were the quadrati
 assignment prob-lem (QAP) [60, 28℄ (the best performing ACO algorithms for the QAP are de-s
ribed in [88, 59℄) and the job-shop s
heduling problem [17℄ in 1994. Among thenext appli
ations are the �rst network routing appli
ations, starting in 1996 withthe work of S
hoonderwoerd et al. [81℄ and the work on AntNet by Di Caro andDorigo [24℄. Already in 1997, one year after the publi
ation of the �rst journal
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le on ACO in 1996 [28℄, the number of ACO appli
ations started to in
reasestrongly. Early appli
ations from 1997 (although sometimes published later) in-
lude 
lassi
al vehi
le routing problems [11℄, sequential ordering [37℄, 
ow shops
heduling [82℄, and graph 
oloring [21℄ problems. Sin
e then, many di�erent au-thors have used the ACO meta-heuristi
 to solve a large number of 
ombinatorialoptimization problems su
h as shortest 
ommon supersequen
e, generalized assign-ment, set 
overing, multiple knapsa
k and 
onstraint satisfa
tion problems, amongothers. The interested reader 
an �nd a summary of available appli
ations as ofend 2000 in [31℄. Apart from the previous appli
ations, ACO re
ently was used alsofor ma
hine learning purposes, 
on
retely to the design of learning algorithms forknowledge representation stru
tures su
h as 
lassi
al logi
 rules [76, 77℄, fuzzy logi
rules [15, 3, 16℄ and Bayesian networks [23, 22℄, showing very promising results.Nowadays, ACO rea
hes state-of-the-art results for several of the problems towhi
h it was applied: QAP, sequential ordering, vehi
le routing, s
heduling, andpa
ket-swit
hed network routing, among others. The available 
omputational re-sults for many other problems are often very good and 
lose to state-of-the-art,whi
h is noteworthy, be
ause many of these problems have already attra
ted ahuge amount of resear
h e�ort. Besides, the ACO meta-heuristi
 is being appliedto novel real-world problems with very promising results (for an example, see theappli
ation to design 
ombinatorial logi
 
ir
uits in this issue [62℄).6 Relation of ACO to other metaheuristi
sACO algorithms have several similarities with other general optimization, learningand modeling approa
hes su
h as heuristi
 graph sear
h, Monte Carlo simulationmethods and neural networks that are analyzed in [26℄. Moreover, the ACO meta-heuristi
 also shares several 
ommon aspe
ts with other metaheuristi
s su
h asevolutionary 
omputation and Estimation of Distribution Algorithms, on the onehand, and GRASP and multi-start lo
al sear
h, on the other hand.6.1 Relation between ACO, Evolutionary Computation andEstimation of Distribution AlgorithmsAs already noted in [26℄, there are similarities between the operation mode ofACO algorithms and evolutionary algorithms su
h as the use of a population ofindividuals en
oding problem solutions that are sto
hasti
ally generated.One main di�eren
e is that in evolutionary 
omputation, the knowledge aboutthe problem is 
ontained in the 
urrent population, whilst in ACO it is storedin the memoristi
 stru
ture 
olle
ting the pheromone trails. However, there ex-ists also a spe
i�
 
lass of evolutionary algorithms, the so-
alled Estimation ofDistribution Algorithms (EDAs) [56℄, whi
h, as ACO, are based on maintaininga memoristi
 stru
ture that represents a probability distribution de�ned on theproblem variables. This probability distribution is adapted at algorithm run-timeby generating solutions based on the 
urrent distribution that are in a se
ond stepused to update the probability distribution. This pro
ess is repeated iteratively.
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remental Learning(PBIL) [5℄, is also the most similar to ACO algorithms [20℄, and spe
i�
ally tothe ACS. PBIL deals with a probability array P = (p1; : : : ; pn) of dimension nequal to the number of problem variables, whi
h en
odes a probability distributionrepresenting a prototype for good quality solutions and whi
h is used to generate apopulation of possible solutions (binary arrays) in ea
h iteration. This probabilityarray undergoes adaption during the algorithm run. In the basi
 PBIL model, itis updated depending on the quality of the best solution generated in the 
urrentiteration using an ACS-like o�ine pheromone update rule. On the other hand, the
omponents of P also su�er random mutations to avoid the 
han
e of premature
onvergen
e.The similarities between ACO algorithms and PBIL were also analyzed by Mon-mar
h�e et al. [71℄. They presented a 
ommon framework, whi
h they 
alled Prob-abilisti
 Sear
h Metaheuristi
, whi
h also in
ludes one further EDA model, theBit-Simulated Crossover [91℄. Besides, Dorigo et al. have also studied similaritiesbetween ACO and other te
hniques and they identi�ed a larger group of algo-rithms with 
ommon 
hara
teristi
s that they 
alled Model-based Sear
h [94℄ (seealso Se
tion 7).Finally, we should remind that the similarities between ACO and evolutionary
omputation-EDAs have motivated the integration of some aspe
ts of the latter intoACO algorithms to improve their performan
e. This is the 
ase, in parti
ular, forBWAS (see Se
tion 4.5). In fa
t, BWAS in
orporates several EDA 
on
epts, mainlyfrom PBIL, like the mutation of pheromone trails and the punishment (removal ofpheromone) by the worst solution of an iteration.6.2 Relation between ACO, GRASP, and multi-startMany metaheuristi
s for NP-hard 
ombinatorial optimization problems implementsome form of a multi-start lo
al sear
h, where iteratively starting solutions fora lo
al sear
h are generated. These metaheuristi
s in
lude iterated lo
al sear
h(ILS) [57℄, variable neighborhood sear
h (VNS) [51℄, GRASP [34, 35℄, and memeti
algorithms (MA) [72℄. In fa
t, many ACO algorithms also belong to this 
lass ofmetaheuristi
s.10 In this 
ase, the operation mode of ACO algorithms 
an berepresented as follows:While (not stopping 
ondition) do1. Probabilisti
 
onstru
tion of solutions by a 
olony of ants.2. Lo
al optimization of these solutions.3. O�ine pheromone trail update.A main di�eren
e between ACO and ILS, VNS, or MA is the way solutionsare generated. While ACO 
onstru
ts solutions from s
rat
h, ILS, VNS, and MA10 Noti
e that this is true for most of the best performing ACO algorithms when applied to NP-hard problems, but not for ACO algorithms applied, for example, to routing in tele
ommuni
ationnetworks.
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ation of appropriate operators that, whenapplied to one or several solutions, return a solution that represents a perturbationof the initial solution(s). Additionally, ACO uses an explizit form of memory (inthe form of pheromone trails), whi
h is typi
ally not the 
ase for the other threemetaheuristi
s.However, ACO shares the parti
ularity of solution 
onstru
tion with GRASPthat probabilisti
ally 
onstru
ts solutions and then applies lo
al sear
h to them. InGRASP, this two-phase pro
ess is repeated many times and the best solution foundis returned. In the GRASP 
onstru
tion phase, at ea
h 
onstru
tion step a 
andi-date set is built by �rst ordering solution 
omponents a

ording to some heuristi
information, and then in
luding the most promising 
omponents (greedy 
ompo-nent). Next, a random de
ision is made among the 
omponents of the 
andidateset, typi
ally with all members of the 
andidate set having the same probabilityof being sele
ted (randomized 
omponent). A parti
ularity of GRASP is that theheuristi
 information at ea
h step takes into a

ount the already available partialsolution (adaptive 
omponent). From this des
ription, it is 
lear that GRASPand ACO are di�erent. While ACO uses memoristi
 information on the algorithmhistory provided by the pheromone trails, GRASP does not use su
h a type ofinformation to bias the 
onstru
tion pro
ess. On the other side, ACO does notne
essarily use heuristi
 information whi
h is dependent on the partial solution,whi
h is always done by GRASP. However, using adaptive (dynami
) heuristi
 in-formation was shown to improve ACO performan
e for several appli
ations; werefer to [31℄ for a dis
ussion of this issue.7 Theoreti
al developmentsCurrent theoreti
al results on ACO 
on
ern mainly two aspe
ts, (i) proofs on the
onvergen
e behavior of ACO algorithms and (ii) the establishment of formally wellfounded links between ACO algorithms and related algorithmi
 te
hniques.St�utzle and Dorigo have proven 
onvergen
e properties for a 
lass of ACO al-gorithms 
alled ACO�min [86℄. Chara
teristi
 of algorithms in ACO�min is that theyuse an elitist pheromone update strategy and lower limits on the values of anypheromone trail. For ACO�min they proved that for any small 
onstant � > 0 andfor a suÆ
iently large number of algorithm iterations t, the probability of �nding atleast on
e an optimal solution is P �(t) � 1� � and that this probability tends to 1for t!1. The major importan
e of this result is that it applies to at least two ofthe (experimentally) most su

essful ACO algorithms: ACS [27℄ andMMAS [88℄.However, the �rst to proof 
onvergen
e of a parti
ular ACO algorithm, the so
alled graph-based Ant System (GBAS), was Gutjahr [48℄. He proved that (i) forea
h � > 0, for a �xed �, and for a suÆ
iently large number of ants, the probabilityP that a �xed ant 
onstru
ts the optimal solution at iteration t is P � 1 � � forall t � t0, with t0 = t0(�) and (ii) for ea
h � > 0, for a �xed number of ants, andfor an evaporation rate � suÆ
iently 
lose to zero, the probability P that a �xedant 
onstru
ts the optimal solution at iteration t is P � 1 � � for all t � t0, witht0 = t0(�).
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h was never applied to any 
ombinatorialoptimization problem so far. Nevertheless, from the des
ription of the algorithmand some 
al
ulations on parameter settings for low values of �, whi
h are impliedby the theorem, the algorithm would result in an extremely slow progress towardsgood solutions and therefore, most likely, it will not be relevant to ACO pra
ti
e.In a very re
ent paper, Gutjahr [49℄ extended the 
onvergen
e results for GBAS[48℄ to two variants of GBAS obtaining the same type of 
onvergen
e results as forSimulated Annealing [50℄: 
onvergen
e of the 
urrent solution to an optimal solu-tion with probability one. This result is established for two GBAS variants with (i)time-dependent pheromone evaporation and (ii) time-dependent lower pheromonebounds.There are a number of di�eren
es between the proofs for ACO�min and GBAS.The most important 
on
erns the type of 
onvergen
e proved. While for ACO�min
onvergen
e in value is proven (that is, the algorithm will eventually �nd the op-timal solution), for GBAS Gutjahr proves 
onvergen
e in solution (that is, thealgorithm will 
onverge to a situation in whi
h it generates the optimal solutionover and over again). It is 
lear that for pra
ti
al purposes it is enough to proof
onvergen
e in value, be
ause basi
ally all metaheuristi
s return the best solutionfound during the sear
h pro
ess and therefore it is enough to generate the optimalsolution at least on
e.Formal relationships between ACO algorithms and sto
hasti
 gradient des
ent(SGD), a te
hnique whi
h has been extensively used in ma
hine learning [80, 70℄,are established by Meuleau and Dorigo [66℄. They show that a variant of AS
an be interpreted as a SGD algorithm, whi
h performs a gradient des
ent in thespa
e of the pheromone trails. As mentioned in Se
tion 6.1, Dorigo et al. [32℄give an interpretation of ACO as a model-based sear
h method. These kinds ofte
hniques are 
hara
terized by the fa
t that 
andidate solutions are generated by aparameterized probabilisti
 model that is updated after ea
h iteration by previouslyseen solutions. This feedba
k is used to bias the probability distribution for thefollowing iterations. In this framework, links between ACO and EDAs, SGD, the
ross-entropy method, and model-based geneti
 algorithms [73℄ are established.8 New trends in Ant Colony OptimizationTwo still very a
tive resear
h dire
tions in ACO are the the appli
ation of ACO al-gorithms to 
hallenging 
ombinatorial optimization problems and the developmentof new, better performing algorithmi
 variants of ACO algorithms. In parti
ular,the appli
ation of ACO to a steadily in
reasing variety of (in most 
ases NP-hard)appli
ation problems a

ounts for the largest part of new 
ontributions. Mostnoteworthy regarding the various appli
ations are papers 
on
erned with multi-obje
tive problems and those to dynami
 optimization problems. In multi-obje
tiveoptimization problems, several 
ompeting obje
tives have to be optimized. Firstapproa
hes to multi-obje
tive optimization in
lude the two-
olony approa
h byGambardella, Taillard and Agazzi to vehi
le routing problems with time win-dows, where two hierar
hi
ally ordered obje
tives are 
onsidered [38℄. Mariano and
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onsidered the appli
ation of ACO to a multi-obje
tive optimization prob-lem arising in the design of water irrigation networks. In their approa
h one 
olonyis assigned to ea
h obje
tive and the obje
tives are ranked by importan
e [61℄.Iredi, Merkle and Middendorf explored the appli
ation of ACO for �nding Pareto-optimal solutions to a bi-
riterion single-ma
hine s
heduling problem [53℄.Some of the greatest su

esses of ACO algorithms so far were obtained in appli-
ations to highly dynami
 problems like those to tele
ommuni
ations routing withAntNet by Di Caro and Dorigo being the best performing variant [24℄. For su
h ap-pli
ations, ACO algorithms are well suited, be
ause they mat
h very well the prob-lem 
hara
teristi
s like sto
hasti
 state transitions and that only lo
al informationis available. Another resear
h dire
tion in dynami
 problems is the appli
ation ofACO to time-varying variants of 
lassi
al NP-hard optimization problems like theTSP or the QAP. Examples are the papers by Gunts
h and Middendorf [46, 45, 47℄and Ey
kelhof and Snoek [33℄.With respe
t to algorithmi
 te
hniques in general, a hot re
ent trend is the de-velopment of hybrid te
hniques 
ombining ideas from exa
t algorithms and meta-heuristi
s. In ACO, one parti
ular algorithms has a
tually be designed with assu
h a hybrid: the Approximate Nondeterministi
 Tree-Sear
h (ANTS) pro
edureby Maniezzo [58℄ 
ombines ACO algorithms with lower bounding te
hniques frommathemati
al programming. In parti
ular, lower bounds on the 
ost of 
ompletinga partial solution are 
omputed that are used as the heuristi
 information on theattra
tiveness of adding solution 
omponents. This o�ers advantages like the pos-sible elimination of extensions of partial solutions, if these would lead to a larger
ost than the best solution already found.Some resear
h e�orts in ACO were also dire
ted towards speeding up the algo-rithm by using parallel pro
essing. ACO appears to be naturally suited for parallelpro
essing be
ause of the use of a population of solutions. However, the 
om-muni
ation overhead through the ex
hange of the pheromone evaporation makesdiÆ
ult the realization of �ne-grained parallelization s
hemes. Therefore, most par-allelization s
hemes fo
us on 
ourse-grained parallelization [13, 68, 69, 83℄, whi
his implemented typi
ally in a way similar to the island-model in evolutionary al-gorithms [14℄. One re
ent ex
eption to these (rather standard) parallelization ap-proa
hes is the adaptation of an ACO algorithm to run on re
on�gurable pro
essorarrays [64℄.Finally, as ACO be
omes more and more widely used, several resear
hers alsohave shifted the attention for examining the reasons of ACO's su

ess, towards adeeper understanding of the sear
h behavior. St�utzle and Hoos have linked thereasons of ACO su

ess to results of the sear
h spa
e analysis of 
ombinatorialoptimization problems. In parti
ular, ACO appears to perform parti
ularly wellon problems whi
h show a high 
orrelation between the �tness of solutions andthe distan
e to global optima (measured by the so 
alled �tness-distan
e 
orrela-tion [54℄) [88℄. Studies of ACO behavior on simple problems like shortest pathproblems or (polynomially solvable) permutation problems shed some light on theimportan
e of some design features of ACO su
h as the quality-based pheromoneupdate or di�erent strategies for solution 
onstru
tion [29, 63℄. The dynami
s ofACO algorithms is studied by Merkle and Middendorf [65℄. Finally, Blum, Sam-
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hin have shown that parti
ular de�nitions of the pheromone trailsmay lead to the unexpe
ted situation that the performan
e of Ant System mayeven degrade at run time [8℄. Also when using more performing ACO algorithmsthan AS, Blum and Sampels show that the way pheromone trails are de�ned has(as it may be expe
ted) an enormous in
uen
e on ACO algorithms' behavior [7℄.9 Con
luding remarksNowadays, ACO is a well de�ned and good performing metaheuristi
 that is moreand more often applied to solve a variety of 
omplex 
ombinatorial problems. In thispaper, we have reviewed the underlying ideas of this approa
h that lead from thebiologi
al inspiration to the ACO metaheuristi
. Most of the existing approa
heshave been des
ribed and some results regarding topi
s su
h as the relationship toother metaheuristi
s and theoreti
al aspe
ts have been summarized. Moreover, wehave identi�ed some re
ent trends in the �eld, trying to put some light on thepossible future development of ACO.Referen
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