Chapter 9

THE ANT COLONY OPTIMIZATION
METAHEURISTIC: ALGORITHMS,
APPLICATIONS, AND ADVANCES

Marco Dorigo

IRIDIA, Université Libre de Bruxelles, Belgium
E-mail: mdorigo@ulb.ac.be

URL: http://iridia.ulb.ac.be/~mdorigo

Thomas Stiitzle

Intellectics Group, TU Darmstadt, Germany

E-mail: stuetzle @informatik.tu-darmstadt.de

URL: http://www.intellektik.informatik.tu-darmstadt.de/"tom

1 INTRODUCTION

Ant Colony Optimization (ACO) [32,33] is a recent metaheuristic approach for
solving hard combinatorial optimization problems. The inspiring source of ACO is
the pheromone trail laying and following behavior of real ants which use pheromones
as acommunication medium. In analogy to the biological example, ACO is based on the
indirect communication of a colony of simple agents, called (artificial) ants, mediated
by (artificial) pheromone trails. The pheromone trails in ACO serve as a distributed,
numerical information which the ants use to probabilistically construct solutions to the
problem being solved and which the ants adapt during the algorithm’s execution to
reflect their search experience.

The first example of such an algorithm is Ant System (AS) [30,36-38], which was
proposed using as example application, the well known Traveling Salesman Problem
(TSP) [60,76]. Despite encouraging initial results, AS could not compete with state-
of-the-art algorithms for the TSP. Nevertheless, it had the important role of stimulating
further research both on algorithmic variants, which obtain much better computational
performance, and on applications to a large variety of different problems. In fact,
there exists now a considerable number of applications obtaining world class perfor-
mance on problems including the quadratic assignment, vehicle routing, sequential
ordering, scheduling, routing in Internet-like networks, and so on [22,26,46,47,67,85].
Motivated by this success, the ACO metaheuristic has been proposed [32,33] as a
common framework for the existing applications and algorithmic variants. Algo-
rithms which follow the ACO metaheuristic will be called in the following ACO
algorithms.

252 M. Dorigo and T. Stiitzle

Current applications of ACO algorithms fall into the two important problem classes
of static and dynamic combinatorial optimization problems. Static problems are those
whose topology and costs do not change while the problems are being solved. This
is the case, e.g., for the classic TSP, in which city locations and intercity distances
do not change during the algorithm’s run-time. In contrast, in dynamic problems the
topology and costs can change while solutions are built. An example of such a problem
is routing in telecommunications networks [26], in which traffic patterns change all the
time. The ACO algorithms for solving these two classes of problems are very similar
from a high-level perspective, but they differ significantly in implementation details.
The ACO metaheuristic captures these differences and is general enough to comprise
the ideas common to both application types.

The (artificial) ants in ACO implement a randomized construction heuristic which
makes probabilistic decisions as a function of artificial pheromone trails and possibly
available heuristic information based on the input data of the problem to be solved.
As such, ACO can be interpreted as an extension of traditional construction heuristics
which are readily available for many combinatorial optimization problems. Yet, an
important difference with construction heuristics is the adaptation of the pheromone
trails during algorithm execution to take into account the cumulated search experience.

The rest of this chapter is organized as follows. In Section 2, we briefly overview
construction heuristics and local search algorithms. In Section 3, we define the type
of problem to which the ACO metaheuristic applies, the ants’ behavior, and the ACO
metaheuristic itself. Section 4 outlines the inspiring biological analogy and describes
the historical developments leading to ACO. In Section 5, we illustrate how the ACO
metaheuristic can be applied to different types of problems and we give an overview of
its successful applications. Section 6 discusses several issues arising in the application
of the ACO metaheuristic; Section 7 reports on recent developments and in Section 8
we conclude indicating future research directions.

2 TRADITIONAL APPROXIMATION APPROACHES

Many important combinatorial optimization problems are hard to solve. The notion
of problem hardness is captured by the theory of computational complexity [49,74]
and for many important problems it is well known that they are A/P-hard, that is, the
time needed to solve an instance in the worst case grows exponentially with instance
size. Often, approximate algorithms are the only feasible way to obtain near optimal
solutions at relatively low computational cost.

Most approximate algorithms are either construction algorithms or local search
algorithms." These two types of methods are significantly different, because construc-
tion algorithms work on partial solutions trying to extend these in the best possible way
to complete problem solutions, while local search methods move in the search space
of complete solutions.

!Other approximate methods are also conceivable. For example, when stopping exact methods, like
Branch & Bound, before completion [4,58] (e.g., after some given time bound, or when some guarantee on
the solution quality is obtained through the use of lower and upper bounds), we can convert exact algorithms
into approximate ones.

Ant Colony Optimization Metaheuristic 253

21 Construction Algorithms

Construction algorithms build solutions to a problem under consideration in an incre-
mental way starting with an empty initial solution and iteratively adding appropriate
solution components without backtracking until a complete solution is obtained. In the
simplest case, solution components are added in random order. Often better results
are obtained if a heuristic estimate of the myopic benefit of adding solution compo-
nents is taken into account. Greedy construction heuristics add at each step a solution
component which achieves the maximal myopic benefit as measured by some heuris-
tic information. An algorithmic outline of a greedy construction heuristic is given in
Figure 9.1. The function GreedyComponent returns the solution component e with the
best heuristic estimate. Solutions returned by greedy algorithms are typically of better
quality than randomly generated solutions. Yet, a disadvantage of greedy construction
heuristics is that they can generate only a very limited number of different solutions.
Additionally, greedy decisions in early stages of the construction process strongly con-
strain the available possibilities at later stages, often causing very poor moves in the
final phases of the solution construction.

As an example, consider a greedy construction heuristic for the traveling salesman
problem. In the TSP we are given a complete weighted graph G = (N, .A) with N/
being the set of vertices, representing the cities, and A the set of edges fully connecting
the vertices AV, Each edge is assigned a value d; j» which s the length of edge (i, j) € A.
The TSP is the problem of finding a minimal length Hamiltonian circuit of the graph,
where an Hamiltonian circuit is a closed tour visiting exactly once each of the n = |A/]
vertices of G. For symmetric TSPs, the distances between the cities are independent
of the direction of traversing the edges, that is, dj; = dj; for every pair of vertices. In
the more general asymmetric TSP (ATSP) at least for one pair of vertices i, j we have
di j #+d ji+

A simple rule of thumb to build a tour is to start from some initial city and to always
choose to go to the closest still unvisited city before returning to the start city. This
algorithm is known as the nearest neighbor tour construction heuristic.

Figure 9.2 shows a tour returned by the nearest neighbor heuristic on TSP instance
att532, taken from TSPLIB,? with 532 cities in the US. Noteworthy in this example is
that there are a few very long links in the tour, leading to a strongly suboptimal solution.

procedure Greedy Construction Heuristic
s, = empty solution
while s, not_a_complete_solution do
e = GreedyComponent(s,)

Sp=5p®e
end
return s,

end Greedy Construction Heuristic

Figure 9.1. Algorithmic skeleton of a greedy construction heuristic, The addition of component
e to a partial solution sp is denoted by the operator @.

2TSPLIB is a benchmark library for the TSP and related problems and is accessible via
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB9S.

254 M. Dorigo and T. Stiitzle
7000 T T T T T T

T T
NN:att532 ——

6000
5000
4000
3000
2000

1000

0 1 L 1 1 1 1 1 i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Figure 9.2. Tour returned by the nearest neighbor heuristic on TSP instance att532 from
TSPLIB.

In fact, construction algorithms are typically the fastest approximate methods, but the
solutions they generate often are not of a very high quality and they are not guaranteed to
be optimal with respect to small changes; the results produced by constructive heuristics
can often be improved by local search algorithms.

2.2 Local Search

Local search algorithms start from a complete initial solution and try to find a better
solution in an appropriately defined neighborhood of the current solution. In its most
basic version, known as iterative improvement, the algorithm searches the neighbor-
hood for an improving solution. If such a solution is found, it replaces the current
solution and the local search continues. These steps are repeated until no improving
neighbor solution can be found in the neighborhood of the current solution and the
algorithm ends in a local optimum. An outline of an iterative improvement algorithm
is given in Figure 9.3. The procedure Improve returns a better neighbor solution
if one exists, otherwise it returns the current solution, in which case the algorithm
stops.

The choice of an appropriate neighborhood structure is crucial for the performance
of the local search algorithm and has to be done in a problem specific way. The neigh-
borhood structure defines the set of solutions that can be reached from s in one single
step of a local search algorithm. An example neighborhood for the TSP is the k-change
neighborhood in which neighbor solutions differ by at most k edges. Figure 9.4 shows
an example of a 2-change neighborhood. The 2-change algorithm systematically tests
whether the current tour can be improved by replacing two edges. To fully specify a
local search algorithm it is necessary to designate a particular neighborhood exam-
ination scheme that defines how the neighborhood is searched and which neighbor

Ant Colony Optimization Metaheuristic 255

procedure Iterativelmprovement (s € S)
s’ = Improve (s)

while 5" # s do
s=¢s

s’ = Improve(s)

end

return s

end [terativelmprovement

Figure 9.3. Algorithmic skeleton of iterative improvement.

2-change .

Figure 9.4, Schematic illustration of a 2-change move. The proposed move reduces the total
tour length if we consider the Euclidean distance between the points.

solution replaces the current one. In the case of iterative improvement algorithms, this
rule is called the pivoting rule [93] and examples are the best-improvement rule, which
chooses the neighbor solution giving the largest improvement of the objective func-
tion, and the first-improvement rule, which uses the first improved solution found in
the neighborhood to replace the current one. A common problem with local search
algorithms is that they easily get trapped in local minima and that the result strongly
depends on the initial solution.

3 THE ACO METAHEURISTIC

Artificial ants used in ACO are stochastic solution construction procedures that prob-
abilistically build a solution by iteratively adding solution components to partial
solutions by taking into account (i) heuristic information on the problem instance being
solved, if available, and (ii) (artificial) pheromone trails which change dynamically at
run-time to reflect the agents’ acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety of different
solutions and hence explore a much larger number of solutions than greedy heuristics.
At the same time, the use of heuristic information, which is readily available for many
problems, can guide the ants towards the most promising solutions. More important,
the ants’ search experience can be used to influence, in a way reminiscent of rein-
forcement learning [89], the solution construction in future iterations of the algorithm.
Additionally, the use of a colony of ants can give the algorithm increased robustness
and in many ACO applications the collective interaction of a population of agents is
needed to efficiently solve a problem.

The domain of application of ACO algorithms is vast. In principle, ACO can be
applied to any discrete optimization problem for which some solution construction

256 M. Dorigo and T. Stiitzle

mechanism can be conceived. In the following of this section, we first define a generic
problem representation which the ants in ACO exploit to construct solutions, then we
detail the ants’ behavior while constructing solutions, and finally we define the ACO
metaheuristic.

3.1 Problem Representation

Let us consider the minimization problem3 (S, f,2), where § is the set of candidate
solutions, f is the objective function which assigns to each candidate solution s € 8§
an objective function (cost) value f(s, 1),% and Q is a set of constraints. The goal is to
find a globally optimal solution s§op; € S, thatis, a minimum cost solution that satisfies
the constraints £2.

The problem representation of a combinatorial optimization problem (S, f, £2)
which is exploited by the ants can be characterized as follows:

m A finite set C = {c1,¢2,...,CNc} Of components is given.

m The states of the problem are defined in terms of sequences x =
{CiyCjyv.vyChya i) over the elements of C. The set of all possible sequences is
denoted by X'. The length of a sequence x, that is, the number of components in
the sequence, is expressed by |x|. The maximum length of a sequence is bounded
by a positive constant n < +00.

The set of (candidate) solutions S is a subset of X (i.e., S T X).

The finite set of constraints defines the set of feasible states X, with X c X,

A non-empty set S* of feasible solutions is given, with §* C X and S* C 8.

A cost f(s,t) is associated to each candidate solution s € S,

® In some cases a cost, or the estimate of a cost, J(x;,#) can be associated to states
other than solutions. If x; can be obtained by adding solution components to a
state x; then J(x;,¢) < J(xj,t). Note thatJ(s,1) = f(s,1).

Given this representation, artificial ants build solutions build solutions by moving
on the construction graph G = (C, L), where the vertices are the components C and
the set £ fully connects C (elements of L are called connections). The problem con-
straints £2 are implemented in the policy followed by the artificial ants build solutions,
as explained in the next section. The choice of implementing the constraints in the
construction policy of the artificial ants allows a certain degree of flexibility. In fact,
depending on the combinatorial optimization problem considered, it may be more rea-
sonable to implement constraints in a hard way allowing ants to build only feasible
solutions, or in a soft way, in which case ants can build infeasible solutions (that is,
candidate solutions in & \ 8*) that will be penalized, depending on their degree of
infeasibility.

3.2 Ant’s Behavior

Ants can be characterized as stochastic construction procedures which build solutions
moving on the construction graph G = (C, £). Ants do not move arbitrarily on G,

3The adaptation to a maximization problem is straightforward.
“The parameter ¢ indicates that the the objective function can be time dependent, as it is the case in
applications to dynamic problems.

Ant Colony Optimization Metaheuristic 257

but rather follow a construction policy which is a function of the problem constraints
Q. In general, ants try to build feasible solutions, but, if necessary, they can generate
infeasible solutions. Components ¢; € C and connections /;; € £ can have associated
a pheromone trail T (1;if associated to components, t;; if associated to connections)
encoding a long-term memory about the whole ant search process that is updated by the
ants themselves, and a heuristic value 1 (n; andn;;, respectively) representing a priori
information about the problem instance definition or run-time information provided by
a source different from the ants. In many cases 1 is the cost, or an estimate of the cost,
of extending the current state. These values are used by the ants’ heuristic rule to make
probabilistic decisions on how to move on the graph.
More precisely, each ant k of the colony has the following properties:

m It exploits the graph G = (C, £) to search for feasible solutions s of minimum
cost. That is, solutions s such that f; = ming f(s,).

® It has a memory M¥ that it uses to store information about the path it followed
so far. Memory can be used (i) to build feasible solutions (i.e., to implement
constraints €2), (ii) to evaluate the solution found, and (iii) to retrace the path
backward to deposit pheromone.

w It can be assigned a start state x* and one or more termination conditions e*.

Usually, the start state is expressed either as a unit length sequence (that is,
a single component sequence), or an empty sequence.

® When in state x, = {x,_1,{) it tries to move to any vertex jin its feasible
neighborhood .N:-"‘ that is, to a state (x,, j) € A. If this is not possible, then the

ant might be allowed to move to a vertex j in its infeasible neighborhood ZA/ f,

generating in this way an infeasible state (that is, a state (x,, j) € X'\ X.

m [t selects the move by applying a probabilistic decision rule. Its probabilistic
decision rule is a function of (i) locally available pheromone trails and heuristic
values, (ii) the ant’s private memory storing its past history, and (iii) the problem
constraints.

m The construction procedure of ant k stops when at least one of the termination
conditions e is satisfied. Examples of termination conditions are when a solution
is completed, or when, if building infeasible solutions is not allowed, there are
no feasible states reachable from the ant current state.

® When adding a component ¢; to the current solution it can update the pheromone

trail associated to it or to the corresponding connection. This is called online
step-by-step pheromone update.

Once built a solution, it can retrace the same path backward and update the
pheromone trails of the used components or connections. This is called online
delayed pheromone update.

It is important to note that ants move concurrently and independently and that
each ant is complex enough to find a (probably poor) solution to the problem under
consideration. Typically, good quality solutions emerge as the result of the collective
interaction among the ants which is obtained via indirect communication mediated by
the information ants read/write in the variables storing pheromone trail values. In a
way, this is a distributed learning process in which the single agents, the ants, are not

258 M. Dorigo and T. Stiitzle

adaptive themselves but, on the contrary, they adaptively modify the way the problem
is represented and perceived by other ants.

3.3 The Metaheuristic

Informally, the behavior of ants in an ACO algorithm can be summarized as follows.
A colony of ants concurrently and asynchronously move through adjacent states of the
problem by building paths on G. They move by applying a stochastic local decision
policy that makes use of pheromone trails and heuristic information. By moving, ants
incrementally build solutions to the optimization problem. Once an ant has built a
solution, or while the solution is being built, the ant evaluates the (partial) solution and
deposits pheromone trails on the components or connections it used. This pheromone
information will direct the search of future ants.

Besides ants’ activity, an ACO algorithm includes two additional procedures: phero-
mone trail evaporation and daemon actions (this last component being optional).
Pheromone evaporation is the process by means of which the pheromone deposited
by previous ants decreases over time. From a practical point of view, pheromone
evaporation is needed to avoid a too rapid convergence of the algorithm towards a sub-
optimal region. It implements a useful form of forgetting, favoring the exploration of
new areas of the search space. Daemon actions can be used to implement centralized
actions which cannot be performed by single ants. Examples are the activation of a
local optimization procedure, or the collection of global information that can be used
to decide whether it is useful or not to deposit additional pheromone to bias the search
process from a non-local perspective. As a practical example, the daemon can observe
the path found by each ant in the colony and choose to deposit extra pheromone on the
components used by the ant that built the best solution. Pheromone updates performed
by the daemon are called off-line pheromone updates.

In Figure 9.5 the ACO metaheuristic behavior is described in pseudo-code. The
main procedure of the ACO metaheuristic manages, via the ScheduleActivities con-
struct, the scheduling of the three above discussed components of ACO algorithms: (i)
management of ants’ activity, (i) pheromone evaporation, and (iii) daemon actions.
The ScheduleActivities construct does not specify how these three activities are sched-
uled and synchronized. In other words, it does not say whether they should be executed
in a completely parallel and independent way, or if some kind of synchronization

procedure ACO metaheuristic
ScheduleActivities
ManageAntsActivity ()
EvaporatePheromone ()
DaemonActions() {Optional}
end ScheduleActivities
end ACO metaheuristic

Figure 9.5. The ACO metaheuristic in pseudo-code. Comments are enclosed in braces. The
procedure DaemonActions () is optional and refers to centralized actions executed by a daemon
possessing global knowledge.

Ant Colony Optimization Metaheuristic 259

among them is necessary. The designer is therefore free to specify the way these three
procedures should interact.

4 HISTORY OF ACO ALGORITHMS

The first ACO algorithm proposed was Ant System (AS). AS was applied to some rather
small instances of the traveling salesman problem (TSP) with up to 75 cities. It was
able to reach the performance of other general-purpose heuristics like evolutionary
computation [30,38]. Despite these initial encouraging results, AS did not prove to
be competitive with state-of-the-art algorithms specifically designed for the TSP when
attacking large instances. Therefore, a substantial amount ofrecent research has focused
on ACO algorithms which show better performance than AS when applied, forexample,
to the TSP. In the following of this section we first briefly introduce the biological
metaphor on which AS and ACO are inspired, and then we present a brief history of
the developments that have led from the original AS to the most recent ACO algorithms.
In fact, these more recent algorithms are direct extensions of AS which add advanced
features to improve the algorithm performance.

4.1 Biological Analogy

In many ant species, individual ants may deposit a pheromone (a particular chemical
that ants can smell) on the ground while walking [23,52]. By depositing pheromone
they create a trail that is used, e.g., to mark the path from the nest to food sources
and back. In fact, by sensing pheromone trails foragers can follow the path to food
discovered by other ants. Also, they are capable of exploiting pheromone trails to
choose the shortest among the available paths leading to the food.

Deneubourg and colleagues [23,52] used a double bridge connecting a nest of ants
and a food source to study pheromone trail laying and following behavior in controlled
experimental conditions.” They ran a number of experiments in which they varied the
ratio between the length of the two branches of the bridge. The most interesting, for
our purposes, of these experiments is the one in which one branch was longer than the
other. In this experiment, at the start the ants were left free to move between the nest
and the food source and the percentage of ants that chose one or the other of the two
branches was observed over time. The outcome was that, although in the initial phase
random oscillations could occur, in most experiments all the ants ended up using the
shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone on
the two branches. Hence, the ants do not have a preference and they select with the same
probability either of the two branches. Therefore, it can be expected that, on average,
half of the ants choose the short branch and the other half the long branch, although
stochastic oscillations may occasionally favor one branch over the other. However,
because one branch is shorter than the other, the ants choosing the short branch are the
first to reach the food and to start their travel back to the nest.® But then, when they must

The experiment described was originally executed using a laboratory colony of Argentine ants
(Iridomyrmex humilis). It is known that these ants deposit pheromone both when leaving and when returning
to the nest [52].

%In the ACO literature this is often called differential path length effect.

260 M. Dorigo and T. Stiitzle

make a decision between the short and the long branch, the higher level of pheromone
on the short branch biases their decision in its favor.” Therefore, pheromone starts
to accumulate faster on the short branch which will eventually be used by the great
majority of the ants.

It should be clear by now how real ants have inspired AS and later algorithms: the
double bridge was substituted by a graph, and pheromone trails by artificial pheromone
trails. Also, because we wanted artificial ants to solve problems more complicated than
those solved by real ants, we gave artificial ants some extra capacities, like a memory
(used to implement constraints and to allow the ants to retrace their path back to the nest
without errors) and the capacity for depositing a quantity of pheromone proportional
to the quality of the solution produced (a similar behavior is observed also in some real
ants species in which the quantity of pheromone deposited while returning to the nest
from a food source is proportional to the quality of the food source found [3]).

In the next section we will see how, starting from AS, new algorithms have been
proposed that, although retaining some of the original biological inspiration, are less and
less biologically inspired and more and more motivated by the need of making ACO
algorithms competitive with or indeed better than other state-of-the-art algorithms.
Nevertheless, many aspects of the original Ant System remain: the need for a colony,
the role of autocatalysis, the cooperative behavior mediated by artificial pheromone
trails, the probabilistic construction of solutions biased by artificial pheromone trails
and local heuristic information, the pheromone updating guided by solution quality, and
the evaporation of pheromone trail, are present in all ACO algorithms. It is interesting
to note that there is one well known algorithm that, although making use in some way
of the ant foraging metaphor, cannot be considered an instance of the Ant Colony
Optimization metaheuristic. This is HAS-QAP, proposed in [48], where pheromone
trails are not used to guide the solution construction phase; on the contrary, they are
used to guide modifications of complete solutions in a local search style. This algorithm
belongs nevertheless to ant algorithms, a new class of algorithms inspired by a number
of different behaviors of social insects. Ant algorithms are receiving increasing attention
in the scientific community (see, e.g., [8,9,11,31]) as a promising novel approach to
distributed control and optimization.

4.2 Historical Development

As we said, AS was the first example of an ACO algorithm to be proposed in the
literature. In fact, AS was originally a set of three algorithms called ant-cycle, ant-
density, and ant-quantity. These three algorithms were proposed in Dorigo’s doctoral
dissertation [30] and first appeared in a technical report [36,37] that was published
a few years later in the IEEE Transactions on Systems, Man, and Cybernetics [38].
Another early publication is [17].

While in ant-density and ant-quantity the ants updated the pheromone directly after
a move from a city to an adjacent one, in ant-cycle the pheromone update was only
done after all the ants had constructed the tours and the amount of pheromone deposited
by each ant was set to be a function of the tour quality. Because ant-cycle performed
better than the other two variants, it was later called simply Ant System (and in fact, it

TA process like this, in which a decision taken at time 7 increases the probability of making the same
decision at time 7 > tis said to be an autocatalytic process. Autocatalytic processes exploit positive
feedback.

Ant Colony Optimization Metaheuristic ~ 261

is the algorithm that we will present in the following subsection), while the other two
algorithms were no longer studied.

The major merit of AS, whose computational results were promising but not compet-
itive with other more established approaches, was to stimulate a number of researchers,
mostly in Europe, to develop extensions and improvements of its basic ideas so as to
produce better performing, and often state-of-the-art, algorithms. It is following the
successes of this collective undertaking that recently Dorigo and Di Caro [32] made
the synthesis effort that led to the definition of the ACO metaheuristic presented in this
chapter (see also [33]). In other words, the ACO metaheuristic was defined a posteriori
with the goal of providing a common characterization of a new class of algorithms and
a reference framework for the design of new instances of ACO algorithms.

4.2.1 The First ACO Algorithm: Ant System and the TSP

The traveling salesman problem (TSP) is a paradigmatic N"P-hard combinatorial
optimization problem which has attracted an enormous amount of research effort
[57,60,76]. The TSP is a very important problem also in the context of Ant Colony Opti-
mization because it is the problem to which the original AS was first applied [30,36,38],
and it has later often been used as a benchmark to test new ideas and algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a memory which
stores the partial solution it has constructed so far (initially the memory contains only
the start city). Starting from its start city, an ant iteratively moves from city to city. When
atacity 7, an ant k chooses to go to an as yet unvisited city j with a probability given by

[zij (D1 - [mij1P
ZIEN; [T ()] - [nir]P

where n;; = 1/d;j is a priori available heuristic information, @ and B are two
parameters which determine the relative influence of pheromone trail and heuristic
information, and N;.k is the feasible neighborhood of ant k, that is, the set of cities
which ant k has not yet visited. Parameters & and 8 have the following influence on the
algorithm behavior. If @ = 0, the selection probabilities are proportional to [#; _,-]"'j and
the closest cities will more likely be selected: in this case AS corresponds to a classical
stochastic greedy algorithm (with multiple starting points since ants are initially ran-
domly distributed on the cities). If 8 = 0, only pheromone amplification is at work:
this will lead to the rapid emergence of a stagnation situation with the corresponding
generation of tours which, in general, are strongly suboptimal [30]. (Search stagnation
is defined in [38] as the situation where all the ants follow the same path and construct
the same solution.)

The solution construction ends after each ant has completed a tour, that is, after each
ant has constructed a sequence of length n. Next, the pheromone trails are updated.
In AS this is done by first lowering the pheromone trails by a constant factor (this is
pheromone evaporation) and then allowing each ant to deposit pheromone on the edges
that belong to its tour:

if j € NF 9.1)

plit) =

m
VG, j) Tt + D =(1-p)- 1)+ Y Atk 9.2)

k=1
where 0 < p < 1 is the pheromone trail evaporation rate and m is the number of
ants. The parameter p is used to avoid unlimited accumulation of the pheromone trails

262 M. Dorigo and T. Stiitzle

and enables the algorithm to “forget” previous “bad” decisions. On edges which are
not chosen by the ants, the associated pheromone strength will decrease exponentially
with the number of iterations. Arf’}(r) is the amount of pheromone ant k deposits on
the edges; it is defined as

1/Lk(t) if edge (i, j) is used by ant k

§ 9.3)
0 otherwise

Ath() =

where L¥(t) is the length of the kth ant’s tour. By Equation 9.3, the shorter the ant’s tour
is, the more pheromone is received by edges belonging to the tour.® In general, edges
which are used by many ants and which are contained in shorter tours will receive more
pheromone and therefore are also more likely to be chosen in future iterations of the
algorithm.

4.2.2 Ant System and its Extensions

As previously stated, AS was not competitive with state-of-the-art algorithms for TSP.
Researchers then started to extend it to try to improve its performance.

A first improvement, called the elitist strategy, was introduced in [30,38]. It consists
in giving the best tour since the start of the algorithm (called 74%, where gb stands for
global-best) a strong additional weight. In practice, each time the pheromone trails are
updated, those belonging to the edges of the global-best tour get an additional amount
of pheromone. For these edges Equation 9.3 becomes:

e/L8 (1) ifedge (i, j) € T
Arthy = /50 ifedge .)) (9.4)
7 0 otherwise

The edges of T8% are therefore reinforced with a quantity of pheromone given by
e/ L, where L2 is the length of T4° and e is a positive integer. Note that this type of
pheromone update is a first example of daemon action as described in Section 3.3.

Other improvements were the rank-based version of Ant System (AS;ank),
MAX-MIN Ant System (MMAS), and Ant Colony System (ACS). ASeank [14]is
in a sense an extension of the elitist strategy: it sorts the ants according to the lengths
of the tours they generated and, after each tour construction phase, only the (w — 1)
best ants and the global-best ant are allowed to deposit pheromone. The rth best ant of
the colony contributes to the pheromone update with a weight given by max {0, w — r}
while the global-best tour reinforces the pheromone trails with weight w. Equation 9.2
becomes therefore:

w—1
i 5 > }
VG, j) w1 == p))+ Y (w—r)- At +w- AT (@) (9.5)
r=1
where AT/,(1) = 1/L"(r) and At (1) = 1/L8".
ACS [34,35,44] improves over AS by increasing the importance of exploitation
of information collected by previous ants with respect to exploration of the search

$Note that when applied to symmetric TSPs the edges are considered to be bidirectional and edges (i, j)
and (j, i) are both updated. This is different for the ATSP, where edges are directed; an ant crossing edge
(i, j) will update only this edge and not the edge (j, i).

Ant Colony Optimization Metaheuristic 263

space.” This is achieved via two mechanisms. First, a strong elitist strategy is used to
update pheromone trails. Second, ants choose the next city to move to using a so-called
pseudo-random proportional rule [35]: with probability gg, 0 < gg < 1, they move to
the city j for which the product between pheromone trail and heuristic information is
maximum, thatis, j = arg Max j ak {zij(t) - ??f,-'f- while with probability 1 — gg they

operate a biased exploration in which the probability pf‘j(r) is the same as in AS (see
Equation 9.1). The value gp is a parameter: when it is set to a value close to 1, as it is
the case in most ACS applications, exploitation is favored over exploration. Obviously,
when go = 0 the probabilistic decision rule becomes the same as in AS.

As mentioned earlier, pheromone updates are performed using a strong elitist strat-
egy: only the ant that has produced the best solution is allowed to update pheromone
trails, according to a pheromone trail update rule similar to that used in AS:

T;’j(f'l‘l):(l -—p)-r;j(f)+p-At,-'_’,-"S[(l] (9.6)

The best ant can be the iteration-best ant, that is, the best in the current iteration,
or the global-best ant, that is, the ant that made the best tour from the start of the trial.

Finally, ACS differs from previous ACO algorithms also because ants update the
pheromone trails while building solutions (as in ant-quantity and in ant-density). In
practice, ACS ants “eat” some of the pheromone trail on the edges they visit. This
has the effect of decreasing the probability that the same path is used by all the ants
(i.e., it favors exploration, counterbalancing this way the other two above-mentioned
modifications that strongly favor exploitation of the collected knowledge about the
problem). ACS has been improved also by the addition of local search routines that
take the solution generated by ants to their local optimum just before the pheromone
update.

MMAS [84,87,88] introduces upper and lower bounds to the values of the
pheromone trails, as well as a different initialization of their values. In practice, in
MAMAS the allowed range of the pheromone trail strength is limited to the interval
[Tmin, Tmax), thatis, Tymin < 7ij < Tmax Y7ij, and the pheromone trails are initial-
ized to the upper trail limit, which causes a higher exploration at the start of the
algorithm. Also, as in ACS, in MMAS only the best ant (the global-best or the
iteration-best ant) is allowed to add pheromone after each algorithm iteration. In fact,
in MMAS the iteration-best ant and the global-best ant can be used alternatingly in
the pheromone update. Computational results have shown that best results are obtained
when pheromone updates are performed using the global-best solution with increas-
ing frequency during the algorithm execution. Similarly to ACS, also MMAS often
exploits local search to improve its performance.

4.2.3 Applications to Dynamic Problems

The application of ACO algorithms to dynamic problems, that is, problems whose
characteristics change while being solved, is the most recent major development in the
field. The first such application [79] concerned routing in circuit-switched networks

°ACS was an offspring of Ant-Q [43], an algorithm intended to create a link between reinforcement
learning [89] and Ant Colony Optimization. Computational experiments have shown that some aspects of
Ant-Q, in particular the pheromone update rule, could be strongly simplified without affecting performance.
It is for this reason that Ant-Q was abandoned in favor of the simpler and equally good ACS.

264 M. Dorigo and T. Stiitzle

(e.g., classical telephone networks). The proposed algorithm, called ABC, was demon-
strated on a simulated version of the British Telecom network. The main merit of ABC
was to stimulate the interest of ACO researchers in dynamic problems. In fact, only
rather limited comparisons were made between ABC and state-of-the-art algorithms,
so that it is not possible to judge on the quality of the results obtained.

A very successful application of ACO to dynamic problems is the AntNet algorithm,
proposed by Di Caro and Dorigo [24-26,28] and discussed in Section 5. AntNet was
applied to routing in packet-switched networks (e.g., the Internet). It contains a number
of innovations with respect to AS and it has been shown experimentally to outperform
a whole set of state-of-the-art algorithms on numerous benchmark problems.

5 EXAMPLES OF APPLICATIONS

The versatility and the practical use of the ACO metaheuristic for the solution of
combinatorial optimization problems is best illustrated via example applications to a
number of different problems.

The ACO application to the TSP has already been presented in the previous section.
Here, we additionally discuss applications to three A/P-hard optimization problems,
the single machine total weighted tardiness problem (SMTWTP), the generalized
assignment problems (GAP), and the set covering problem (SCP). We have chosen
these problems to make the application examples as comprehensive as possible with
respect to different ways of representing solutions. While the TSP and the SMTWTP
are permutation problems, that is, solutions are represented as permutations of solution
components, solutions in the GAP are assignments of tasks to agents and in the SCP a
solution is represented as a subset of the available solution components.

Applications of ACO to dynamic problems focus mainly on routing in data
networks. As an example, in the following we present the AntNet algorithm [26].

Example 9.1. The single machine total weighted tardiness scheduling problem
(SMTWTP)

In the SMTWTP n jobs have to be processed sequentially without interruption on
a single machine. Each job has an associated processing time p;, a weight w;, and a
due date d; and all jobs are available for processing at time zero. The tardiness of job
jis defined as T; = max{0,Cj — dj},where Cjis its completion time in the current
job sequence. The goal in the SMTWTP is to find ajob sequence which minimizes the
sum of the weighted tardiness given by > i_; w; - T.

For the ACO application to the SMTWTP, the set of components C is the set of all
jobs. As in the TSP case, the states of the problem are all possible partial sequences.
In the SMTWTP case we do not have explicit costs associated with the connections
because the objective function contribution of each job depends on the partial solution
constructed so far.

The SMTWTP was attacked in [22] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, each ant starts with an empty sequence and then iteratively appends an
unscheduled job to the partial sequence constructed so far. Each ant chooses the next
job using the pseudo-random-proportional action choice rule, where at each step the
feasible neighborhood Mk of ant k is the list of as yet unscheduled jobs. Pheromone
trails are defined asfollows: T;; refers to the desirability of scheduling job j at posi-
tion i. This definition of the pheromone trails is, in fact, used in most ACO application

Ant Colony Optimization Metaheuristic 265

to scheduling problems [2,22,67,82]. Concerning the heuristic information, in [22] the
use of three priority rules allowed to define three different types of heuristic infor-
mation for the SMTWTP. The investigated priority rules were: (i) the earliest due
date rule, which puts the jobs in non-decreasing order of the due dates dj, (ii) the
modified due date rule which puts the jobs in non-decreasing order of the modi-
fied due dates given by mdd; = max{C + pj,d;} [2], where C is the sum of the
processing times of the already sequenced jobs, and (iii) the apparent urgency rule
which puts the jobs in non-decreasing order of the apparent urgency [72], given by
auj = (wj/p;j) exp(—(max{d; — C;,0})/kp), where k is a parameter of the priority
rule. In each case, the heuristic information was defined as n;; = 1/h;, where hj is
eitherd;j, mdd;, or au j, depending on the priority rule used.

The global and the local pheromone updates are carried out as in the standard
ACS described in Section 4.2, where in the global pheromone update, 7'4? is the total
weighted tardiness of the global best solution.

In [22], ACS-SMTWTP was combined with a powerful local search algorithm.
The final ACS algorithm was tested on a benchmark set available from ORLIB
at http://www.ms.ic.ac.uk/info.html. Within the computation time limits
given,'® ACS reached a very good performance and could find in each single run
the optimal or best known solutions on all instances of the benchmark set. For more
details on the computational results we refer to [22].

Example 9.2. The generalized assignment problem (GAP)

In the GAP a set of tasks Z,i = 1,...,n, has to be assigned to a set of agents
J,j = 1,..., m. Each agent j has only a limited capacity a; and each task i consumes,
when assigned to agent j, a quantity b;; of the agent’s capacity. Also, the cost d;
of assigning task i to agent j is given. The objective then is to find a feasible task
assignment with minimal cost.

Let y;; be one if task i is assigned to agent j and zero otherwise. Then the GAP
can formally be defined as

n m

min f(y) = Y Y dij - yij ©.7)
i=1 j=I
subject to
n
Y byeyy<ap j=1....m 9.8)
i=l
m
Yo owp=1 =10 9.9)
j=1
yi€0,1) i=1..,n j=1,..,m (9.10)

The constraints 9.8 implement the limited resource capacity of the agents, while
constraints 9.9 and 9.10 impose that each task is assigned to exactly one agent and that
a task cannot be split among several agents.

19 The maximum time for the largest instances was 20min on a 450 MHz Pentium III PC with 256 MB
RAM. Programs were written in C++ and the PC was run under Red Hat Linux 6.1.

266 M. Dorigo and T. Stiitzle

The GAP can easily be cast into the framework of the ACO metaheuristic. The
problem can be represented by a graph in which the set of components comprises the set
of tasks and agents, thatis C = ZU.7 and the set of connections fully connect the graph.
Each assignment, which consists of n couplings (i, j) of tasks and agents, corresponds
to an ant’s walk on this graph. Such a walk has to observe the constraints 9.9 and 9.10
to obtain a valid assignment. One particular way of generating such an assignment is
by an ant’s walk which iteratively switches from task vertices (vertices in the set.J)
to agent vertices (vertices in the set) without repeating any task vertex but possibly
using the same agent vertex several times (that is, several tasks may be assigned to the
same agent).

At each step of the construction process, an ant has to make one of the following
two basic decisions: (i) it has to decide which task to assign next and (ii) it has to decide
to which agent a chosen task should be assigned. Pheromone trail and heuristic infor-
mation can be associated with both steps. With respect to the first step the pheromone
information can be used to learn an appropriate assignment order of the tasks, that is,
tj; gives the desirability of assigning task j directly after task i, while the pheromone
information in the second step is associated with the desirability of assigning a task to
a specific agent.

For simplicity let us consider an approach in which the tasks are assigned in a
random order. Then, at each step a task has to be assigned to an agent. Intuitively, it is
better to assign tasks to agents such that small assignment costs are incurred and that
the agent needs only a relatively small amount of its available resource to perform the
task. Hence, one possible heuristic information is 9;; = a;/d;;b;j and a probabilistic
selection of the assignments can follow the AS probabilistic rule (Equation 9.1) or
the pseudo-random proportional rule of ACS. Yet, a complication in the construction
process is that the GAP involves resource capacity constraints and, in fact, for the GAP
no guarantee is given that an ant will construct a feasible solution which obeys the
resource constraints given by Equation 9.8. In fact, to have a bias towards generating
feasible solutions, the resource constraints should be taken into account in the definition
of .N;-k, the feasible neighborhood of ant k. For the GAP, we definej\f?‘ to consist of all
those agents to which the task i can be assigned without violating the agents’ resource
capacity. If no agent can meet the task’s resource requirement, we are forced to build
an infeasible solution and in this case we can simply choose J\a:-k as the set of all agents.
Infeasibilites can then be handled, for example, by assigning penalties proportional to
the amount of resource violations.

A first application of MAX-MIN Ant System (MMAS) to the GAP was pre-
sented in [75]. The approach shows some particularities, like the use of a single ant
and the lack of any heuristic information. The infeasibility of solutions is only treated
in the pheromone update: the amount of pheromone deposited by an ant is set to a high
value if the solution it generated is feasible, to a low value if it is infeasible. These
values are constants independent of the solution quality. Additionally, MMAS was
coupled with a local search based on tabu search and ejection chain elements [51] and
it obtained very good performance on benchmark instances available at ORLIB.

Example 9.3. The set covering problem (SCP)

In the set covering problem (SCP) we are given a m X n matrix A = (aj;)in which
all the matrix elements are either zero or one. Additionally, each column is given a
non-negative cost b;. We say that a column i covers a row j if aj; = 1.The goal in the

Ant Colony Optimization Metaheuristic 267

SCP is to choose a subset of the columns of minimal weight that covers every row. Let
7 denote a subset of the columns and y; be a binary variable which is one, if i € Z,
and zero otherwise. The SCP can be defined formally as follows.

n
min f(y) = Y _bi - yi 9.11)
=]
subject to
n
Y apin=l jslean 9.12)
i=]
yi€f{0,1} i=1,...,n 9.13)

The constraints 9.12 enforce that each row is covered by at least one column.

ACO can be applied in a very straightforward way to the SCP. The columns are
chosen as the solution components and have associated a cost and a pheromone trail.
The constraints say that each column can be visited by an ant at most once and that
a final solution has to cover all rows. A walk of an ant over the graph representation
corresponds to the iterative addition of columns to the partial solution obtained so far.
Each ant starts with an empty solution and adds columns until a cover is completed.
A pheromone trail 7; and a heuristicinformation n; are associated to each column i. A
column to be added is chosen with probability

[zi(6)] - [n:]P
e lml - [m1#

THOE ifi e N* (9.14)

where N* is the feasible neighborhood of ant k which consists of all columns which
cover at least one still uncovered row. The heuristic information n; can be chosen in
several different ways. For example, a simple static information could be used, taking
into account only the column cost: 7; = 1/b;. A more sophisticate approach would be
to consider the total number of rows d; covered by a column i and to set n; = d;/b;.
The heuristic information could also be made dependent on the partial solution yi of
an ant k. In this case, it can be defined as 1; = e;/b;, where ¢; is the so-called cover
value, that is, the number of additional rows covered when adding column i to the
current partial solution. In other words, the heuristic information measures the unit
cost of covering one additional row.

An ant ends the solution construction when all rows are covered. In a post-
optimization step, an ant can remove redundant columns—columns that only cover
rows which are also covered by a subset of other columns in the final solution—or
apply some additional local search to improve solutions. The pheromone update can
be carried out in a standard way as described in earlier sections.

When applying ACO to the SCP we have two main differences with the previously
presented applications: (i) pheromone trails are associated only to components and,
(i) the length of the ant’s walks (corresponding to the lengths of the sequences) may
differ among the ants and, hence, the solution construction only ends when all the ants
have terminated their corresponding walks.

There already exist some first applications of ACO to the SCP. In [1], ACO has been
used only as a construction algorithm and the approach has only been tested on some

268 M. Dorigo and T. Stiitzle

small SCP instances. A more recent article [55] applies Ant System to the SCP and
uses techniques to remove redundant columns and local search to improve solutions.
Good results are obtained on a large set of benchmark instances taken from ORLIB,
but the performance of Ant System could not fully reach that of the best performing
algorithms for the SCP.

Example 94. AntNet for network routing applications

Given a graph representing a telecommunications network, the problem solved by
AntNet is to find the minimum cost path between each pair of vertices of the graph.
It is important to note that, although finding a minimum cost path on a graph is an
easy problem (it can be efficiently solved by algorithms having polynomial worst case
complexity [5]), it becomes extremely difficult when the costs on the edges are time-
varying stochastic variables. This is the case of routing in packet-switched networks,
the target application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested reader should
refer to [26], where the AntNet approach to routing is explained and evaluated in detail).
As stated earlier, in AntNet each ant searches for a minimum cost path between a given
pair of vertices of the network. To this goal, ants are launched from each network vertex
towards randomly selected destination vertices. Each ant has a source vertex s and a
destination vertex d, and moves from s to d hopping from one vertex to the next until
vertex d is reached. When ant £ is in vertex i, it chooses the next vertex j to move to
according to a probabilistic decision rule which is a function of the ant’s memory and
of local pheromone and heuristic information (very much like to what happened, for
example, in AS).

Unlike AS, where pheromone trails are associated to edges, in AntNet pheromone
trails are associated to edge-destination pairs. That is, each directed edge (i, j) has
n — 1 trail values T;;4 € [0, 1] associated, where n is the number of vertices in the
graph associated to the routing problem; in general, 7;j¢ # 7jiq. In other words, there
is one trail value 7;j4 for each possible destination vertex d an ant located in vertex
i can have. Each edge has also associated an heuristic value n;; € [0, 1] independent
of the final destination. The heuristic values can be set for example to the values
nij = 1—qij/ ZJeN; gil, where g;; is the length (in bits waiting to be sent) of the
queue of the link connecting vertex i with its neighbor j: links with a shorter queue
have a higher heuristic value.

In AntNet, as well as in most other implementations of ACO algorithms for routing
problems [79,90], the daemon component (see Figure 9.5) is not present.

Ants choose their way probabilistically, using as probability a functional composi-
tion of the local pheromone trails 7;j4 and of the heuristic values 1;j. While building the
path to their destinations, ants move using the same link queues as data and experience
the same delays as data packets. Therefore, the time T4 elapsed while moving from
the source vertex s to the destination vertex d can be used as a measure of the quality
of the path they built. The overall quality of a path is evaluated by an heuristic function
of the trip time T4 and of a local adaptive statistical model maintained in each vertex.
In fact, paths need to be evaluated relative to the network status because a trip time
T judged of low quality under low congestion conditions could be an excellent one
under high traffic load. Once the generic ant k has completed a path, it deposits on
the visited vertices an amount of pheromone At*(¢) proportional to the quality of the
path it built. To deposit pheromone, after reaching its destination vertex, the ant moves

Ant Colony Optimization Metaheuristic ~ 269

back to its source vertex along the same path but backward and using high priority
queues, to allow a fast propagation of the collected information. The pheromone trail
intensity of each edge /;; the ant used while it was moving from s to d is increased as
follows: 7jj4(t) < Tijult) + Atk(1). After the pheromone trail on the visited edges has
been updated, the pheromone value of all the outgoing connections of the same vertex i,
relative to the destination d, evaporates in such a way that the pheromone values are nor-
malized and can continue to be usable as probabilities: 7j;j4(t) < 7ija(1)/(1+ Ark{!)),
Yj € Ni, where AV is the set of neighbors of vertex i.

AntNet was compared with many state-of-the-art algorithms on a large set of bench-
mark problems under a variety of traffic conditions. It always compared favorably with
competing approaches and it was shown to be very robust with respect to varying traf-
fic conditions and parameter settings. More details on the experimental results can be
found in [26].

Applications of the ACO metaheuristic

ACO has recently raised a lot of interest in the scientific community. There are now
available numerous successful implementations of the ACO metaheuristic applied to
a wide range of different combinatorial optimization problems. These applications
comprise two main application fields.

u N 'P-hard problems, for which the best known algorithms have exponential time
worst case complexity. For these problems, very often ACO algorithms are cou-
pled with extra capabilities such as problem-specific local optimizers, which take
the ants’ solutions to local optima.

m Shortest path problems in which the properties of the problem’s graph representa-
tion change over time concurrently with the optimization process that has to adapt
to the problem’s dynamics. In this case, the problem’s graph can be physically
available (as in network problems), but its properties, like the costs of components
or of connections, can change over time. In this case we conjecture that the use
of ACO algorithms becomes more and more appropriate as the variation rate of
the costs increases and/or the knowledge about the variation process diminishes.

These applications are summarized in Table 9.1. In some of these applications, ACO
algorithms have obtained world-class performance, which is the case, for example,
for quadratic assignment [63,88], sequential ordering [45,46], vehicle routing [47],
scheduling [22,67] or packet-switched network routing [26].

6 DISCUSSION OF APPLICATION PRINCIPLES

Despite being a rather recent metaheuristic, ACO algorithms have already been applied
to a large number of different combinatorial optimization problems. Based on this
experience, we have identified some basic issues which play an important role in
several of these applications. These are discussed in the following.

6.1 Pheromone Trails Definition

An initial, very important choice when applying ACO is the definition of the intended
meaning of the pheromone trails. Let us explain this issue with an example. When

270 M. Dorigo and T. Stiitzle

[Lp] 6661 JAA-SVH 1zze3y 29 pIe|[IR], ‘B[[opIequien
[c1z1] L661 d¥A-SY sSneng 2y [WeH ‘Puyulng Sunnoi ap1yap
[L9] 000T SdD¥-00V }o2Wyog 79 HOPUIPPIA PO
[zz] 6661 dLMLINS-SOV o3u0(7% 9[ZIMS ‘Ualsag Uap
[2 6661 dLLINS-SOV Te 19 Joneg
[z8] L661 dSA-SYIWIW EIaliEN
[81] 661 dSr-Sv 0zzZAWE 29 05L0(‘1UI0[0) swajqoxd Surnpayog
[59] 6661 ¢dVO-SV IWIO[0)) % 0ZZIIUEBN
[g9] 8661 dVO-SINV 0ZZIUBN
[88°18] L661 dVO-SYWwWw SOOH % 91ZIMS
[8¥] L661 »dVO-SYH o3uoq % pR[[IEL ‘®[[9pIRqUERD
[99] Y661 dVvO-SV oguo(% 1WIO[O)) ‘0ZZAUBN Juawugisse oneIpend)
[61] 0002 svmd "2 19 ‘Uugp10)
[p1] L661 yunigy SSneng % [Uey eunayuing
[88°28F8] L661 SYIWW SOOH % 91Z)MS
[Pr'sepe] 9661 afuryo-¢-§IV ¥ SOV ®[[oprequIen) %% 0FUO
[er] S661 O~y osuo(7% el[eplEqUED
[8e‘Le0€] 1661 Sv 1wI0[0D) 79 OZZOWE ‘03Hoq uBwS3[Es SutjoArL],
$20UDIDJAI UTR]A Ieax ureu unpuodry sioyny auwreu wajqoid

IapIo [eo1Sojouonyd ui pue swaqoid jo ssep £q paisy are suoneonddy smwmpuosie OV jo suoneordde juaimy) ‘16 AqeL

271

Ant Colony Optimization Metaheuristic

dVO-SV [BUIBLO o1 JO JUBLIEA € SIS 4 "DNSUNAYEISW QDY Y} JO $193dSE Y] |[¢ MO[[O] 10U S0P YIyMm wiiuog[e e ue st VO-SVH »

log]
[29]
[€L]
[19]
[sLl
[+9]
[oL'691
loz]
[ov'syl
[06]
[96]
l62'9z°¥T]
[o1]
[L7]
[16]
[6L°8L]

0002
6661
6661
6661
8661
8661
8661
L661
L661
8661
8661
L661
8661
8661
8661
9661

1aAj0S-4-1Uuy
dVd-00V
dMA-ODV
dAN-SV
dVD-SVIW WY
dVd-SINV
SOS-SV
TODINV
dOS-SVH
piemMyORq-DHV
dvD
VA-1RNIUY 29 19NIUY
sjue uews-)gy
SH-12NIuY
VDSV

JdV

uoujog
s 7% Suer]

JIB[OUIS 29 B[IBA OLIBABN]
ZIIMA[RYDIA 29 UoWezInga|
BLIDS 29 05UINOTT oYuIy[eey
0IeuoqIe)) 729 OZZAIUBN
JIOpUIPPIA 29 [PYIIN

Z1I9H % BIS0D)

o3uo(% e[[oprequren
ZIUBIIOY 29 INd ISP UBA

‘e 12 2ssnaH

o3uoQg ¥ ore) I

‘| 12 neaqeuog

o3uoq % ored 1d

JayoeddQ 29 yaunSed ‘anym
‘[12 pPI20MIIPUOOYIS

UOTIJBJSIIES JUTBIISUOD)
UOTIEJ0[[E AOUBpUNPY

Sunnoa sylomiau [eondo
yoesdewy aidnny

WAWUSISSE PIZI[eIuIn)
juawiugisse Aouanbaig
2ouanbasiadns uownuoo 1sa0YS
Buuojoo ydein

Zuuapio [enuanbag

$89[-UONIIOUUOY)

Sunnoz
J}10M19U PAIUILIO-UOTIIAUUO))

272 M. Dorigo and T. Stiitzle

applying ACO to the TSP, the standard interpretation of a pheromone trail 7;;, used in
all published ACO applications to the TSP, is that it refers to the desirability of visiting
city j directly after a city i. That is, it provides some information on the desirability
of the relative positioning of city i and j. Yet, another possibility, not working so well
in practice, would be to interpret 7j; as the desirability of visiting city 7 as the jth
city in a tour, that is, the desirability of the absolute positioning. Conversely, when
applying ACO to the SMTWTP (see Section 5) better results are obtained when using
the absolute position interpretation of the pheromone trails, where t;; is the desirability
of putting job j on the ith position [21]. This is intuitively due to the different role
that permutations have in the two problems. In the TSP, permutations are cyclic, that
is, only the relative order of the solution components is important and a permutation
7 = (1 2++n) has the same tour length as the permutation 7’ = (1 2.+-n — 1)—
it represents the same tour. Therefore, a relative position based pheromone trail is
the appropriate choice. On the contrary, in the SMTWTP (as well as in many other
scheduling problems), 7 and 7" represent two different solutions with most probably
very different costs. Hence, in the SMTWTP the absolute position based pheromone
trails are a better choice. Nevertheless, it should be noted that, in principle, both
choices are possible, because any solution of the search space can be generated with
both representations.

The definition of the pheromone trails is crucial and a poor choice at this stage
of the algorithm design will result in poor performance. Fortunately, for many prob-
lems the intuitive choice is also a very good one, as it was the case for the previous
example applications. Yet, sometimes the use of the pheromones can be somewhat
more involved, which is, for example, the case in the ACO application to the shortest
common supersequence problem [70].

6.2 Balancing Exploration and Exploitation

Any effective metaheuristic algorithm has to achieve an appropriate balance between
the exploitation of the search experience gathered so far and the exploration of unvisited
or relatively unexplored search space regions. In ACO several ways exist of achieving
such a balance, typically through the management of the pheromone trails. In fact, the
pheromone trails induce a probability distribution over the search space and determine
which parts of the search space are effectively sampled, that is, in which part of the
search space the constructed solutions are located with higher frequency. Note that,
depending on the distribution of the pheromone trails, the sampling distribution can
vary from a uniform distribution to a degenerate distribution which assigns probability
one to a single solution and zero probability to all the others. In fact, this latter situation
corresponds to the stagnation of the search as explained on page 261.

The simplest way to exploit the ants’ search experience is to make the pheromone
update a function of the solution quality achieved by each particular ant. Yet, this bias
alone is often too weak to obtain good performance, as was shown experimentally on
the TSP [84, 88]. Therefore, in many ACO algorithms (see Section 4) an elitist strategy
was introduced whereby the best solutions found during the search strongly contribute
to pheromone trail updating.

A stronger exploitation of the “learned” pheromone trails can also be achieved
during solution construction by applying the pseudo-random proportional rule of Ant
Colony System, as explained in Section 4.2.2.

Ant Colony Optimization Metaheuristic 273

Search space exploration is achieved in ACO primarily by the ants’ randomized
solution construction. Let us consider for a moment an ACO algorithm that does not
use heuristic information (this can be easily achieved by setting 8 = (). In this case,
the pheromone updating activity of the ants will cause a shift from the initial uniform
sampling of the search space to a sampling focused on specific search space regions.
Hence, exploration of the search space will be higher in the initial iterations of the
algorithm, and will decrease as the computation goes on. Obviously, attention must be
paid to avoid too strong a focus on apparently good regions of the search space, which
can cause the ACO algorithm to enter a stagnation situation.

There are several ways to try to avoid such stagnation situations, thus maintaining
a reasonable level of exploration of the search space. For example, in ACS the ants use
a local pheromone update rule during the solution construction to make the path they
have taken less desirable for following ants and, thus, to diversify search, MMAS
introduces an explicit lower limit on the pheromone trail level so that a minimal level of
exploration is always guaranteed. MAMAS also uses a reinitialization of the pheromone
trails, which is a way of enforcing search space exploration. Experience has shown
that pheromone trail reinitialization, when combined with appropriate choices for the
pheromone trail update [88], can be very useful to refocus the search on a different
search space region.

Finally, an important, though somewhat neglected, role in the balance of explo-
ration and exploitation is that of the parameters & and 8, which determine the relative
influence of pheromone trail and heuristic information. Consider first the influence
of parameter . For @ > 0, the larger the value of ¢ the stronger the exploitation of
the search experience, for @ = 0 the pheromone trails are not taken into account at
all, and for @ < 0 the most probable choices taken by the ants are those that are less
desirable from the point of view of pheromone trails. Hence, varying & could be used
to shift from exploration to exploitation and vice versa. The parameter § determines
the influence of the heuristic information in a similar way. In fact, systematic variations
of@ and B could, similarly to what is done in the strategic oscillations approach [50],
be part of simple and useful strategies to balance exploration and exploitation.

6.3 ACO and Local Search

In many applications to A"P-hard combinatorial optimization problems, ACO algo-
rithms perform best when coupled with local search algorithms (which is, in fact,
a particular type of daemon action of the ACO metaheuristic). Local search algorithms
locally optimize the ants’ solutions and these locally optimized solutions are used in
the pheromone update.

The use of local search in ACO algorithms can be very interesting as the two
approaches are complementary. In fact, ACO algorithms perform a rather coarse-
grained search, and the solutions they produce can then be locally optimized by an
adequate local search algorithm. The coupling can therefore greatly improve the quality
of the solutions generated by the ants.

On the other side, generating initial solutions for local search algorithms is not an
easy task. For example, it has been shown that, for most problems, repeating local
searches from randomly generated initial solutions is not efficient (see, e.g., [57]). In
practice, ants probabilistically combine solution components which are part of the best
locally optimal solutions found so far and generate new, promising initial solutions

274 M. Dorigo and T. Stiitzle

for the local search. Experimentally, it has been found that such a combination of
a probabilistic, adaptive construction heuristic with local search can yield excellent
results [6,35,87].

It is important to note that when using local search a choice must be made con-
cerning pheromone trail update: either pheromone is added to the components and/or
connections of the locally optimal solution, or to the starting solutions for the local
search.'" The quasi totality of published research has used the first approach. Although
it could be interesting to investigate the second approach, some recent experimental
results suggest that its performance is worse.

Despite the fact that the use of local search algorithms has been shown to be crucial
for achieving best performance in many ACO applications, it should be noted that ACO
algorithms also show very good performance where local search algorithms cannot be
applied easily. One such example are the network routing applications described in
Section 5 or the shortest common supersequence problem [70].

6.4 Heuristic Information

The possibility of using heuristic information to direct the ants’ probabilistic solution
construction is important because it gives the possibility of exploiting problem specific
knowledge. This knowledge can be available a priori (this is the most frequent situation
in static problems) or at run-time (this is the typical situation in dynamic problems). In
static problems, the heuristic information # is usually computed once at initialization
time and then it remains the same throughout the whole algorithm’s run. An example
is the use, in the TSP applications, of the length dj; of the edge connecting cities i
and j to define the heuristic information 1;; = 1/d;;. Static heuristic information has
the advantage that (i) it is easy to compute, (ii) it has to be computed only once at
initialization time, and (iii) in each iteration of the ACO algorithm, a table can be
pre-computed with the values of 7;;(¢) - nﬂ, which can result in a very significant
saving of computation time. In the dynamic case, the heuristic information may also
depend on the partial solution constructed so far and therefore has to be computed at
each step of an ant’s walk. This determines a higher computational cost that may be
compensated by the higher accuracy of the computed heuristic values. For example,
in the ACO application to the SMTWTP we found that the use of dynamic heuristic
information based on the modified due date or the apparent urgency heuristics (see
Section 5) resulted in a better overall performance.

Another way of computing heuristic information was introduced in the ANTS
algorithm [63], where it is computed using lower bounds on the solution cost of the
completion of an ant’s partial solution. This method has the advantage that it facil-
itates the exclusion of certain choices because they lead to solutions that are worse
than the best found so far. It allows therefore the combination of knowledge on the
calculation of lower bounds from mathematical programming with the ACO paradigm.
Nevertheless, a disadvantage is that the computation of the lower bounds can be time
consuming, especially because they have to be calculated at each single construction
step by each ant.

IlMaking an analogy with genetic algorithms, we could call the first approach “Lamarckian” and the
second “Darwinian”.

Ant Colony Optimization Metaheuristic ~ 275

Finally, it should be noted that while the use of heuristic information is rather
important for a generic ACO algorithm, its importance is strongly reduced if local
search is used to improve solutions. This is due to the fact that local search takes
into account information about the cost to improve solutions in a more direct way.
Fortunately, this means that ACO algorithms can also achieve, in combination with
a local search algorithm, very good performance for problems for which it is difficult
to define a priori a very informative heuristic information.

6.5 Number of Ants

Why use a colony of ants instead of using one single ant? In fact, although a single ant
is capable of generating a solution, efficiency considerations suggest that the use of a
colony of ants is often a desirable choice. This is particularly true for geographically
distributed problems, because the differential path length effect exploited by ants in the
solution of this class of problems can only arise in presence of a colony of ants. It is
also interesting to note that in routing problems ants solve many shortest path problems
in parallel (one between each pair of vertices) and a colony of ants must be used for
each of these problems.

On the other hand, in the case of combinatorial optimization problems the differ-
ential length effect is not exploited and the use of m ants, m > 1, that build r solutions
each (i.e., the ACO algorithm is run for r iterations) could be equivalent to the use of
one ant that generates m-r solutions. Nevertheless, in this case theoretical results on the
convergence of some specific ACO algorithms, which will be presented in Section 7,
as well as experimental evidence suggest that ACO algorithms perform better when
the number m of ants is set to a value m > 1.

In general, the best value for m is a function of the particular ACO algorithm chosen
as well as of the class of problems being attacked, and most of the times it must be
set experimentally. Fortunately, ACO algorithms seem to be rather robust to the actual
number of ants used.

6.6 Candidate Lists

One possible difficulty encountered by ACO algorithms is when they are applied to
problems with a large neighborhood in the solution construction. In fact, an ant that
visits a state with a large neighborhood has a correspondingly large number of possible
moves among which to choose. Possible problems are that the solution construction is
significantly slowed down and that the probability that many ants visit the same state
is very small. Such a situation can occur, for example, in the ACO application to large
TSPs or large SCPs.

In such situations, the above-mentioned problem can be considerably reduced by
the use of candidate lists. Candidate lists comprise a small set of promising neighbors of
the current state. They are created using a priori available knowledge on the problem,
if available, or dynamically generated information. Their use allows ACO algorithms
to focus on the more interesting components, strongly reducing the dimension of the
search space.

As an example, consider the ACO application to the TSP. For the TSP it is known
that very often optimal solutions can be found within a surprisingly small subgraph
consisting of all the cities and of those edges that connect each city to only a few of its
nearest neighbors. For example, for the TSPLIB instance pr2392 . tsp with 2392 cities

276 M. Dorigo and T. Stiitzle

an optimal solution can be found within a subgraph of the 8 nearest neighbors [76].
This knowledge can be used for defining candidate lists, which was first done in the
context of ACO algorithms in [44]. A candidate list includes for each city its ¢/ nearest
neighbors. During solution construction an ant tries to choose the city to move to only
among the cities in the candidate list. Only if all these cities have already been visited,
the ant can choose among the other cities.

So far, in ACO algorithms the use of candidate lists or similar approaches is still
rather unexplored. Inspiration from other techniques like Tabu Search [51] or GRASP
[42], where strong use of candidate lists is made, could be useful for the development
of effective candidate list strategies for ACO.

7 OTHER DEVELOPMENTS

7.1 Proving Convergence

The simplest stochastic optimization algorithm is random search. Besides simplicity,
random search has also the nice property that it guarantees that it will find, sooner
or later, the optimal solution to your problem. Unfortunately, it is very inefficient.
Stochastic optimization algorithms can be seen as ways of biasing random search so
to make it more efficient. Unfortunately, once a stochastic algorithm is biased, it is no
longer guaranteed to find, at some point, the optimal solution. In fact, the bias could
simply rule out this possibility. It is therefore interesting to have convergence proofs
that reassure you that this does not happen.

Although the problem of proving convergence to the optimal solution of a generic
ACO algorithm is open (and it will most probably remain so, given the generality of
the ACO metaheuristic), convergence has recently been proved for a few instances of
ACO algorithms. The first of such proofs was provided by Gutjahr [53,54] who proved
convergence to the optimal solution for a particular ACO algorithm he calls Graph-
based Ant System (GBAS): the proof states that, given a small € > 0 and for fixed
values of some algorithm parameters, after a number of cycles ¢ > # the algorithm
will find the optimal solution with probability P; = | —€, where tg = f(€). A limitation
of this important result is that it applies to an ACO algorithm, GBAS, for which no
experimental results are available (i.e., we do not know what is its performance). More
recently, Stiitzle and Dorigo [86] have proved convergence for two of the experimentally
most successful ACO algorithms: ACS and MAMAS.

7.2 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or pop-
ulation domains. In particular, many parallel models used in other population-based
algorithms can be easily adapted to the ACO structure. Most parallelization strategies
can be classified into fine-grained and coarse-grained strategies. Characteristic of fine-
grained parallelization is that very few individuals are assigned to one single processor
and that frequent information exchange among the processors takes place. On the con-
trary, in coarse grained approaches larger subpopulations or even full populations are
assigned to single processors and information exchange is rather rare. We refer, for
example, to [16] for an overview.

Ant Colony Optimization Metaheuristic 277

Fine-grained parallelization schemes have been investigated with parallel versions
of AS for the TSP on the Connection Machine CM-2 adopting the approach of
attributing a single processing unit to each ant [7]. Experimental results showed that
communication overhead can be a major problem with this approach on fine grained
parallel machines, since ants end up spending most of their time communicating to
other ants the modifications they made to pheromone trails. Similar negative results
have also been reported in [15].

As shown by several researches [7,15,59,71,83], coarse grained parallelization
schemes are much more promising for ACO. When applied to ACO, coarse grained
schemes run p subcolonies in parallel, where p is the number of available processors.
Information among the subcolonies is exchanged at certain intervals. For example,
in the Partially Asynchronous Parallel Implementation (PAPI) of Bullnheimer, Kotsis
and Strauss [15], for which high speed-up was observed, the subcolonies exchange
pheromone information every fixed number of iterations performed by each sub-
colony. Kriiger, Merkle and Middendorf [59] investigated which information should
be exchanged between the m subcolonies and how this information should be used
to update the subcolony’s trail information. Their results showed that it was better to
exchange the best solutions found so far and to use them in the pheromone update than to
exchange complete pheromone matrices for modifications of the pheromone matrix of a
local subcolony. Middendorf, Reischle, and Schmeck [71] investigate different ways of
exchanging solutions among m ant colonies. They consider an exchange of the global
best solutions among all colonies and local exchanges based on a virtual neighbor-
hood among subcolonies which corresponds to a directed ring. Their main observation
was that the best solutions, with respect to computing time and solution quality, were
obtained by limiting the information exchange to a local neighborhood of the colonies.
In the extreme case, there is no communication among the subcolonies, resulting in
parallel independent runs of an algorithm. This is the easiest way to parallelize ran-
domized algorithms and can be very effective as has been shown by computational
results presented by Stiitzle [83].

8 CONCLUSIONS

The field of ACO algorithms is very lively, as testified, for example, by the suc-
cessful biannual workshop (ANTS—From Ant Colonies to Artificial Ants: A Series of
International Workshops on Ant Algorithms; http://iridia.ulb.ac.be/~ants/)
where researchers meet to discuss the properties of ACO and other ant algorithms, both
theoretically and experimentally.

From the theory side, the most interesting ongoing work concerns the study of
the relationship between ACO algorithms and other well-known stochastic optimiza-
tion techniques. For example, it has been shown [68] that, when interpreting ACO
algorithms as methods for searching in the space of pheromones (i.e., artificial ants
are seen as procedures to update pheromone trails so to increase the probability of
generating very good solutions to the combinatorial optimization problem), then AS
can be interpreted as an approximate form of stochastic gradient descent [92] (a well-
known algorithm which has been extensively used in machine learning) in the space
of pheromones. Similarly, it has been shown [41,94] that there are strong connections
between ACO algorithms and the Cross-Entropy method [77].

278 M. Dorigo and T. Stiitzle

From the experimental side, most of the current research is in the direction of
increasing the number of problems that are successfully solved by ACO algorithms,
including real-word, industrial applications [39].

Currently, the great majority of problems attacked by ACO are static and well-
defined combinatorial optimization problems, that is, problems for which all the
necessary information is available and does not change during problem solution. For
this kind of problems ACO algorithms must compete with very well established algo-
rithms, often specialized for the given problem. Also, very often the role played by local
search is extremely important to obtain good results (see for example [46]). Although
rather successful on these problems, we believe that ACO algorithms will really show
their greatest advantage when they are systematically applied to “ill-structured” prob-
lems for which it is not clear how to apply local search, or to highly dynamic domains
with only local information available. A first step in this direction has already been
made with the application to telecommunications networks routing, but much further
research will be necessary. The reader interested in learning more about ACO is referred
to the book “Ant Colony Optimization” by the same authors [40].

ACKNOWLEDGMENTS

We thank Joshua Knowles and Michael Sampels for their useful comments on a draft
version of this paper. Marco Dorigo acknowledges support from the Belgian FNRS,
of which he is a Senior Research Associate. This work was partially supported by
the “Metaheuristics Network”, a Research Training Network funded by the Improving
Human Potential programme of the CEC, grant HPRN-CT-1999-00106. The infor-
mation provided is the sole responsibility of the authors and does not reflect the
Community’s opinion. The Community is not responsible for any use that might be
made of data appearing in this publication.

REFERENCES

[1] D.A. Alexandrov and Y.A. Kochetov (2000) The behavior of the ant colony
algorithm for the set covering problem. In: K. Inderfurth, G. Schwodiauer,
W. Domschke, F. Juhnke, P. Kleinschmidt, and G. Wischer (eds.), Operations
Research Proceedings 1999. Springer-Verlag, Berlin, Germany, pp. 255-260.

[2] A. Bauer, B. Bullnheimer, R.F. Hartl and C. Strauss (1999) An ant colony
optimization approach for the single machine total tardiness problem. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computation (CEC’99), IEEE
Press, Piscataway, NJ, pp. 1445-1450.

[3] R. Beckers, J.-L. Deneubourg and S. Goss (1993) Modulation of trail laying in the
ant Lasius niger (hymenoptera: Formicidae) and its role in the collective selection
of a food source. Journal of Insect Behavior, 6(6), 751-759.

[4] R. Bellman, A.O. Esogbue and I. Nabeshima (1982) Mathematical Aspects of
Scheduling and Applications. Pergamon Press, New York, NJ.

[5] D. Bertsekas (1998) Nerwork Optimization: Continuous and Discrete Models.
Athena Scientific, Belmont, MA.

Ant Colony Optimization Metaheuristic ~ 279

[6] K.D. Boese, A.B. Kahng and S. Muddu (1994) A new adaptive multi-start tech-
nique for combinatorial global optimization. Operations Research Letters, 16,
101-113.

[7] M. Bolondi and M. Bondanza (1993) Parallelizzazione di un algoritmo per la
risoluzione del problema del commesso viaggiatore. Master’s thesis, Diparti-
mento di Elettronica, Politecnico di Milano, Italy.

[8] E. Bonabeau, M. Dorigo and G. Theraulaz (1999) Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, New York, NIJ.

[9] E. Bonabeau, M. Dorigo and G. Theraulaz (2000) Inspiration for optimization
from social insect behavior. Nature, 406, 39-42.

[10] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz and G. Theraulaz
(1998) Routing in telecommunication networks with “Smart” ant-like agents. In:
Proceedings of IATA’98, Second International Workshop on Intelligent Agents

for Telecommunication Applications, volume 1437 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, Germany, pp. 60-72.

[11] E. Bonabeau and G. Theraulaz (2000) Swarm smarts. Scientific American, 282(3),
54-61.

[12] B. Bullnheimer, R.F. Hartl and C. Strauss (1999) Applying the Ant System to the
vehicle routing problem. In: S. VoB, S. Martello, I.LH. Osman and C. Roucairol
(eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms

for Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands,
pp- 285-296.

[13] B. Bullnheimer, R.F. Hartl and C. Strauss (1999) An improved Ant System
algorithm for the vehicle routing problem. Annals of Operations Research, 89,
319-328.

[14] B.Bullnheimer, R.F. Hartl and C. Strauss (1999) A new rank-based version of the
Ant System: A computational study. Central European Journal for Operations
Research and Economics, 7(1), 25-38.

[15] B. Bullnheimer, G. Kotsis and C. Strauss (1998) Parallelization strategies for
the Ant System. In: R. De Leone, A. Murli, P. Pardalos and G. Toraldo
(eds.), High Performance Algorithms and Software in Nonlinear Optimization,
volume 24 of Applied Optimization. Kluwer Academic Publishers, Dordrecht,
The Netherlands, pp. 87-100.

[16] E. Canti-Paz (2000) Efficient and Accurate Parallel Genetic Algorithms. Kluwer
Academic Publishers, Boston, MA.

[17] A. Colorni, M. Dorigo and V. Maniezzo (1992) Distributed optimization by ant
colonies. In: F.J. Varela and P. Bourgine (eds.), Proceedings of the First European
Conference on Artificial Life, MIT Press, Cambridge, MA, pp. 134-142.

[18] A. Colorni, M. Dorigo, V. Maniezzo and M. Trubian (1994) Ant System for job-
shop scheduling. JORBEL—Belgian Journal of Operations Research, Statistics
and Computer Science, 34(1), 39-53.

[19] O. Cordén, I. Fernandez de Viana, F. Herrera and L. Moreno (2000) A new
ACO model integrating evolutionary computation concepts: The best-worst Ant
System. In: M. Dorigo, M. Middendorf and T. Stiitzle (eds.), Abstract proceedings

280

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

M. Dorigo and T. Stiitzle

of ANTS2000—From Ant Colonies to Artificial Ants: A Series of International
Workshops on Ant Algorithms. IRIDIA, Université Libre de Bruxelles, Belgium,
pp- 22-29.

D. Costa and A. Hertz (1997) Ants can colour graphs. Journal of the Operational
Research Society, 48, 295-305.

M. den Besten (2000) Ants for the single machine total weighted tardiness
problem. Master’s thesis, University of Amsterdam, The Netherlands.

M.L. den Besten, T. Stiitzle and M. Dorigo (2000) Ant colony optimization for
the total weighted tardiness problem. In: M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J.J. Merelo and H.-P. Schwefel (eds.), Proceedings of PPSN-VI,
Sixth International Conference on Parallel Problem Solving from Nature, volume
1917 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
pp- 611-620.

J.-L. Deneubourg, S. Aron, S. Goss and J.-M. Pasteels (1990) The self-organizing
exploratory pattern of the Argentine ant. Journal of Insect Behavior, 3, 159-168.

G. Di Caro and M. Dorigo (1997) AntNet: A mobile agents approach to adaptive
routing. Technical Report IRIDIA/97-12, IRIDIA, Université Libre de Bruxelles,
Belgium.

G. Di Caro and M. Dorigo (1998) Ant colonies for adaptive routing in packet-
switched communications networks. In: A.E. Eiben, T. Biack, M. Schoenauer and
H.-P. Schwefel (eds.), Proceedings of PPSN-V, Fifth International Conference on
Parallel Problem Solving from Nature, volume 1498 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, pp. 673-682.

G. Di Caro and M. Dorigo (1998) AntNet: Distributed stigmergetic control

for communications networks. Journal of Artificial Intelligence Research, 9,
317-365.

G. Di Caro and M. Dorigo (1998) Extending AntNet for best-effort Quality-
of-Service routing. Unpublished presentation at ANTS’98—From Ant Colonies
to Artificial Ants: First International Workshop on Ant Colony Optimization,
http://iridia.ulb.ac.be/ants98/ants98.html, October 15-16.

G. Di Caro and M. Dorigo (1998) Mobile agents for adaptive routing. In:
H. El-Rewini (ed.), Proceedings of the 31st International Conference on Sys-
tem Sciences (HICSS-31). IEEE Computer Society Press, Los Alamitos, CA,
pp. 74-83.

G. Di Caro and M. Dorigo (1998) Two ant colony algorithms for best-effortrouting
in datagram networks. In: Y. Pan, S.G. Akl and K. Li (eds.), Proceedings ofthe
Tenth IASTED International Conference on Parallel and Distributed Computing
and Systems (PDCS’98), IASTED/ACTA Press, Anaheim, CA, pp. 541-546.

M. Dorigo (1992) Optimization, Learning and Natural Algorithms (in Italian).
PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 140 pp.

M. Dorigo, E. Bonabeau and G. Theraulaz (2000) Ant algorithms and stigmergy.
Future Generation Computer Systems, 16(8), 851-871.

(32]

[34]

[35]

[36]

[44]

[45]

Ant Colony Optimization Metaheuristic ~ 281

M. Dorigo and G. Di Caro (1999) The Ant Colony Optimization meta-heuristic.
In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization. McGraw
Hill, London, UK, pp. 11-32.

M. Dorigo, G. Di Caro and L.M. Gambardella (1999) Ant algorithms for discrete
optimization. Artificial Life, 5(2), 137-172.

M. Dorigo and L.M. Gambardella (1997) Ant colonies for the traveling salesman
problem. BioSystems, 43, 73-81.

M. Dorigo and L.M. Gambardella (1997) Ant Colony System: A cooperative
learning approach to the traveling salesman problem. [EEE Transactions on
Evolutionary Computation, 1(1), 53-66.

M. Dorigo, V. Maniezzo and A. Colorni (1991) The Ant System: An autocat-
alytic optimizing process. Technical Report 91-016 Revised, Dipartimento di
Elettronica, Politecnico di Milano, Italy.

M. Dorigo, V. Maniezzo and A. Colorni (1991) Positive feedback as a search
strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di
Milano, Italy.

M. Dorigo, V. Maniezzo, and A. Colorni (1996) The Ant System: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics—PartB, 26(1),29-41.

M. Dorigo, M. Middendorf and T. Stiitzle (2000) (eds.) Abstract proceedings
of ANTS2000—From Ant Colonies to Artificial Ants: A Series of International
Workshops on Ant Algorithms. IRIDIA, Université Libre de Bruxelles, Belgium,
7-9 September.

M. Dorigo and T. Stiitzle Ant Colony Optimization. MIT Press, Cambridge, MA
(forthcoming).

M. Dorigo, M. Zlochin, N. Meuleau and M. Birattari (2001) Updating ACO
pheromones using stochastic gradient ascent and cross-entropy methods. Tech-
nical Report IRIDIA/2001-19, IRIDIA, Université Libre de Bruxelles, Belgium.
Proceedings of the 2nd European Workshop on Evolutionary Computation in
Combinatorial Optimization (EvoCOP-2002), (to appear).

T.A. Feo and M.G.C. Resende (1995) Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6, 109-133.

L.M. Gambardella and M. Dorigo (1995) Ant-Q: A reinforcement learning
approach to the traveling salesman problem. In: A. Prieditis and S. Russell

(eds.), Proceedings of the Twelfth International Conference on Machine Learning
(ML-95), Morgan Kaufmann Publishers, Palo Alto, CA, pp. 252-260.

L.M. Gambardella and M. Dorigo (1996) Solving symmetric and asymmetric
TSPs by ant colonies. In: Proceedings of the 1996 IEEE International Con-

ference on Evolutionary Computation (ICEC’96), IEEE Press, Piscataway, NIJ,

pp. 622-627.

L.M. Gambardella and M. Dorigo (1997) HAS-SOP: An hybrid Ant System for
the sequential ordering problem. Technical Report IDSIA-11-97, IDSIA, Lugano,
Switzerland.

282 M. Dorigo and T. Stiitzle

[46] L.M. Gambardella and M. Dorigo (2000) Ant Colony System hybridized with
a new local search for the sequential ordering problem. INFORMS Journal on
Computing, 12(3), 237-255.

[47] L.M. Gambardella, E D. Taillard and G. Agazzi (1999) MACS-VRPTW: A mul-
tiple ant colony system for vehicle routing problems with time windows. In: D.
Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization. McGraw Hill,
London, UK, pp. 63-76.

[48] LM. Gambardella, ED. Taillard and M. Dorigo (1999) Ant colonies for the
quadratic assignment problem. Journal of the Operational Research Society,
50(2), 167-176.

[49] M.R. Garey and D.S. Johnson (1979) Computers and Intractability: A Guide to
the Theory of N'P-Completeness.Freeman, San Francisco, CA.

[50] F. Glover (1990) Tabu search—part II. ORSA Journal on Computing, 2(1), 4-32.

[51] F. Glover and M. Laguna (1997) Tabu Search. Kluwer Academic Publishers,
Boston, MA.

[52] S. Goss, S. Aron, J.L. Deneubourg and J.M. Pasteels (1989) Self-organized
shortcuts in the Argentine ant. Naturwissenschaften, 76, 579-581.

[53] W.J. Gutjahr (2000) A Graph-based Ant System and its convergence. Future
Generation Computer Systems, 16(8), 873-888.

[54] W.J. Gutjahr (2002) ACO algorithms with guaranteed convergence to the optimal
solution. Information Processing Letters, (in press).

[55] R. Hadji, M. Rahoual, E. Talbi and V. Bachelet (2000) Ant colonies for the set
covering problem. In: M. Dorigo, M. Middendorf and T. Stiitzle (eds.), Abstract
proceedings of ANTS2000—From Ant Colonies to Artificial Ants: A Series of Inter-
national Workshops on Ant Algorithms. IRIDIA, Université Libre de Bruxelles,
Belgium, pp. 63-66.

[56] M. Heusse, S. Guérin, D. Snyers and P. Kuntz (1998) Adaptive agent-driven
routing and load balancing in communication networks. Advances in Complex
Systems, 1(2), 237-254.

[57] D.S. Johnson and L.A. McGeoch (1997) The travelling salesman problem: A
case study in local optimization. In: E.-H.L. Aarts and J.K. Lenstra (eds.), Local

Search in Combinatorial Optimization. John Wiley & Sons, Chichester, UK,
pp. 215-310.

[58] M. Jiinger, G. Reinelt and S. Thienel (1994) Provably good solutions for the
traveling salesman problem. Zeitschrift fiir Operations Research, 40, 183-217.

[59] F. Kriiger, D. Merkle and M. Middendorf Studies on a parallel Ant System for
the BSP model. Unpublished manuscript.

[60] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (1985) The
Travelling Salesman Problem. John Wiley & Sons, Chichester, UK.

[61] G.Leguizamén and Z. Michalewicz (1999) A new version of Ant System for sub-
set problems. In: Proceedings of the 1999 Congress on Evolutionary Computation
(CEC’99). IEEE Press, Piscataway, NI, pp. 1459-1464.

(62]

(63]

(64]

(65]

(66]

(67]

[68]

(69]

[70]

(71]

(72]

Ant Colony Optimization Metaheuristic 283

Y.-C. Liang and A.E. Smith (1999) An Ant System approach to redundancy

allocation. In: Proceedings of the 1999 Congress on Evolutionary Computation
(CEC’99). IEEE Press, Piscataway, NJ, pp. 1478-1484.

V. Maniezzo (1999) Exact and approximate nondeterministic tree-search proce-
dures for the quadratic assignment problem. INFORMS Journal on Computing,
11(4), 358-369.

V. Maniezzo and A. Carbonaro (2000) An ANTS heuristic for the frequency
assignment problem. Future Generation Computer Systems, 16(8), 927-935.

V. Maniezzo and A. Colorni (1999) The Ant System applied to the quadratic
assignment problem. IEEE Transactions on Data and Knowledge Engineering,
11(5), 769-778.

V. Maniezzo, A. Colorni and M. Dorigo (1994) The Ant System applied to
the quadratic assignment problem. Technical Report IRIDIA/94-28, IRIDIA,
Université Libre de Bruxelles, Belgium.

D. Merkle, M. Middendorf and H. Schmeck (2000) Ant colony optimization
for resource-constrained project scheduling. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann
Publishers, San Francisco, CA, pp. 893-900.

N. Meuleau and M. Dorigo (2002) Ant colony optimization and stochastic gradient
descent. Artificial Life, (in press).

R. Michel and M. Middendorf (1998) An island model based Ant System
with lookahead for the shortest supersequence problem. In: A.E. Eiben, T.
Bick, M. Schoenauer and H.-P. Schwefel (eds.), Proceedings of PPSN-V, Fifth
International Conference on Parallel Problem Solving from Nature, volume
1498 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
pp. 692-701.

R. Michel and M. Middendorf (1999) An ACO algorithm for the shortest super-
sequence problem. In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in
Optimization. McGraw Hill, London, UK, pp. 51-61.

M. Middendorf, F. Reischle and H. Schmeck (2002) Multi colony ant algorithms.
Journal of Heuristics, (in press).

T.E. Morton, R.M. Rachamadugu and A. Vepsalainen (1984) Accurate
myopic heuristics for tardiness scheduling. GSIA Working Paper 36-83-84,
Carnegie—Mellon University, PA.

G. Navarro Varela and M.C. Sinclair (1999) Ant colony optimisation for virtual-
wavelength-path routing and wavelength allocation. In: Proceedings of the 1999
Congress on Evolutionary Computation (CEC’99). 1EEE Press, Piscataway, NJ,
pp. 1809-1816.

C.H. Papadimitriou (1994) Computational Complexity. Addison-Wesley,
Reading, MA.

H. Ramalhinho Lourenco and D. Serra (1998) Adaptive approach heuristics
for the generalized assignment problem. Technical Report Economic Working
Papers Series No. 304, Universitat Pompeu Fabra, Department of Economics and
Management, Barcelona, Spain.

284
[76]

[77]

(78]

[79]

(30]

[81

—

(82]

(34]

(85]

(86]

(87]

(88]

(39]

(90]

M. Dorigo and T. Stiitzle

G. Reinelt (1994) The Traveling Salesman: Computational Solutions for TSP
Applications, volume 840 of Lecture Notes in Computer Science. Springer- Verlag,
Berlin, Germany.

R.Y. Rubinstein (2001) Combinatorial optimization via the simulated cross-
entropy method. In: Encyclopedia of Operations Research and Management
Science. Kluwer Academic Publishers, Boston, MA.

R. Schoonderwoerd, O. Holland and J. Bruten (1997) Ant-like agents for load bal-
ancing in telecommunications networks. In: Proceedings of the First International
Conference on Autonomous Agents. ACM Press, New York, NY, pp. 209-216.

R. Schoonderwoerd, O. Holland, J. Bruten and L. Rothkrantz (1996) Ant-
based load balancing in telecommunications networks. Adaptive Behavior, 5(2),
169-207.

C. Solnon (2000) Solving permutation constraint satisfaction problems with arti-
ficial ants. In: W. Horn (ed.), Proceedings of the 14th European Conference on
Artificial Intelligence. 10S Press, Amsterdam, The Netherlands, pp. 118-122.
T. Stiitzle (1997) MAX-MIN Ant System for the quadratic assignment prob-
lem. Technical Report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt,
Germany.

T. Stiitzle (1998) An ant approach to the flow shop problem. In: Proceed-
ings of the 6th European Congress on Intelligent Techniques & Soft Computing
(EUFIT’98), volume 3, Verlag Mainz, Wissenschaftsverlag, Aachen, Germany,
pp. 1560-1564.

T. Stiitzle (1998) Parallelization strategies for ant colony optimization. In:
A.E. Eiben, T. Bick, M. Schoenauer and H.-P. Schwefel (eds.), Proceedings
of PPSN-V, Fifth International Conference on Parallel Problem Solving from
Nature, volume 1498 of Lecture Notes in Computer Science. Springer Verlag,
Berlin, Germany, pp. 722-731.

T. Stiitzle (1999) Local Search Algorithms for Combinatorial Problems: Analysis,
Improvements and New Applications. Infix, Sankt Augustin, Germany.

T. Stiitzle and M. Dorigo (1999) ACO algorithms for the quadratic assignment
problem. In: D. Corne, M. Dorigo and F. Glover (eds.), New Ideas in Optimization.
McGraw Hill, London, UK, pp. 33-50.

T. Stiitzle and M. Dorigo (2002) A short convergence proof for a class of ACO
algorithms. IEEE Transactions on Evolutionary Computation (in press).

T. Stiitzle and H.H. Hoos (1997) The MAX-MTAN Ant System and local search
for the traveling salesman problem. In: T. Bick, Z. Michalewicz and X. Yao

(eds.), Proceedings of the 1997 IEEE International Conference on Evolutionary
Computation (ICEC’97), IEEE Press, Piscataway, NJ, pp. 309-314.

T. Stiitzle and H.H. Hoos (2000) MAX-MZIN Ant System. Future Generation
Computer Systems, 16(8):889-914.

R.S. Sutton and A.G. Barto (1998) Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA.

R. van der Put (1998) Routing in the faxfactory using mobile agents. Technical
Report R&D-SV-98-276, KPN Research, The Netherlands.

91]

[92]

(93]

(94]

Ant Colony Optimization Metaheuristic 285

T. White, B. Pagurek and F. Oppacher (1998) Connection management using
adaptive mobile agents. In: H.R. Arabnia (ed.), Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’98). CSREA Press, pp. 802-809.

R.J. Williams (1992) Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3), 229-256.

M. Yannakakis (1997) Computational complexity. In: E.H.L. Aarts and
J.K. Lenstra (eds.), Local Search in Combinatorial Optimization. John Wiley &
Sons, Chichester, UK, pp. 19-55.

M. Zlochin, M. Birattari, N. Meuleau and M. Dorigo (2001) Combinatorial opti-
mization using model-based search. Technical Report IRIDIA/2001-15, IRIDIA,
Université Libre de Bruxelles, Belgium, (submitted to Annals of Operations
Research).

