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Abstract. In this talk, we will briefly discuss the current state of the
research on evolutionary multiobjective optimization, emphasizing the
main achievements obtained to date. Achievements in algorithmic de-
sign are discussed from its early origins until the current approaches
which are considered as the “second generation” in evolutionary multi-
objective optimization. Some relevant applications are discussed as well,
and we conclude with a list of future challenges for researchers working
(or planning to work) in this area in the next few years.

1 Introduction

Several years ago, researchers realized that the principle of “survival of the
fittest” used by nature could be simulated to solve problems [31]. This gave rise
to a type of heuristics known as Evolutionary Algorithms (EAs) which involve
at least three main paradigms: evolution strategies [82], evolutionary program-
ming [32] and genetic algorithms [48]. EAs have been very popular in search
and optimization tasks in the last few years with a constant development of new
algorithms, theoretical achivements and novel applications [38, 2, 60].

One of the emergent research areas in which EAs have become increasingly
popular is multiobjective optimization. In multiobjective optimization problems,
we have two or more objective functions to be optimized at the same time,
instead of having only one. As a consequence, there is no unique solution to
multiobjective optimization problems, but instead, we aim to find all of the
good trade-off solutions available (the so-called Pareto optimal set).

The first implementation of a multi-objective evolutionary algorithm (MOEA)
dates back to the mid-1980s [79,80]. Since then, a considerable amount of re-
search has been done in this area, now known as evolutionary multi-objective
optimization (EMO for short). The growing importance of this field is reflected
by a significant increment (mainly during the last eight years) of technical papers



in international conferences and peer-reviewed journals, books, special sessions
in international conferences and interest groups on the Internet [16].!

Evolutionary algorithms seem also particularly desirable for solving multi-
objective optimization problems because they deal simultaneously with a set
of possible solutions (the so-called population) which allows us to find several
members of the Pareto optimal set in a single run of the algorithm, instead of
having to perform a series of separate runs as in the case of the traditional math-
ematical programming techniques. Additionally, evolutionary algorithms are less
susceptible to the shape or continuity of the Pareto front (e.g., they can easily
deal with discontinuous and concave Pareto fronts), whereas these two issues are
a real concern for mathematical programming techniques [13].

This talk deals with some of the current and future research trends in evolu-
tionary multiobjective optimization. The talk is organized as follows. Section 2
presents some basic concepts used in multiobjective optimization. Section 3
briefly describes the origins of evolutionary multiobjective optimization. Sec-
tion 4 introduces the so-called first generation multiobjective evolutionary algo-
rithms. Second generation multiobjective evolutionary algorithms are discussed
in Section 5, emphasizing the role of elitism in evolutionary multiobjective opti-
mization. Finally, Section 7 discusses some of the research trends that are likely
to be predominant in the next few years.

2 Basic Concepts

The emphasis of this talk is the solution of multiobjective optimization problems
(MOPs) of the form:

minimize [fi(z), f2(2), - ., fr(z)] (1)

subject to the m inequality constraints:

and the p equality constraints:

hi(x)=0 i=1,2,...p (3)

where k is the number of objective functions f; : R* — R We call z =
[z1, %2, ... ,xn]T the vector of decision variables. We wish to determine from
among the set F of all vectors which satisfy (2) and (3) the particular set of values
x7,x35,...,x; which yield the optimum values of all the objective functions.

! The author maintains an EMO repository with over 1000 bibliographi-
cal entries at: http://delta.cs.cinvestav.mx/~ccoello/EMO0, with mirrors at
http://www.lania.mx/"ccoello/EM00/ and http://www.jeo.org/emo/



2.1 Pareto optimality

It is rarely the case that there is a single point that simultaneously optimizes all
the objective functions. Therefore, we normally look for “trade-offs”, rather than
single solutions when dealing with multiobjective optimization problems. The
notion of “optimality” is therefore, different in this case. The most commonly
adopted notion of optimality is that originally proposed by Francis Ysidro Edge-
worth [25] and later generalized by Vilfredo Pareto [67]. Although some authors
call this notion Edgeworth-Pareto optimality (see for example [84]), we will use
the most commonly accepted term: Pareto optimality.

We say that a vector of decision variables * € F is Pareto optimal if there
does not exist another & € F such that f;(x) < fi(x*) forall i = 1,...,k and
fi(x) < fj(x*) for at least one j.

In words, this definition says that x* is Pareto optimal if there exists no
feasible vector of decision variables & € F which would decrease some criterion
without causing a simultaneous increase in at least one other criterion. Unfor-
tunately, this concept almost always gives not a single solution, but rather a set
of solutions called the Pareto optimal set. The vectors * correspoding to the
solutions included in the Pareto optimal set are called nondominated. The image
of the Pareto optimal set under the objective functions is called Pareto front.

3 On the origins of evolutionary multiobjective
optimization

The potential of evolutionary algorithms for solving multiobjective optimization
problems was hinted as early as the late 1960s by Rosenberg in his PhD thesis
[75]. Rosenberg’s study contained a suggestion that would have led to multiob-
jective optimization if he had carried it out as presented. His suggestion was to
use multiple properties (nearness to some specified chemical composition) in his
simulation of the genetics and chemistry of a population of single-celled organ-
isms. Since his actual implementation contained only one single property, the
multiobjective approach could not be shown in his work.

The first actual implementation of what it is now called a multi-objective
evolutionary algorithm (or MOEA, for short) was Schaffer’s Vector Fvaluation
Genetic Algorithm (VEGA), which was introduced in the mid-1980s, mainly
aimed for solving problems in machine learning [79-81].

VEGA basically consisted of a simple genetic algorithm (GA) with a modi-
fied selection mechanism. At each generation, a number of sub-populations were
generated by performing proportional selection according to each objective func-
tion in turn. Thus, for a problem with k objectives, k sub-populations of size
M /k each would be generated (assuming a total population size of M). These
sub-populations would then be shuffled together to obtain a new population of
size M, on which the GA would apply the crossover and mutation operators in
the usual way. Schaffer realized that the solutions generated by his system were
nondominated in a local sense, because their nondominance was limited to the



current population, which was obviously not appropriate. Also, he noted a prob-
lem that in genetics is known as “speciation” (i.e., we could have the evolution of
“species” within the population which excel on different aspects of performance).
This problem arises because this technique selects individuals who excel in one
dimension of performance, without looking at the other dimensions. The po-
tential danger doing that is that we could have individuals with what Schaffer
called “middling” performance? in all dimensions, which could be very useful for
compromise solutions, but which will not survive under this selection scheme,
since they are not in the extreme for any dimension of performance (i.e., they
do not produce the best value for any objective function, but only moderately
good values for all of them). Speciation is undesirable because it is opposed to
our goal of finding Pareto optimal solutions. Although VEGA'’s speciation can
be dealt with using heuristics or other additional mechanisms, it remains as the
main drawback of VEGA.

From the second half of the 1980s up to the first half of the 1990s, few other
researchers developed MOEAs. Most of the work reported back then involves
rather simple evolutionary algorithms that use an aggregating function (linear
in most cases) [50,92], lexicographic ordering [35], and target-vector approaches
(i.e., nonlinear aggregating functions) [43]. All of these approaches were strongly
influenced by the work done in the operations research community and in most
cases did not require any major modifications to the evolutionary algorithm
adopted.

The algorithms proposed in this initial period are rarely referenced in the
current literature except for VEGA (which is still used by some researchers).
However, the period is of great importance because it provided the first insights
into the possibility of using evolutionary algorithms for multiobjective optimiza-
tion. The fact that only relatively naive approaches were developed during this
stage is natural considering that these were the initial attempts to develop mul-
tiobjective extensions of an evolutionary algorithm. Such approaches kept most
of the original evolutionary algorithm structure intact (only the fitness function
was modified in most cases) to avoid any complex additional coding. The empha-
sis in incorporating the concept of Pareto dominance into the search mechanism
of an evolutionary algorithm would come later.

4 MOEAs: First Generation

The major step towards the first generation of MOEAs was given by David Gold-
berg on pages 199 to 201 of his famous book on genetic algorithms published
in 1989 [38]. In his book, Goldberg analyzes VEGA and proposes a selection
scheme based on the concept of Pareto optimality. Goldberg not only suggested
what would become the standard first generation MOEA, but also indicated
that stochastic noise would make such algorithm useless unless some special

2 By “middling”, Schaffer meant an individual with acceptable performance, perhaps
above average, but not outstanding for any of the objective functions.



mechanism was adopted to block convergence. First generation MOEAs typi-
cally adopted niching or fitness sharing for that sake. The most representative
algorithms from the first generation are the following;:

1. Nondominated Sorting Genetic Algorithm (NSGA): This algorithm
was proposed by Srinivas and Deb [83]. The approach is based on several
layers of classifications of the individuals as suggested by Goldberg [38].
Before selection is performed, the population is ranked on the basis of non-
domination: all nondominated individuals are classified into one category
(with a dummy fitness value, which is proportional to the population size,
to provide an equal reproductive potential for these individuals). To main-
tain the diversity of the population, these classified individuals are shared
with their dummy fitness values. Then this group of classified individuals is
ignored and another layer of nondominated individuals is considered. The
process continues until all individuals in the population are classified. Since
individuals in the first front have the maximum fitness value, they always
get more copies than the rest of the population. This allows to search for
nondominated regions, and results in convergence of the population toward
such regions. Sharing, by its part, helps to distribute the population over
this region (i.e., the Pareto front of the problem).

2. Niched-Pareto Genetic Algorithm (NPGA): Proposed by Horn et al.
[49]. The NPGA uses a tournament selection scheme based on Pareto domi-
nance. The basic idea of the algorithm is the following: Two individuals are
randomly chosen and compared against a subset from the entire population
(typically, around 10% of the population). If one of them is dominated (by
the individuals randomly chosen from the population) and the other is not,
then the nondominated individual wins. When both competitors are either
dominated or nondominated (i.e., there is a tie), the result of the tournament
is decided through fitness sharing [40].

3. Multi-Objective Genetic Algorithm (MOGA): Proposed by Fonseca
and Fleming [33]. In MOGA, the rank of a certain individual corresponds
to the number of chromosomes in the current population by which it is
dominated. Consider, for example, an individual z; at generation ¢, which is

(®)

dominated by p;”’ individuals in the current generation.

The rank of an individual is given by [33]:

rank(zx;,t) =1+ pgt) (4)

All nondominated individuals are assigned rank 1, while dominated ones are
penalized according to the population density of the corresponding region of
the trade-off surface.

Fitness assignment is performed in the following way [33]:

(a) Sort population according to rank.



(b) Assign fitness to individuals by interpolating from the best (rank 1) to
the worst (rank n < M, where M is the total population size) in the
way proposed by Goldberg (1989), according to some function, usually
linear, but not necessarily.

(c) Average the fitnesses of individuals with the same rank, so that all of
them are sampled at the same rate. This procedure keeps the global pop-
ulation fitness constant while maintaining appropriate selective pressure,
as defined by the function used.

The main questions raised during the first generation were:

— Are aggregating functions (so common before and even during the golden
years of Pareto ranking) really doomed to fail when the Pareto front is non-
convex [19]? Are there ways to deal with this problem? Is it worth trying?
Some recent work seems to indicate that even linear aggregating functions
are not death yet [52].

— Can we find ways to maintain diversity in the population without using
niches (or fitness sharing), which requires a process O(M?) where M refers
to the population size?

— If assume that there is no way of reducing the O(kM?) process required
to perform Pareto ranking (k is the number of objectives and M is the
population size), how can we design a more efficient MOEA?

— Do we have appropriate test functions and metrics to evaluate quantitatively
an MOEA? Not many people worried about this issue until near the end of
the first generation. During this first generation, practically all comparisons
were done visually (plotting the Pareto fronts produced by different algo-
rithms) or were not provided at all (only the results of the proposed method
were reported).

— When will somebody develop theoretical foundations for MOEAs?

Summarizing, the first generation was characterized by the use of selection
mechanisms based on Pareto ranking and fitness sharing was the most common
approach adopted to maintain diversity. Much work remained to be done, but
the first important steps towards a solid research area had been already taken.

5 MOEAs: Second Generation

The second generation of MOEAs was born with the introduction of the notion of
elitism. In the context of multiobjective optimization, elitism usually (although
not necessarily) refers to the use of an external population (also called secondary
population) to retain the nondominated individuals. The use of this external
population (or file) raises several questions:

— How does the external file interact with the main population?
— What do we do when the external file is full?



— Do we impose additional criteria to enter the file instead of just using Pareto
dominance?

Elitism can also be introduced through the use of a (i + A)-selection in
which parents compete with their children and those which are nondominated
(and possibly comply with some additional criterion such as providing a better
distribution of solutions) are selected for the following generation.

The previous points bring us to analyze in more detail the true role of elitism
in evolutionary multiobjective optimization. For that sake, we will review next
the way in which some of the second-generation MOEAs implement elitism:

1. Strength Pareto Evolutionary Algorithm (SPEA): This algorithm was

introduced by Zitzler and Thiele [96]. This approach was conceived as a way
of integrating different MOEAs. SPEA uses an archive containing nondomi-
nated solutions previously found (the so-called external nondominated set).
At each generation, nondominated individuals are copied to the external
nondominated set. For each individual in this external set, a strength value
is computed. This strength is similar to the ranking value of MOGA, since
it is proportional to the number of solutions to which a certain individual
dominates. It should be obvious that the external nondominated set is in
this case the elitist mechanism adopted.
In SPEA, the fitness of each member of the current population is computed
according to the strengths of all external nondominated solutions that domi-
nate it. Additionally, a clustering technique called “average linkage method”
[61] is used to keep diversity.

2. Strength Pareto Evolutionary Algorithm 2 (SPEA2): SPEA2 has three
main differences with respect to its predecessor [94]: (1) it incorporates a
fine-grained fitness assignment strategy which takes into account for each
individual the number of individuals that dominate it and the number of
individuals by which it is dominated; (2) it uses a nearest neighbor density
estimation technique which guides the search more efficiently, and (3) it has
an enhanced archive truncation method that guarantees the preservation of
boundary solutions.

Thefore, in this case the elitist mechanism is just an improved version of the
previous.

3. Pareto Archived Evolution Strategy (PAES): This algorithm was in-
troduced by Knowles and Corne [54]. PAES consists of a (1+1) evolution
strategy (i-e., a single parent that generates a single offspring) in combina-
tion with a historical archive that records some of the nondominated solu-
tions previously found. This archive is used as a reference set against which
each mutated individual is being compared. Such a historical archive is the
elitist mechanism adopted in PAES. However, an interesting aspect of this
algorithm is the mechanism used to maintain diversity which consists of a
crowding procedure that divides objective space in a recursive manner. Each



solution is placed in a certain grid location based on the values of its ob-
jectives (which are used as its “coordinates” or “geographical location”).
A map of such grid is maintained, indicating the number of solutions that
reside in each grid location. Since the procedure is adaptive, no extra param-
eters are required (except for the number of divisions of the objective space).

. Nondominated Sorting Genetic Algorithm IT (NSGA-II): Deb et al.
[21-23] proposed a revised version of the NSGA [83], called NSGA-II, which
is more efficient (computationally speaking), uses elitism and a crowded com-
parison operator that keeps diversity without specifying any additional pa-
rameters. The NSGA-II does not use an external memory as the previous
algorithms. Instead, the elitist mechanism consists of combining the best
parents with the best offspring obtained (i.e., a (u + A)-selection).

. Niched Pareto Genetic Algorithm 2 (NPGA 2): Erickson et al. [28]
proposed a revised version of the NPGA [49] called the NPGA 2. This al-
gorithm uses Pareto ranking but keeps tournament selection (solving ties
through fitness sharing as in the original NPGA). In this case, no external
memory is used and the elitist mechanism is similar to the one adopted by
the NSGA-II. Niche counts in the NPGA 2 are calculated using individuals
in the partially filled next generation, rather than using the current genera-
tion. This is called continuously updated fitness sharing, and was proposed
by Oei et al. [64].

. Pareto Envelope-based Selection Algorithm (PESA): This algorithm
was proposed by Corne et al. [18]. This approach uses a small internal popu-
lation and a larger external (or secondary) population. PESA uses the same
hyper-grid division of phenotype (i.e., objective funcion) space adopted by
PAES to maintain diversity. However, its selection mechanism is based on
the crowding measure used by the hyper-grid previously mentioned. This
same crowding measure is used to decide what solutions to introduce into
the external population (i.e., the archive of nondominated vectors found
along the evolutionary process). Therefore, in PESA, the external memory
plays a crucial role in the algorithm since it determines not only the diver-
sity scheme, but also the selection performed by the method. There is also
a revised version of this algorithm, called PESA-II [17]. This algorithm is
identical to PESA, except for the fact that region-based selection is used in
this case. In region-based selection, the unit of selection is a hyperbox rather
than an individual. The procedure consists of selecting (using any of the tra-
ditional selection techniques [39]) a hyperbox and then randomly select an
individual within such hyperbox. The main motivation of this approach is
to reduce the computational costs associated with traditional MOEAs (i.e.,
those based on Pareto ranking). Again, the role of the external memory in
this case is crucial to the performance of the algorithm.
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Fig. 1. Diagram that illustrates the way in which the micro-GA for multiobjective
optimization works [15].



7. Micro Genetic Algorithm: This approach was introduced by Coello Coello

& Toscano Pulido [14,15]. A micro-genetic algorithm is a GA with a small
population and a reinitialization process. The way in which the micro-GA
works is illustrated in Figure 1. First, a random population is generated.
This random population feeds the population memory, which is divided in
two parts: a replaceable and a non-replaceable portion. The non-replaceable
portion of the population memory never changes during the entire run and
is meant to provide the required diversity for the algorithm. In contrast, the
replaceable portion experiences changes after each cycle of the micro-GA.
The population of the micro-GA at the beginning of each of its cycles is taken
(with a certain probability) from both portions of the population memory so
that there is a mixture of randomly generated individuals (non-replaceable
portion) and evolved individuals (replaceable portion). During each cycle,
the micro-GA undergoes conventional genetic operators. After the micro-
GA finishes one cycle, two nondominated vectors are chosen® from the final
population and they are compared with the contents of the external mem-
ory (this memory is initially empty). If either of them (or both) remains as
nondominated after comparing it against the vectors in this external mem-
ory, then they are included there (i.e., in the external memory). This is the
historical archive of nondominated vectors. All dominated vectors contained
in the external memory are eliminated.
The micro-GA uses then three forms of elitism: (1) it retains nondominated
solutions found within the internal cycle of the micro-GA, (2) it uses a re-
placeable memory whose contents is partially “refreshed” at certain intervals,
and (3) it replaces the population of the micro-GA by the nominal solutions
produced (i.e., the best solutions found after a full internal cycle of the
micro-GA).

Second generation MOEAs can be characterized by an emphasis on efficiency
and by the use of elitism (in the two main forms previously described). During
the second generation, some important theoretical work also took place, mainly
related to convergence [76,77,45,46,90]. Also, metrics and standard test func-
tions were developed to validate new MOEAs [93,89].

The main concerns during the second generation (which we are still living
nowadays) are the following:

— Are our metrics reliable? What about our test functions? We have found
out that developing good metrics is in itself a multiobjective optimization
problem, too. In fact, it is ironic that nowadays we are going back to trusting
more visual comparisons than metrics as during the first generation.

— Are we ready to tackle problems with more than two objective functions
efficiently? Is Pareto ranking doomed to fail when dealing with too many
objectives? If so, then what is the limit up to which Pareto ranking can be
used to select individuals reliably?

3 This is assuming that there are two or more nondominated vectors. If there is only
one, then this vector is the only one selected.



— What are the most relevant theoretical aspects of evolutionary multiobjective
optimization that are worth exploring in the short-term?
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Fig. 2. MOEA Citations by Year (up to mid-2002)

6 Applications

An analysis of the evolution of the EMO literature reveals some interesting facts
(see Figure 2). From the first EMO approach published in 1985 [80] up to the
first survey of the area published in 1995 [34], the number of published papers
related to EMO is relatively low. However, from 1995 to our days, the increase
of EMO-related papers is exponential. Today, the EMO repository registers over
1000 papers, from which a vast majority are applications. The vast number of
EMO papers currently available makes it impossible to attempt to produce a
detailed review of them in this section. Instead, we will discuss the most popular
application fields, indicating some of the specific areas within them in which
researchers have focused their main efforts.

Current EMO applications can be roughly classified in three large groups:
engineering, industrial and scientific. Some specific areas within each of these
groups are indicated next.

We will start with the engineering applications, which are, by far, the most
popular in the literature. This should not be too surprising, since engineering



disciplines normally have problems with better understood mathematical models
which facilitates the use of evolutionary algorithms. A representative sample of
engineering applications is the following (aeronautical engineering seems to be
the most popular subdiscipline within this group):

— Electrical engineering [88, 87]
Hydraulic engineering [72, 28]

— Structural engineering [58,12,44]
Aeronautical engineering [74,63,91]
— Robotics [66, 36,65]

— Control [5, 86, 56]

— Telecommunications [8,55,71]

— Civil engineering [30, 3]

— Transport engineering [10, 37, 59]

Industrial applications occupy the second place in popularity in the EMO
literature. Within this group, scheduling is the most popular subdiscipline. A
representative sample of industrial applications is the following;:

— Design and manufacture [9, 73, 78]
— Scheduling [27,85, 7]
— Management [51,24]

Finally, we have a variety of scientific applications, from which the most
popular are (for obvious reasons) those related to computer science:

— Chemistry [47,57]

— Physics [68,69,41)]
Medicine [1,70]

— Computer science [20, 26, 4]

The above distribution of applications indicates a strong interest for de-
veloping real-world applications of EMO algorithms (something not surprising
considering that most real-world problems are of a multiobjective nature). Fur-
thermore, the previous sample of EMO applications should give a general idea
of the application areas that have not been explored in enough depth yet (e.g.,
computer vision, coordination of agents, pattern recognition, etc. [16]).

7 Future Challenges

Once we have been able to distinguish between the first and second generations
in evolutionary multiobjective optimization, a reasonable question is: where are
we heading now?

In the last few years, there has been a considerable growth in the number of
publications related to evolutionary multiobjective optimization. However, the
variety of topics covered is not as rich as the number of publications released
each year. The current trend is to either develop new algorithms (validating them



with some of the metrics and test functions available) or to develop interesting
applications of existing algorithms.

We will finish this section with a list of some of the research topics that we
believe that will keep researchers busy during the next few years:

— Incorporation of preferences in MOEAs: Despite the efforts of some
researchers to incorporate user’s preferences into MOEAs as to narrow the
search, most of the multicriteria decision making techniques developed in
Operations Research have not been applied in evolutionary multiobjective
optimization [11]. Such incorporation of preferences is very important in real-
world applications since the user only needs one Pareto optimal solution and
not the whole set as normally assumed by EMO researchers.

— Dynamic Test Functions: After tackling static problems with two and
three objective functions, the next logical step is to develop MOEAs that
can deal with dynamic test functions [6] (i.e., test functions in which the
Pareto front moves over time due to the existence of random variables).

— Highly-Constrained Search Spaces: There is little work in the current
literature regarding the solution of multiobjective problems with highly-
constrained search spaces. However, it is rather common to have such prob-
lems in real-world applications and it is then necessary to develop novel
constraint-handling techniques that can deal with highly-constrained search
spaces efficiently.

— Parallelism: We should expect more work on parallel MOEASs in the next
few years. Currently, there is a noticeable lack of research in this area [16]
and it is therefore open to new ideas. It is necessary to have more algorithms,
formal models to prove convergence, and more real-world applications that
use parallelism.

— Theoretical Foundations: It is quite important to develop the theoreti-
cal foundations of MOEAs. Although a few steps have been taken regarding
proving convergence using Markov Chains (e.g., [76, 77]), and analyzing met-
rics [95,53], much more work remains to be done (see [16]).

— Use of More Efficient Data Structures: The usage of more efficient data
structures to store nondominated vectors is just beginning to be analyzed
in evolutionary multiobjective optimization (see for example [62,29]). Note
however, that such data structures have been in use for a relatively long time
in Operations Research [42].

8 Conclusions

This talk has provided a general view of the field known as evolutionary multiob-
jective optimization. We have provided a historical analysis of the development



of the area, emphasizing the algorithmic differences between the two main stages
that we have undergone so far (the two so-called “generations”). The notion of
elitism has been identified as the main responsible of the current generation of
algorithms used in this area. Also, some of the most important issues (stated in
the form of questions) raised during each of these two generations were briefly
indicated.

In the final part of the talk, we have discussed some of the most relevant ap-
plications developed in the literature and we identified certain research trends.
We have finished this talk with some promising areas of future research in evolu-
tionary multiobjective optimization, hoping that this information may be useful
to newcomers who whish to contribute to this emerging research field.
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