A Clearing Procedure as a Niching Method
for Genetic Algorithms

A. Pétrowski

Département Informatique, Institut National des Télécommunications
9 rue Charles Fourier, 91011 Evry Cedex, France

E-mail: ap@etna.int-evry.fr,

Abstract — The clearing procedure is a niching method inspired
by the principle stated by J.H. Holland in 1975: the sharing of
limited resources within subpopulations of individuals
characterized by some similarities. But, instead of evenly
sharing the available resources among the individuals of a
subpopulation, the clearing procedure supplies these resources
only to the best individuals of each subpopulation. The clearing
is naturally adapted to elitist strategies. This can significantly
improve the performance of genetic algorithms applied to
multimodal optimization. Moreover the clearing procedure
allows the GA to efficiently reduce the genetic drift when used
with an appropriate selection operator. Some experimental
results are presented for a massively multimodal deceptive
function optimization,

I. GENETIC ALGORITHMS AND M ULTIMODAL
OPTIMIZATION

A simple genetic algorithm [1] (SGA) is suitable for
searching the optimum of unimodal functions in a bounded
search space. However, both experiments and analysis show
that the SGA cannot find the multiple global maxima of a
multimodal function [1][2]. This limitation can be overcome
by a mechanism that creates and maintains several
subpopulations within the search space in such a way that
each highest maximum of the multimodal function can attract
one of them. These mechanisms are referred to as “niching
methods” [2].

The clearing procedure described in this paper derives from
the nichirig principle stated by J.H. Holland in 1975 [3]. A
niche is characterized by a limited amount of renewal
resources available for individuals which presents
similarities. Each individual in a niche can consume a
fraction of the available resources: the greater the
subpopulation size of the niche, the smaller the fraction. This
leads towards a steady state in which the subpopulation sizes
are proportional to the amount of the corresponding available
resources. D.E. Goldberg and J. Richardson [4] presented an
implementation of this concept known as the “sharing
method”.
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This paper first presents the clearing procedure and
subsequently an elitist variant. This technique is then
compared with the sharing method from the subpopulation
size point of view. The behavior of the clearing procedure
facing the genetic drift with the operators “Roulette Wheel
Selection” (RWS) or “Stochastic Universal Selection” [5]
(SUS), is also discussed. Finally, the test of the clearing
procedure on a massively multimodal deceptive function is
presented.

II. CLEARING THE SEARCH SPACE

A. Principles

The clearing procedure is applied after evaluating the fitness
of individuals and before applying the selection operator.
Like the sharing method, the clearing algorithm uses a
dissimilarity measure between individuals to determinate if
they belong to the same subpopulation, or not. This value
could be the Hamming distance for binary coded genotypes,
the Euclidian distance for “real coded” genotypes or it could
be defined at the phenotype level.

Each subpopulation contains a dominant individual: the one
that has the best fitness. If an individual belongs to a given
subpopulation, then its dissimilarity with the dominant is less
than a given threshold o: the clearing radius. The basic
clearing algorithm preserves the fitness of the dominant
individual while it resets the fitness of all the other
individuals of the same subpopulation to zero. Thus, the
clearing procedure fully attributes the whole resource of a
niche to a single individual: the winner. The winner takes all
rather than sharing resources with the other individuals of the
same niche as is done in the sharing method.

With such a mechanism, the niche of an individual is not
generally known. In effect, it can be dominated by several
winners. On the other hand, for a given population, the set of
the winners is unique. This proposition is proved by
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induction: the individual that has the strongest fitness in the
population is necessarily a winner. The winner and all the
individuals that it dominates are then fictitiously removed
from the population. We proceed in the same way with the
new population which is then obtained. Thus, the list of all
the winners is produced after a certain number of steps.

It is also possible to generalize the clearing algorithm by
accepting several winners chosen among the best individuals
of each niche. The capacity of a niche is defined as the
maximum number of winners that this niche can accept.
Notice that if a capacity greater than 1 is chosen, the set of
winners for a given population is not generally unique. There
is at least one reason to want capacities greater than 1: if the
capacities are equal to the population size, the clearing effect
vanishes and the search method becomes a standard GA.
Thus, choosing capacities between one and the population
size offers intermediate situations between the maximum
clearing and a standard GA.

B. The clearing procedure

A simplified version of the clearing procedure is presented
below in pseudo code. P and » are global variables. “Sigma”
is the clearing radius, “Kappa” is the capacity of each niche.
“nbWinners” indicates the number of winners of the
subpopulation associated with the current niche. Population P
can be considered as an array of » individuals.

function Clearing(Sigma, Kappa)

begin
SortFitness (P)
for i =0 ton-1
if Fitness(P[i]) > 0
nbWinners := 1
for =i+ 1ton-1
if Fitness(P[j]) > 0 and
Distance (P[i], P[j]) < Sigma
if nbWinners < Kappa

nbWinners := nbWinners + 1
else
Fitness (P[7]) := 0.0
endif
endif
endfor
endif
endfor

end

The simplified algorithm uses three functions:

0 SortFitness(P) sorts population P according to the
fitness of the individuals by decreasing values. The
whole population is ranked for the sake of clarity in this

version of the algorithm. A more optimized algorithm
would sort only the dominant individuals.

0 Fitness(P[{]) returns a reference on the fitness of the i-th
individual of population P.

0 Distance(P[i], P[] returns the distance between two
individuals i andj of population P.

C. Complexity

In order to assign individuals to a given subpopulation, its
dominant is compared to all the individuals that have not yet
been assigned to a subpopulation. The dominant of
subpopulation 1 is the first of the sorted population. It is
compared to the #-1 other individuals to obtain subpopulation
1. Assume that this subpopulation contains /; individuals.
Then, the dominant in subpopulation 2 is the first individual
of the population not yet assigned. It is compared to the
n-1-1 individuals that are not yet assigned. Thus, by
induction reasoning, the dominant of subpopulation  has to
be compared to the n-1 -z;;lllj individuals not yet
assigned. Let ¢ be the number of subpopulations, the total
number of comparisons 7is:
C
Y= §: iL:)-C
i=1

The maximal value of term Y5-I is obtained when the
subpopulation 1 contains (n - ¢ + 1) individuals, while each
other subpopulation contains only one individual. Its minimal
value is obtained when subpopulation ¢ contains (n - ¢ + 1)
individuals, and each other subpopulation contains only one
individual. Consequently, y belongs to the interval:

n+ -C(—Cz-—3237Scn- M

Moreover, the complexity of the sort is bounded by O(c n),
since only ¢ dominant individuals have to be ranked. Thus,
the complexity of the clearing procedure is O(c n) in the
worst case. When n increases, ¢ tends towards a limit, which
depends on the fitness landscape, o and x. These parameters
should be chosen in such a way that the limit of ¢ is of the
same order as the desirable peak number.

D. Expected size of subpopulations under clearing

Let wy(g) be the number of winners of a subpopulation x at
generation g. Let us assume that the fitness of the winners of
a subpopulation are almost equal to a value f,. This
hypothesis is true for a capacity 1, or at the steady state when
subpopulations are located on the peaks of the function. By
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applying a proportionate selection operator after a clearing,
the expected size of each subpopulation x is

E (nflearing( g)) ~n ch(g) fx
2wk

y=1

»

where E(X) represents the expected value of random variable
X. The experiments and the analysis [6] show that the niches
associated with the best fitnesses tend to be saturated during
the evolution.

An interesting particular case arises when all the niches are
saturated and have an equal capacity k. This is always the
case when k= 1. Expression (1) becomes

E (nxclearing( g)) =n clx
I

y=1

@

In this case, the expected size of a subpopulation depends
neither on generation g, nor on the niche capacity. On the
other hand, the expected number of offspring E(ng,cr8) of
individual i belonging to subpopulation x is inversely
proportional to capacity x:

E(n(c[l)earing ) - (3)

According to the selection operator used, this number has an
effect on the genetic drift [1] due to the noise of the selection
operator. The classical RWS does not ensure that the actual
number of offsprings is close to the expected value. It is
possible that an individual that has a fitness greater than the
average disappears unfortunately. On the other hand, the SUS
operator [5] ensures that for an expected number of offspring
ng, the actual number is | s jor[ng.

E (nflearing )
K

The niche capacity has no consequence on the noise of an
RWS. However, the smaller the number E(n;c/4""8), the
greater the relative noise of an SUS. A subpopulation is
surely preserved if E(n,c%e#ring) > 1, but it could disappear if a
large enough niche capacity is selected. Thus, a high capacity
modifies the exploration of the search space by allowing a
large part of the population to concentrate towards the highest
maxima of the fitness function.

E. An elitist strategy for the clearing procedure

An elitist strategy memorizes the best individual(s) of a
population found before the application of genetic operators
and passes it (them) unaltered on to the next generation. K.A.
De Jong noted that this strategy can improve the performance
of a GA for an unimodal fitness function, but also that the
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performance is degraded for the F5 function, for example,
which is multimodal [7]. An important reason of this low
performance lies in the increased premature convergence
hazards during which a large number of individuals
concentrate on some maxima of the fitness function.

One way to avoid this problem is to limit individual density
at every region of the search space. This is precisely one of
the effects of niching methods. Then, the problem is to
determine the best individuals of every subpopulation in
order to preserve them. Now, the clearing procedure supplies
these individuals naturally: they are the winners. If the
preservation of all the winners immobilizes too great a
fraction of the population to achieve good convergence
properties, it is possible to use a more restrictive choice
criterion, such as, for example, preserving only the winners
with a fitness greater than the average before clearing. This is
the method chosen for the experiments described below.
Another possibility is to memorize only the dominant
individual of each subpopulation.

III. CLEARING VS. SHARING

The sharing method [4] is probably the best known niching
method. With a proportionate selection operator, the expected
number of offspring of an individual i is proportional to its
shared fitness f{iy which depends on its fitness f{; according
to the following expression:

~ f .
fie) = ]L
sh(dij
= () @
with
1- ( d )a, ifd< Oshare
s h( d) - Oshare
0 otherwise
Q)
sh sharing function
dij genotypic or phenotypic distance between
individuals 7 and j
Oshare . threshold of dissimilarity
o constant (typically set to 1)

Consider the hypothesis where all the individuals of a
subpopulation x have a fitness almost equal to a value fy,
representative of the niche and are at a distance near zero
from each other. This particular case typically occurs at the



steady state when subpopulations are localized on the highest
maxima of the function. Assume that individual i belongs to
subpopulation x, a new expression of f is obtained:

Jo _

fay(8) = m(g) ~ ml®)

©
where n,(g) is the number of individuals in the subpopulation

x at generation g. The expected number of offspring of an
individual i at generation g is :

n

(8))=n L&) o
2 ful® s

sharing
E(ngs

Y]
The expected number of individuals E (n£"78) that belong
to subpopulation x is obtained by multiplying expression (7)
by n(g):
E (nscsharing ) ~ n Ix
C

> h
y=1 @®)

This number is independent of g when the steady state is
reached. Thus, the sharing method tends to restore the
equilibrium at every generation. Note that the expression of
E (n$herin8) is identical to that of E (nglearing) when the
niches are saturated and have the same capacities.

This second expression of the expected number of offspring
of individual i at generation g gives another point of
comparison with the clearing:

sharin,
( g)) = Eh(n"_ﬁ

E niharing
(= nx(8)

: )
Thus, with the sharing method, if a subpopulation contains
more individuals than expected because of the selection noise
at a given generation, each of them will have an expected
number of offspring less than 1 in order to restore the
equilibrium. When this happens with proportionate selection
schemes such as RWS or SUS, an individual of such a
subpopulation could not have offspring. If this is the case for
all the individuals of a subpopulation, it disappears. This
phenomenon can be countered with a large enough number of
individuals for each desirable subpopulation in such a way
that its survival probability is high. This implies an adequate
dimensioning of the population [8].

On the other hand, the clearing associated with an SUS
ensures that the number of offspring of the winners of a
subpopulation is always greater or equal to one if its fitness is
greater than the average after clearing. Consequently, this
subpopulation survives with certainty. Thus, this technique
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gives a lower bound to the population size which is smaller
than the one required by the sharing method. This has been
confirmed by the experiments.

IV. EXPERIMENTS

Several experiments have been performed in order to evaluate
the robustness of the clearing. Both easy and difficult fitness
functions have been considered. The experiments described
here concern the most difficult function that has been
examined: the M7 massively multimodal deceptive function
used in [8] and [2] to test different niching methods.

The purpose of these experiments was to compare the
performance of several variants of genetic algorithms on a
binary-coded massively multimodal deceptive problem. Five
variants of GA’s are considered: an SGA, elitist or not, the
sharing method associated with an SGA, and the clearing
method, elitist or not, associated with an SGA.

A. Description of the M7 function
M7 is defined as follows:

4 5
M7( X0y v0y X29) = 2 u 2 x6i+j)
=0 /S0

where V k, x; € {0, 1}. Function u(x) is defined for the
integer values O to 6 (figure 1). It has two maxima of value 1
at the points x = 0 and x = 6, as well as a local maximum of
value 0.640576 for x = 3. Function u has been specifically
built to be deceptive.

Function M7 has 32 global maxima of value equal to 5, and
several million local maxima, the values of which are
between 3.203 and 4.641.

1.0

0.8 1

0.6

y
0.4
0.2
0.0
0 1 2 3 4 5 6
X

Figure 1: y =u(x)



B. Experimental conditions

The 32 global maxima of this function are searched with a
genetic algorithm working on 30-bit genotypes. The single-
point crossover and standard binary mutation operators are
used. The mated individuals are chosen at random, without
constraint.

The distance between individuals is the Hamming distance
between genotypes, normalized so that the biggest value in
the search domain of the GA is equal to one. The clearing
radius o, as parameter Oy, are chosen equal to 0.2 in the
distance unit previously defined. This radius corresponds to
the smallest distance that exists between two global maxima.
This value was used in [8]. Parameter « of the sharing
method is set to 1.

The population contains 600 individuals. The mutation rate is
0.002, the crossover rate is 1. These parameters have been
chosen with the help of preliminary experiments in such a
way that they minimize the duration of the computations.

C. Results

The performance is the mean number of peaks found by the
GA at a given generation g for 100 different runs using the
same parameters. A peak is found if at least one individual in
the population corresponds exactly to a global maximum.

Figure 2 shows the performance vs. generation g for two
clearing variants (elitist and non-elitist) with niches of
capacity 1. These performances are compared to those
yielded by the sharing method and two variants of simple
genetic algorithms. The results are given for a stochastic
universal selection (SUS).

mean number of peaks found

32 o
24
16
8
simple G4, non elitis
L carm , nonielitist shar‘n‘g
00 20 4 60 80 100

number of generations g

Figure 2: performance vs. the number of generations for
searching the maxima of function M7. The greyed areas
associated with each curve define the confidence intervals
with an error probability of 1%.
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The best results are obtained with elitist strategies. The
clearing elitist strategy is the only which allows the GA to
find all the 32 global maxima for less than 88 generations
over 100 runs. On the other hand, the performance of the
non-elitist clearing is near zero. This can be explained by the
deceptiveness of function M7: the crossover destroys the
individuals located on the peaks found with a high
probability, while the search operators produce with low
probability these individuals. The elitist techniques avoid this
problem. However, the elitist simple GA does not give
satisfaction according to frequent premature convergences.

The experiments show that the sharing method has a
performance near zero for a population of 600 individuals.
Concerning a hybrid implementation that associates a genetic
algorithm with a hill-climbing, S.W. Mahfoud [2] wrote that
the sharing method fails whatever the size of the population
may be, in the limit of 1.5 million fitness evaluations. The
best results were obtained with the “deterministic crowding”
method, which required 101-10% evaluations on the average to
find the 32 peaks. In comparison, an elitist clearing with
x =1 associated with a SUS needs 22-103 evaluations on the
average to solve the problem, with a minimum of 16-103 and
a maximum of 32-10% evaluations measured over 100 runs.

The table below allows us to compare the number of peaks
found by the clearing method at the hundredth generation
with an SUS or an RWS and a niche capacity greater than 1,
for 100 successive runs.

Nb. peaks [| SUS | RWS [ SUS | RWS
£=100 k=1 | k=1 ] k=8 | k=8
clitist 32 32 31 30
+0 +0 +1 +14
non-elitist 1101 04 [38 |21
+0.1 +02 |+05 |*£05

The table shows that there is an advantage to accept several
winners per niche for the non-elitist implementations. But
this is a drawback for the elitist implementations. The
explanations lie in the greater number of individuals located
on the peaks found. These numbers obtained just after the
fitness evaluation are given in the table below:

Nb. ind. SUS | RWS SUS | RWS
on peaks k=1 Kk=1 K=28 k=8
elitist 43 43 430 400
non-elitist || 0.13 0.44 5.1 3.6




When the implementation is non-elitist, the crossover must
destroy all the individuals of a subpopulation in order to
suppress it. That is all the less likely as it has more
individuals. The same phenomenon is at the origin of some
peaks found by the non-elitist SGA.

By analyzing the developments of the tests for the clearing
elitist implementations, one notes that the degradation is due
to premature convergences towards 16 of the 32 peaks in 7
cases for the SUS, 13 cases for the RWS, over 100 runs.
These premature convergences correspond to allele losses on
one of the 6-bit blocks of the genotype. This happens because
the large part of the population on the peaks already found no
longer participates in the search process. This is due to the
particular form of the M7 function. The rest of the population
is too small to regenerate the lost alleles likely.

The number of subpopulations at the hundredth generation is
364 + 3 when the niche capacity is set to 1, and 34 + 2 when
this capacity is 8, run over 100 tests. In tests run with the
latter parameter the number of subpopulations is almost equal
to the number of global maxima.

V. CONCLUSION

The clearing procedure is an efficient niching method, which
has the following properties:

¢ The complexity of the clearing procedure is lower than
that of the sharing method. Clustering methods such as
[9] could contribute to further speed up the algorithm.

¢ The clearing is directly compatible with elitist strategies.

¢ The genetic drift due to the selection noise is
significantly reduced with the SUS operator, and the
populations may be far smaller than those required by the
sharing method. :

O The behavior of the GA with the clearing procedure can
be controlled between that of the maximum clearing and
that without clearing by setting the niche capacity to an
appropriate value.

This paper has presented the successful solving of a difficult
multimodal problem with the clearing procedure compared to
some other methods. Several other easy and difficult
multimodal functions have also been tested. The clearing
procedure has to date always outperformed the sharing
method.
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