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Data Mining

Data Mining and Soft Computing

Summary

Introduction to Data Mining and Knowledge Discovery

Data Preparation

Introduction to Prediction, Classification, Clustering and Association

Data Mining - From the Top 10 Algorithms to the New Challenges

Introduction to Soft Computing. Focusing our attention in Fuzzy Logic

and Evolutionary Computation

6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and
Knowledge Extraction based on Evolutionary Learning

7. Genetic Fuzzy Systems: State of the Art and New Trends

8. Some Advanced Topics I: Classification with Imbalanced Data Sets

9. Some Advanced Topics Il: Subgroup Discovery

10.Some advanced Topics Illl: Data Complexity

11.Final talk: How must | Do my Experimental Study? Design of

Experiments in Data Mining/Computational Intelligence. Using Non-

parametric Tests. Some Cases of Study.
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Motivation

Automatic Classification

 Why are machines still far from perfect?
 What is still missing in our techniques?

Bayesian classifiers

polynomial discriminators
nearest-neighbor methods

decision trees & forests

neural networks

genetic algorithms

Fuzzy Rule Based Systems

support vector machines

ensembles and classifier combination
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Large Variations in Accuracies of Different Classifiers

eror B 4 P AR O
aud 25.3 76.0 68.4 69.6 79.0 81.2 = 57.7
aus 55.5 81.9 85.4 77.5 85.2 83.3 84.9 85.7
bal 45.0 76.2 87.2 90.4 78.5 81.9 - 79.8
bpa 58.0 63.5 60.6 54.3 65.8 65.8 58.0 68.2
bps 51.6 83.2 82.8 78.6 80.1 79.0 86.4 83.3
bre 65.5 96.0 96.7 96.0 95.4 95.3 96.7 96.0
cmc 42.7 44.4 46.8 50.6 52.1 49.8 = 52.3
gls 34.6 66.3 66.4 47.6 65.8 69.0 - 72.6
h-c 54.5 77.4 83.2 83.6 73.6 77.9 = 79.9
hep 79.3 79.9 80.8 83.2 78.9 80.0 83.9 83.2
irs 33.3 95.3 95.3 94.7 95.3 95.3 = 94.7
krk 52.2 89.4 94.9 87.0 98.3 98.4 96.1 98.6
lab 65.4 81.1 92.1 95.2 73.3 73.9 93.2 75.4
led 10.5 62.4 75.0 74.9 74.9 75.1 - 74.8
lym 55.0 83.3 83.6 85.6 77.0 71.5 = 79.0
mmg 56.0 63.0 65.3 64.7 64.8 61.9 67.0 63.4
mus 51.8 100.0 100.0 96.4 100.0 100.0 100.0 99.8
mux 49.9 78.6 99.8 61.9 99.9 100.0 61.6 100.0
pmi 65.1 70.3 73.9 75.4 73.1 72.6
prt 24.9 34.5 42.5 50.8 41.6 39.8
seg 14.3 97.4 96.1 80.1 97.2 96.8
sick 93.8 96.1 96.3 93.3 98.4 97.0
soyb 13.5 89.5 90.3 92.8 91.4 90.3
tao 49.8 96.1 96.0 80.8 95.1 93.6
thy 19.5 68.1 65.1 80.6 92.1 92.1
veh 25.1 69.4 69.7 46.2 73.6 72.6
vote 61.4 92.4 92.6 90.1 96.3 96.5
VOW 9.1 99.1 96.6 65.3 80.7 78.3
whne 39.8 95.6 96.8 97.8 94.6 92.9
Z0O0 41.7 94.6 92.5 95.4 91.6 92.5




Many classifiers are in close rivalry with
each other. Why?

m Do they represent the limit of our technology?

m \What do the new classifiers add to the
methodology?

m Is there still value In the older methods?

m Have they used up all information contained in
a data set?

When I face a new recognition task ...

@ How much can automatic classifiers do?
m How should | choose a classifier?

m Can I make the problem easier for a specific

classifier?
.




Complexity Measures

Sources of Difficulty in Classification

m Class ambiguity

m Sample size and
dimensionality

m Boundary complexity Data Complexity
_ - in Pattern
We need metrics for analizing Recognition

problems features and the
limits of every learning model.

Limits of Current Learning
Algorithms
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Class Ambiguity

Is the concept intrinsically ambiguous?
Are the classes well defined? l

What information do the features carry?
Are the features sufficient for discrimination?

10




Sampling Density

2 points 10 points

100 points

500 points

Problem may

appear deceptively
simple or complex
with small samples

1000 points
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Boundary Complexity

m Kolmogorov complexity
m Length can be exponential in dimensionality

m A trivial description is to list all points & class
labels

m Is there a shorter description?

12




Classification Boundaries As Decided by
Different Classifiers

Training samples for a 2D classification problem

feature 2

feature 1

13




Classification Boundaries Inferred by
Different Classifiers

« XCS:agenetic « Nearestneighbor e Linear
algorithm classifier classifier
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Match between Classifiers and Problems
Problem A Problem B
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Measures of Geometrical Complexity
of Classification Problems

The approach: develop mathematical
language and algorithmic tools for
studying

m Characteristics of geometry & topology of high-
dim data

m How they change with feature transformations,
noise conditions, and sampling strategies

m How they Interact with classifier geometry

Focus on descriptors computable from real
data and relevant to classifier geometry

17




Geometry of Datasets and Classifiers

m Data sets:
m length of class boundary

m fragmentation of classes / existence of
subclasses

global or local linear separability
convexity and smoothness of boundaries
Intrinsic / extrinsic dimensionality

stability of these characteristics as sampling
rate changes

m Classifier models:

m polygons, hyper-spheres, Gaussian kernels,
axis-parallel hyper-planes, piece-wise linear
surfaces, polynomial surfaces, their unions or
Intersections, ... 18




Measures of Geometric Complexity

Degree of Linear Separability

Find separating
hyper-plane by linear
programming

Error counts and
distances to plane
measure separability

Fisher’'s Discriminant Ratio

Classical measure
of class separability

Maximize over all
features to find the
most discriminating

r= (-1, )?

o 2 2
O'1 +O'2

Length of Class Boundary

Compute minimum
spanning tree

Count class-
crossing edges
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Shapes of Class Manifolds

Cover same-class
pts with maximal
balls

Ball counts describe

shape of class
manifold




Measures of Geometrical Complexity

Fl
F2
F3
L1
L2
L3
N1
N2
N3
N4
T1
T2

maximum Fisher's discriminant ratio

volume of overlap region
maximum (individual) feature efficiency

minimized error by linear programming (LP)

error rate of linear classifier by LP

nonlinearity of linear classifier by LP

fraction of points on boundary (MST method)

ratio of average intra/inter class NN distance

error rate of INN classifier

nonlinearity of 1NN classifier

fraction of points with associated adherence subsets retained
average number of points per dimension

20




Example Method Ishibuchi FH-GGBML,

Measure | Description

2005, IEEE TSMC

F2 volume of overlap region

L1 minimized sum of error distance by linear programming
L2 error rate of linear classifier by Linear Programming
N2 ratio of average intra/inter class NN distance

N3 error rate of 1NN classifier

N4 non-linearity of 1NN classifier

T2 average number of points per dimension

MTahla 1+ (amnlavity matriee nead in thie atider

1oo.oo

a0, oo

A0, C0

80,00 =

70,00

ED.OO

40,00
10,00

1 Irvine archive

10,00

| 255 data sets with 2-
variables, nonseparable
Benchmarking data from UC-

50 100 150 oo 250

=== FH-GE ML % Couracy Train FH-GBMIL RACCuracy Test

Figure 2: Accuracy in Train/Test for FH-GBML sorted by train accuracy 21




Method Ishibuchi FH-GGBML
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Figure 3: Acouracy in Train/Test sorted by F2

Figure 4: Acouracy in Train/Test sorted by N2
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Figure 5 Aceuracy in Train/Test sarted by N3

Figura & Acouracy in Train /Test sorted by N4
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FH-GGBML

Method Ishibuchi

Figure 8 Acouracy in Train/Test sorted by L2

Figure 7: Accuracy in Train/Test sorted by L1

Figura 9: Aecuracy in Train/Test scrted by T2
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Domains of Competence of Classifiers

m Given a classification problem,
determine which classifier is the best for it

Complexity measure 2

Fuzzy
Systems

Complexity measure 1

25




Domains of Competence of Classifiers

Method Ishibuchi FH-GGBML

Some interesting intervals

Interval FH-GBEML Behaviour
N2 < 0.23 good behaviour

L1 < 0.1585 good behaviour
F2=1 good behaviour

0.04 < L2 < 0.1 | good behaviowr
N3i=10 bad behaviour

N4 =10 bad behaviour

T2 <7 bad behaviour

Table 2: Significant intervale

26




Domains of Competence of Classifiers

Method Ishibuchi
Rules with a metric

FH-GGBML

Id. Rule support | Avg. % Train | Train Diff. | Avg % Test Test Diff.
=t Dhew =t Dy
H1+ It N2[A| « 0.23 | 32.549%% a0, 10000%, 6. 88505 a6, 40400°7, 12.6190%,
then good behaviour 1. 56873 3.73028
R2+ If L1[X] < 0.1585 16.47T1% 08.TA382%, f.5810%% a6.63110%% 12,8450,
then good behaviour 1.88762 6.02474
R34+ If F2[X] =1 19.216% 05, 004 TRY, 3.7820% a1 477155 T.6019%
then good behaviour 4.08713 5. 74008
H4+ If 0.04 < L2[A] < 0.1 19,608 OT.0TE23% 4. 86545 091.73752% T.09523"%
then good behaviour 2 46R6A 6. 76058
Ri- If N3[X] = 0 | 18.0397% 00 179767 | -2.033037%, | 78.79163% | -4.09360%
then bad behaviour 28, 26860 A0.81635
Ra- If N4[X] = 0 | 27.0507, BE.T3440% | -3.47830% T7.14338% -f.64185%,
then bad behaviour 3012516 31.48844
R3- If T2[X] < 7 | 30.5887% B6.4T300%, | -5.73830% 69 424537, | -14.36070%

then bad behaviour

29. 72216

28.50741

Table 3: Rules with one metric obtained from the intervals

27




Domains of Competence of Classifiers

Method Ishibuchi
Rules with a metric

FH-GGBML

Id. Rule support | Avg. W Train Train Diff. | Ave % Test Test Diff.
=t Dew st Dev
H5+ It L1[A] < 0.1555 and 10,1596, 08, 720435 6. 50TE LT, 20695, 13.5117%
not T2[X] < 7 1.72051 2.38058
then good behaviour
R6+ If N2[X] < 0.1585 and | 22.353% 05, 689905, B.ATTL 05, 4680859, 11.6529°%,
not N3[X] =0 1.74822 3.85134
then good behaviour
RT+ If 0.04 < L2[X] < 0.1 and 14.902%, 06, 889165 4. 6764 % 03, 026819 0, 2416%
not T2[X] < 7 222073 467047
then good behaviour
H4- If N3[A] =0 and 12.941% A6, 450587 5. TR221'% T1.02749% | -12.75774'%
not L1[X] < 0.19 32.7147TT 343.35019
then bad behaviour
R&- If N3[X] = 0 and not 7.843% TT.64346% | -14.56033% R3.22010%, | -30.55604%F
N2[X] < 0.23 30.94092 32.01059
then bad behaviour
H&- If MN4[A| = 0 and | 20.000% Hd. 820225 -T.30257T% GO, 74147 | -14.04376"°%
not L1[X] < 0.19 34. 26575 33.630
then bad behaviour
V- If MN4[A| = 0 and 145105, TO.00123% | -13.21156%% 50.12644%, | -24.65870%
not: N2[X] < 0.23 35754549 33.87836

then bad behaviour

Table 4: Rules with two metrics obtained from the intervals

28




Domains of Competence of Classifiers

Method Ishibuchi
Combination of Rules

FH-GGBML

Id. Rule support | Ave. % Train | Train Diff. | Avg % Test
ot Doy ot Dew
FRDP | 1T Ri+ or B2+ or B3+ | 50.10960% 07.8721657 | B.650960 0110161 |
ar R4+ or R54 or Re+ 3. 24034 6.21307
or K7+ then
\_ good behaviour
RDN If Rl- or H2- or Ba- | 4L1760 80.TT0807 | -2.432007 T6.20024% | -7.404007
or H4- or B5- or HE- 26.23802 27.7T6105
or H7- then
bad behaviour
Table 6: Disjunction Rules from all rules
Id. Hule support | Avg. % lrain | Irain Dif, | Avg % lest Test Thitt.
=t D St Diew
RIDFP It EDF and RDM 18.824%% 09.41149°%, T.19870%, 05.185267 11.40303%,
RDN then good behaviour 1.837TK5 T.08706
EDPs | If RDF and not RDM | 31.373% 06, 949507, 4. T36T1%% 03449617 0664387
THDMN then good behaviour 3.546016 5.56263
RDNA | I FEDN and not RDP | 223540 Bl aben0rn | -10.odsor, Ao Bl1on | 28400120
TRDP then bad behaviour 33.604090 28. 72427

Table 7:

Intersections of the disjunction rules

29




Domains of Competence of Classifiers

Method Ishibuchi FH-GGBML
Combination of Rules — Behaviour Caracterization

100

o -
80 I
0
=]
=
T
3 =
Lol
=
a0
an
i
10
u}
u} =11 10 150 0o 250
€ < »
not char acterized

27.451%

—h FH-GERL Trgin =% FH-GBRL Test
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Domains of Competence of Classifiers

Method Ishibuchi FH-GGBML
Combination of Rules — Behaviour Caracterization

Id. Rula
RDP | If iN2[X] < 0.23) or (L1[X] < 0.1585) or (F2[X] = 1) or (0.04 < L2[X] <0.1) or
(L1[X] < 0.1585 and not T2[X] < 7) or (N2[X] < 0.1585 and not N3[X] = 0) ar
(0.04 < L2[X] <0.1 and not T2[X] < T)
then good behaviour
RDNATRDE | I [(N3[A] = 0) or (N4[X] = 0 or (T2[A] < 7) or (N3[A] = 0 and not L1[&] < 0.19) ar

(N3[X] = 0 and not N2[X] < 0.23) or (N4[X] = 0 and not L1[X] < 0.19) ar
(WN4[X] = 0 and not N2[X] < 0.23) |

and not

[(N2[X] < 0.23) or (L1[X] < 0.1585) or (F2[X] = 1) or (0.04 < L2[X] <0.1) or
(L1[X] < 0.1585 and not T2[X] < 7) or (N2[X] < 0.1585 and not N3[X] = 0) ar
(0.04 < LZ[X] <0.1 and not T2[X] < 7]

then bad behaviour

Table 5: RDFP and RDNATRDP rules

31




Domains of Competence of Classifiers

Comparison of classifers with a measure
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Domains of Competence of Classifiers

Best Classifier Being

VS an technique
Boundary-NonLinNN
| Intralnter-Pretop Max Eff-
B VolumeOverlap
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g i
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Complexity and Sample Sparsity

Sparse Sample & complex

geometry cause ill-posedness R A
. e

Careful statistical procedures are N e

needed to infer complexity of the
data population from those of the

training samples : ,. o
Complexity estimation requires REMIRY 3
further hypotheses on data Vet
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Complexity and Data Dimensionality:
Class Separability after Dimensionality Reduction

m Feature selection may change the difficulty of a
classification problem
s Widening the gap between classes
m Compressing the discriminatory information
m Removing irrelevant dimensions

m It Is often unclear to what extent these happen
m We seek quantitative description of such changes

e

Feature selection Discrimination

36




Extensions of the Stuo
Multi-Class Measures

y on Data Complexity

Global vs. Local Properties

Intrinsic Ambiguity & Mislabeling

Task Trajectory with Changing
Sampling & Noise Conditions

rissep pe
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Extension to Multiple Classes

m Fisher’s discriminant score = Mulitple discriminant
scores - ,
= ((u12;u22))2 — = > =1, PiPi (ki — 115)
1T chzl pz'%z

m Boundary point in a MST: a point is a boundary
point as long as it is next to a point from other
classes in the MST

38




Comparing Global vs. Local Properties

m Boundaries can be simple locally but
complex globally

m These types of problems are relatively
simple, but are characterized as
complex by the measures

m Solution: complexity measure at different
scales

m This can be combined with different error
levels

m Let N;, be the k neighbors of the I-th
point defined by, say, Euclidean distance.
The complexity measure for data set D,
error level g, evaluated at scale k iIs

n
Z 7]4'76)

1=1

.fT(D7€7k>:

3|l—‘
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Effects of Intrinsic Ambiguity

m The complexity measures can be severely
affected when there exists intrinsic class
ambiguity (or data mislabeling)

m Example: FeatureOverlap (in 1D only)

< >
[ ® 0 ® 000 000
OO0 O OO0 OO0 O O

m Cannot distinguish between intrinsic ambiguity
or complex class decision boundary

o o | .

o o o *

o.:: ..o
‘o\o °
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Tackling Intrinsic Ambiguity

m Compute the complexity measure at different error levels
m f(D): a complexity measure on the data set D

m D7: a “perturbed” version of D, so that some points are
relabeled

s h(D, D"): a distance measure between D and D* (error level)
m The new complexity measure is defined as a curve:
g(D,e) = min  f(D")

D*:h(D,D*)<e
m The curve can be summarized by, say, area under curve

= Minimization by greedy procedures
= Discard erroneous points that de
most

rease combnlexitv bv the
il W WA vvllllvlvl\l‘-] MJ Sl I\
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Some Advanced Topics lll: Data Complexity

Summary

Automatic classification is useful, but can be very
difficult.

We know the key steps and many promising
methods.

But we have not fully understood how they work,
what else iIs needed.

Difficulties are class ambiguity, geometric
complexity, & sample sparsity.

Measures for geometric complexity are useful to
characterize classifier domains of competence.

43




Some Advanced Topics lll: Data Complexity

Summary
I I IIIIhhheeeeeeeeSeSSSSISISISISIaISIhIhIhhhIhh 353 —5, ;9

m Better understanding of how data and classifiers
Interact can guide practice.

m Further progress in statistical and machine learning
will need systematic, scientific evaluation of the
algorithms with problems that are difficult for
different reasons.

44




Data Mining

Data Mining and Soft Computing
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Summary

Introduction to Data Mining and Knowledge Discovery

Data Preparation

Introduction to Prediction, Classification, Clustering and Association

Data Mining - From the Top 10 Algorithms to the New Challenges

Introduction to Soft Computing. Focusing our attention in Fuzzy Logic

and Evolutionary Computation

6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and
Knowledge Extraction based on Evolutionary Learning

7. Genetic Fuzzy Systems: State of the Art and New Trends

8. Some Advanced Topics I: Classification with Imbalanced Data Sets

9. Some Advanced Topics Il: Subgroup Discovery

10.Some advanced Topics Illl: Data Complexity

11.Final talk: How must | Do my Experimental Study? Design of

Experiments in Data Mining/Computational Intelligence. Using Non-

parametric Tests. Some Cases of Study.
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