

Dottorato di Ricerca in Ingegneria dell'Informazione

Data Mining and Soft Computing

Francisco Herrera

Research Group on Soft Computing and Information Intelligent Systems (SCI²S)

Dept. of Computer Science and A.I.

University of Granada, Spain

http://decsai.ugr.es/~herrera

Data Mining and Soft Computing

Summary

- 1. Introduction to Data Mining and Knowledge Discovery
- 2. Data Preparation
- 3. Introduction to Prediction, Classification, Clustering and Association
- 4. Data Mining From the Top 10 Algorithms to the New Challenges
- 5. Introduction to Soft Computing. Focusing our attention in Fuzzy Logic and Evolutionary Computation
- 6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and Knowledge Extraction based on Evolutionary Learning
- 7. Genetic Fuzzy Systems: State of the Art and New Trends
- 8. Some Advanced Topics I: Classification with Imbalanced Data Sets
- 9. Some Advanced Topics II: Subgroup Discovery
- **10.Some advanced Topics III: Data Complexity**
- 11.Final talk: How must I Do my Experimental Study? Design of Experiments in Data Mining/Computational Intelligence. Using Nonparametric Tests. Some Cases of Study.

Slides used for preparing this talk:

Data Complexity:

An Overview and New Challenges

Tin Kam Ho Bell Labs, Alcatel-Lucent

Joint work with Mitra Basu, Ester Bernado, Martin Law, Albert Orriols

Some Advanced Topics III: Data Complexity

Outline

- Motivation
- Class ambiguity, dimensionality and boundary complexity
- ✓ Measures of Geometric Complexity
- ✓ Domains of Competence of Classifiers
- ✓ Other studies
- ✓ Concluding Remarks

Motivation

Automatic Classification

- Classifiers
 - Bayesian classifiers
 - polynomial discriminators
 - nearest-neighbor methods
 - decision trees & forests
 - neural networks
 - genetic algorithms
 - Fuzzy Rule Based Systems
 - support vector machines
 - ensembles and classifier combination
- Why are machines still far from perfect?
- What is still missing in our techniques?

Tin Kam Ho Bell Labs, Alcatel-Lucent

samples

 \mathcal{T}

Large Variations in Accuracies of Different Classifiers

	ZeroR	NN1	NNK	NB	C4.5	PART	SMO	XCS	
aud	25.3	76.0	68.4	69.6	79.0	81.2	-	57.7	
aus	55.5	81.9	85.4	77.5	85.2	83.3	84.9	85.7	
bal	45.0	76.2	87.2	90.4	78.5	81.9	-	79.8	
bpa	58.0	63.5	60.6	54.3	65.8	65.8	58.0	68.2	
bps	51.6	83.2	82.8	78.6	80.1	79.0	86.4	83.3	
bre	65.5	96.0	96.7	96.0	95.4	95.3	96.7	96.0	
cmc	42.7	44.4	46.8	50.6	52.1	49.8	-	52.3	
gls	34.6	66.3	66.4	47.6	65.8	69.0	-	72.6	
h-c	54.5	77.4	83.2	83.6	73.6	77.9	-	79.9	
hep	79.3	79.9	80.8	83.2	78.9	80.0	83.9	83.2	
irs	33.3	95.3	95.3	94.7	95.3	95.3	-	94.7	
krk	52.2	89.4	94.9	87.0	98.3	98.4	96.1	98.6	
lab	65.4	81.1	92.1	95.2	73.3	73.9	93.2	75.4	
led	10.5	62.4	75.0	74.9	74.9	75.1	-	74.8	
lym	55.0	83.3	83.6	85.6	77.0	71.5	-	79.0	
mmg	56.0	63.0	65.3	64.7	64.8	61.9	67.0	63.4	
mus	51.8	100.0	100.0	96.4	100.0	100.0	100.0	99.8	
mux	49.9	78.6	99.8	61.9	99.9	100.0	61.6	100.0	
pmi	65.1	70.3	73.9	75.4	73.1	72.6	76.7	76.0	
prt	24.9	34.5	42.5	50.8	41.6	39.8	-	43.7	
seg	14.3	97.4	96.1	80.1	97.2	96.8	-	1	
sick	93.8	96.1	96.3	93.3	98.4	97.0	93.0	ill I have ly luck for y problem	,
soyb	13.5	89.5	90.3	92.8	91.4	90.3	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ill I have	•
tao	49.8	96.1	96.0	80.8	95.1	93.6	VV	"Lick fo	۲ر
thy	19.5	68.1	65.1	80.6	92.1	92.1	/ ar	in lack ,	?
veh	25.1	69.4	69.7	46.2	73.6	72.6	l ai	"nable"	<i>TV</i> ?
vote	61.4	92.4	92.6	90.1	96.3	96.5	m	Abios	}
vow	9.1	99.1	96.6	65.3	80.7	78.3			
wne	39.8	95.6	96.8	97.8	94.6	92.9		96.3	
ZOO	41.7	94.6	92.5	95.4	91.6	92.5	-	92.6	7
Avg	44.8	80.0	82.4	78.0	82.1	81.8	84.1	81.7	

Many classifiers are in close rivalry with each other. Why?

- Do they represent the limit of our technology?
- What do the new classifiers add to the methodology?
- Is there still value in the older methods?
- Have they used up all information contained in a data set?

When I face a new recognition task ...

- How much can automatic classifiers do?
- How should I choose a classifier?
- Can I make the problem easier for a specific classifier?

Complexity Measures

Sources of Difficulty in Classification

- Class ambiguity
- Sample size and dimensionality
- Boundary complexity

We need metrics for analizing problems features and the limits of every learning model.

Limits of Current Learning Algorithms

Some Advanced Topics III: Data Complexity

Outline

- Motivation
- Class ambiguity, dimensionality and boundary complexity
- ✓ Measures of Geometric Complexity
- ✓ Domains of Competence of Classifiers
- ✓ Other studies
- ✓ Concluding Remarks

Class Ambiguity

- Is the concept intrinsically ambiguous?
- Are the classes well defined?

1

- What information do the features carry?
- Are the features sufficient for discrimination?

Bayes error

Sampling Density

Boundary Complexity

- Kolmogorov complexity
- Length can be exponential in dimensionality
- A trivial description is to list all points & class labels
- Is there a shorter description?

Classification Boundaries As Decided by **Different Classifiers**

Training samples for a 2D classification problem

Classification Boundaries Inferred by **Different Classifiers**

- algorithm
- XCS: a genetic
 Nearest neighbor classifier
- Linear classifier

Match between Classifiers and Problems

Some Advanced Topics III: Data Complexity

Outline

- Motivation
- Class ambiguity, dimensionality and boundary complexity
- ✓ Measures of Geometric Complexity
- ✓ Domains of Competence of Classifiers
- ✓ Other studies
- ✓ Concluding Remarks

Measures of Geometrical Complexity of Classification Problems

The approach: develop mathematical language and algorithmic tools for studying

- Characteristics of geometry & topology of highdim data
- How they change with feature transformations, noise conditions, and sampling strategies
- How they interact with classifier geometry

Focus on descriptors computable from real data and relevant to classifier geometry

Geometry of Datasets and Classifiers

Data sets:

- length of class boundary
- fragmentation of classes / existence of subclasses
- global or local linear separability
- convexity and smoothness of boundaries
- intrinsic / extrinsic dimensionality
- stability of these characteristics as sampling rate changes

Classifier models:

polygons, hyper-spheres, Gaussian kernels, axis-parallel hyper-planes, piece-wise linear surfaces, polynomial surfaces, their unions or intersections, ...

Measures of Geometric Complexity

Degree of Linear Separability

- Find separating hyper-plane by linear programming
- Error counts and distances to plane measure separability

Fisher's Discriminant Ratio

- Classical measure of class separability
- Maximize over all features to find the most discriminating

$$f = \frac{(\mu_1 - \mu_2)^2}{\sigma_1^2 + \sigma_2^2}$$

Length of Class Boundary

- Compute minimum spanning tree
- Count classcrossing edges

Shapes of Class Manifolds

- Cover same-class pts with maximal balls
- Ball counts describe shape of class manifold

Measures of Geometrical Complexity

F1	maximum Fisher's discriminant ratio
F2	volume of overlap region
F3	maximum (individual) feature efficiency
L1	minimized error by linear programming (LP)
L2	error rate of linear classifier by LP
L3	nonlinearity of linear classifier by LP
N1	fraction of points on boundary (MST method)
N2	ratio of average intra/inter class NN distance
N3	error rate of 1NN classifier
N4	nonlinearity of 1NN classifier
T1	fraction of points with associated adherence subsets retained
T2	average number of points per dimension

Example

Method Ishibuchi FH-GGBML, 2005, IEEE TSMC

Measure	Description
F2	volume of overlap region
L1	minimized sum of error distance by linear programming
L2	error rate of linear classifier by Linear Programming
N2	ratio of average intra/inter class NN distance
N3	error rate of 1NN classifier
N4	non-linearity of 1NN classifier
T2	average number of points per dimension

Table 1: Complexity metrics used in this study.

Figure 2: Accuracy in Train/Test for FH-GBML sorted by train accuracy

Method Ishibuchi FH-GGBML

Figure 3: Accuracy in Train/Test sorted by F2

Figure 4: Accuracy in Train/Test sorted by N2

Figure 5: Accuracy in Train/Test sorted by N3

Figure 6: Accuracy in Train/Test sorted by N4

Method Ishibuchi FH-GGBML

Figure 7: Accuracy in Train/Test sorted by L1

Figure 8: Accuracy in Train/Test sorted by L2

Figure 9: Accuracy in Train/Test sorted by T2

Some Advanced Topics III: Data Complexity

Outline

- Motivation
- Class ambiguity, dimensionality and boundary complexity
- ✓ Measures of Geometric Complexity
- ✓ Domains of Competence of Classifiers
- ✓ Other studies
- ✓ Concluding Remarks

Given a classification problem,
 determine which classifier is the best for it

Method Ishibuchi FH-GGBML

Some interesting intervals

Interval	FH-GBML Behaviour
N2 < 0.23	$good\ behaviour$
L1 < 0.1585	$good\ behaviour$
F2 = 1	$good\ behaviour$
0.04 < L2 < 0.1	good behaviour
N3 = 0	bad behaviour
N4 = 0	bad behaviour
T2 < 7	bad behaviour

Table 2: Significant intervals

Method Ishibuchi FH-GGBML Rules with a metric

Id .	Rule	Support	Avg. % Train	Train Diff.	Avg. % Test	Test Diff.
			St.Dev		St.Dev	
R1+	If N2[X] < 0.23	32.549%	99.10000%	6.8880%	96.40400%	12.6190%
	then good behaviour		1.56873		3.73928	
R2+	If $L1[X] < 0.1585$	16.471%	98.79382%	6.5810%	96.63110%	12.8459%
	then good behaviour		1.88762		6.92474	
R3+	If $F2[X] = 1$	19.216%	95.99478%	3.7820%	91.47715%	7.6919%
	then good behaviour		4.08713		5.74098	
R4+	If $0.04 < L2[X] < 0.1$	19.608%	97.07823%	4.8654%	91.73752%	7.9523%
	then good behaviour		2.46866		6.76988	
R1-	If $N3[X] = 0$	18.039%	90.17976%	-2.03303%	78.79163%	-4.99360%
	then bad behaviour		28.26869		30.81635	
R2-	If $N4[X] = 0$	27.059%	88.73440%	-3.47839%	77.14338%	-6.64185%
	then bad behaviour		30.12516		31.48844	
R3-	If T2[X] < 7	30.588%	86.47399%	-5.73880%	69.42453%	-14.36070%
	then bad behaviour		29.72216		28.89741	

Table 3: Rules with one metric obtained from the intervals

Method Ishibuchi FH-GGBML Rules with a metric

Id .	Rule	Support	Avg. % Train	Train Diff.	Avg. % Test	Test Diff.
			St.Dev		St.Dev	
R5+	If L1[X] < 0.1585 and	10.196%	98.72043%	6.5076%	97.29695%	13.5117%
	not T2[X] < 7		1.72081		2.3808	
	then good behaviour					
R6+	If $N2[X] < 0.1585$ and	22.353%	98.68990%	6.4771%	95.46808%	11.6829%
	not N3[X] = 0		1.74822		3.88134	
	then good behaviour					
R7+	If $0.04 < L2[X] < 0.1$ and	14.902%	96.88916%	4.6764%	93.02681%	9.2416%
	not T2[X] < 7		2.22073		4.67047	
	then good behaviour					
R4-	If $N3[X] = 0$ and	12.941%	86.45058%	-5.76221%	71.02749%	-12.75774%
	not L1[X] < 0.19		32.71477		33.35019	
	then bad behaviour					
R5-	If $N3[X] = 0$ and not	7.843%	77.64346%	-14.56933%	53.22919%	-30.55604%
	N2[X] < 0.23		39.94092		32.01059	
	then bad behaviour					
R6-	If $N4[X] = 0$ and	20.000%	84.82022%	-7.39257%	69.74147%	-14.04376%
	not L1[X] < 0.19		34.26575		33.6301	
	then bad behaviour					
R7-	If $N4[X] = 0$ and	14.510%	79.00123%	-13.21156%	59.12644%	-24.65879%
	not N2[X] < 0.23		38.78489		33.87836	
	then bad behaviour					

Table 4: Rules with two metrics obtained from the intervals

Method Ishibuchi FH-GGBML Combination of Rules

Id.	Rule	Support	Avg. % Train	Train Diff.	Avg. % Test	Test Diff.
			St.Dev		St.Dev	
RDP	If R1+ or R2+ or R3+	50.196%	97.87275%	5.65996%	94.10161%	10.31638%
	or R4+ or R5+ or R6+		3.24086		6.21307	
	or R7+ then					
	good behaviour					
RDN	If R1- or R2- or R3-	41.176%	89.77980%	-2.43299%	76.29024%	-7.49499%
	or R4- or R5- or R6-		26.23892		27.76105	
	or R7- then					
	bad behaviour					

Table 6: Disjunction Rules from all rules

Id.	Rule	Support	Avg. % Train	Train Diff.	Avg. % Test	Test Diff.
			St.Dev		St.Dev	
$RDP \wedge$	If RDP and RDN	18.824%	99.41149%	7.19870%	95.18826%	11.40303%
RDN	then good behaviour		1.83755		7.09706	
$RDP \wedge$	If RDP and not RDN	31.373%	96.94950%	4.73671%	93.44961%	9.66438%
$^{\gamma}$ RDN	then good behaviour		3.546016		5.56263	
$RDN \wedge$	If RDN and not RDP	22.353%	81.66890%	-10.54389%	60.37611%	-23.40912%
¬RDP	then bad behaviour		33.60499		28.72427	

Table 7: Intersections of the disjunction rules

Method Ishibuchi FH-GGBML

Combination of Rules – Behaviour Caracterization

Method Ishibuchi FH-GGBML

Combination of Rules – Behaviour Caracterization

Id.	Rule
RDP	If $(N2[X] < 0.23)$ or $(L1[X] < 0.1585)$ or $(F2[X] = 1)$ or $(0.04 < L2[X] < 0.1)$ or
	(L1[X] < 0.1585 and not T2[X] < 7) or (N2[X] < 0.1585 and not N3[X] = 0) or
	(0.04 < L2[X] < 0.1 and not T2[X] < 7)
	then good behaviour
RDN∧¬RDP	If $[(N3[X] = 0) \text{ or } (N4[X] = 0) \text{ or } (T2[X] < 7) \text{ or } (N3[X] = 0 \text{ and not } L1[X] < 0.19) \text{ or }$
	(N3[X] = 0 and not N2[X] < 0.23) or (N4[X] = 0 and not L1[X] < 0.19) or
	(N4[X] = 0 and not N2[X] < 0.23)
	and not
	[(N2[X] < 0.23) or (L1[X] < 0.1585) or (F2[X] = 1) or (0.04 < L2[X] < 0.1) or
	(L1[X] < 0.1585 and not T2[X] < 7) or (N2[X] < 0.1585 and not N3[X] = 0) or
	(0.04 < L2[X] < 0.1 and not T2[X] < 7)
	then bad behaviour

Table 8: RDP and RDN∧¬RDP rules

Domains of Competence of Classifiers Comparison of classifiers with a measure

Best Classifier for Benchmarking Data

Best Classifier Being nn, lp, odt vs an ensemble technique

Boundary-NonLinNN

ensemble + nn,lp,odt

IntraInter-Pretop

MaxEff-VolumeOverlap

Some Advanced Topics III: Data Complexity

Outline

- Motivation
- Class ambiguity, dimensionality and boundary complexity
- ✓ Measures of Geometric Complexity
- ✓ Domains of Competence of Classifiers
- ✓ Other studies
- ✓ Concluding Remarks

Complexity and Sample Sparsity

Sparse Sample & complex geometry cause ill-posedness

Careful statistical procedures are needed to infer complexity of the data population from those of the training samples

Complexity estimation requires further hypotheses on data geometry and sampling processes

Complexity and Data Dimensionality: Class Separability after Dimensionality Reduction

- Feature selection may change the difficulty of a classification problem
 - Widening the gap between classes
 - Compressing the discriminatory information
 - Removing irrelevant dimensions
- It is often unclear to what extent these happen
- We seek quantitative description of such changes

Extensions of the Study on Data Complexity

Multi-Class Measures

Global vs. Local Properties

Intrinsic Ambiguity & Mislabeling

Task Trajectory with Changing Sampling & Noise Conditions

Extension to Multiple Classes

■ Fisher's discriminant score → Mulitple discriminant scores

$$f = \frac{(\mu_1 - \mu_2)^2}{(\sigma_1^2 + \sigma_2^2)} \qquad \Longrightarrow \qquad f = \frac{\sum_{i=1, j=1, i \neq j}^C p_i p_j (\mu_i - \mu_j)^2}{\sum_{i=1}^C p_i \sigma_i^2}$$

 Boundary point in a MST: a point is a boundary point as long as it is next to a point from other classes in the MST

Comparing Global vs. Local Properties

- Boundaries can be simple locally but complex globally
 - These types of problems are relatively simple, but are characterized as complex by the measures

- Solution: complexity measure at different scales
 - This can be combined with different error levels
- Let N_{i,k} be the k neighbors of the i-th point defined by, say, Euclidean distance. The complexity measure for data set D, error level ε, evaluated at scale k is

$$\bar{f}(D,\epsilon,k) = \frac{1}{n} \sum_{i=1}^{n} f(N_{i,k},\epsilon)$$

Effects of Intrinsic Ambiguity

- The complexity measures can be severely affected when there exists intrinsic class ambiguity (or data mislabeling)
 - Example: FeatureOverlap (in 1D only)

 Cannot distinguish between intrinsic ambiguity or complex class decision boundary

Tackling Intrinsic Ambiguity

- Compute the complexity measure at different error levels
 - f(D): a complexity measure on the data set D
 - D*: a "perturbed" version of D, so that some points are relabeled
 - h(D, D*): a distance measure between D and D* (error level)
 - The new complexity measure is defined as a curve:

$$g(D, \epsilon) = \min_{D^*: h(D, D^*) \le \epsilon} f(D^*)$$

- The curve can be summarized by, say, area under curve
- Minimization by greedy procedures
 - Discard erroneous points that decrease complexity by the most

Some Advanced Topics III: Data Complexity

Outline

- Motivation
- Class ambiguity, dimensionality and boundary complexity
- ✓ Measures of Geometric Complexity
- ✓ Domains of Competence of Classifiers
- ✓ Other studies
- ✓ Concluding Remarks

Some Advanced Topics III: Data Complexity Summary

- Automatic classification is useful, but can be very difficult.
- We know the key steps and many promising methods.
 - But we have not fully understood how they work, what else is needed.
- Difficulties are class ambiguity, geometric complexity, & sample sparsity.
- Measures for geometric complexity are useful to characterize classifier domains of competence.

Some Advanced Topics III: Data Complexity Summary

- Better understanding of how data and classifiers interact can guide practice.
- Further progress in statistical and machine learning will need systematic, scientific evaluation of the algorithms with problems that are difficult for different reasons.

Data Mining and Soft Computing

Summary

- 1. Introduction to Data Mining and Knowledge Discovery
- 2. Data Preparation
- 3. Introduction to Prediction, Classification, Clustering and Association
- 4. Data Mining From the Top 10 Algorithms to the New Challenges
- 5. Introduction to Soft Computing. Focusing our attention in Fuzzy Logic and Evolutionary Computation
- 6. Soft Computing Techniques in Data Mining: Fuzzy Data Mining and Knowledge Extraction based on Evolutionary Learning
- 7. Genetic Fuzzy Systems: State of the Art and New Trends
- 8. Some Advanced Topics I: Classification with Imbalanced Data Sets
- 9. Some Advanced Topics II: Subgroup Discovery
- **10.Some advanced Topics III: Data Complexity**
- 11.Final talk: How must I Do my Experimental Study? Design of Experiments in Data Mining/Computational Intelligence. Using Nonparametric Tests. Some Cases of Study.