
Chapter 12

MULTI-START METHODS

Rafael Martí
Dpto de Estadística e Investigación Operativa. Universitat de València
Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
E-mail: Rafael.Marti@uv.es

Abstract Heuristic search procedures that aspire to find global optimal solutions to hard
combinatorial optimization problems usually require some type of diversification to overcome
local optimality. One way to achieve diversification is to re-start the procedure from a new solu-
tion once a region has been explored. In this chapter we describe the best known multi-start
methods for solving optimization problems. We propose classifying these methods in terms of
their use of randomization, memory and degree of rebuild. We also present a computational
comparison of these methods on solving the linear ordering problem in terms of solution quality
and diversification power.
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1 INTRODUCTION

Search methods based on local optimization that aspire to find global optima usually
require some type of diversification to overcome local optimality. Without this diver-
sification, such methods can become localized in a small area of the solution space,
making it impossible to find a global optimum. In recent years many techniques have
been suggested to avoid local optima. One way to achieve diversification is to re-start
the search from a new solution once a region has been extensively explored. Multi-start
strategies can then be used to guide the construction of new solutions in a long term
horizon of the search process.

There are some problems in which we find it is more effective to construct solutions
than to apply a local search procedure. For example, in constrained scheduling problems
it is difficult to define neighborhoods to keep feasibility whereas solutions can be
relatively easily constructed. Therefore, Multi-start methods provide an appropriate
framework within which to develop algorithms to solve these problems.

The re-start mechanism can be super-imposed on many different search methods.
Once a new solution has been generated, we can apply a simple greedy routine, slight
perturbations or a complex metaheuristic to improve it. This chapter is focused on
studying the different ways, strategies and methods of generating solutions to re-start
a search for a global optimum.
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2 AN OVERVIEW

Multi-start methods have two phases: the first one in which the solution is generated
and the second one in which the solution is typically (but not necessarily) improved.
Then, each global iteration produces a solution (usually a local optima) and the best
overall is the algorithm’s output.

Figure 12.1 shows a pseudo-code of the multi-start procedure. A solution is
constructed in Step 1 at iteration i. This is typically performed with a constructive
algorithm. Step 2 is devoted to improving this solution, obtaining solution A simple
improvement method can be applied. However, this second phase has recently become
more elaborate and, in some cases, is performed with a complex metaheuristic that
may or may not improve the initial solution (in this latter case we set ).

In recent years, many heuristic algorithms have been proposed to solve some com-
binatorial optimization problems following the outline given in Figure 12.1. Some of
them are problem-dependent and the ideas and strategies implemented are difficult to
apply to different problems, while others are based on a framework that can be used
directly to design solving methods for other problems. In this section we describe the
most relevant procedures in terms of applying them to a wide variety of problems.

Tabu Search is by now a well-known metaheuristic for solving hard combinatorial
optimization problems. One of the papers that contains a number of its foundation ideas
(Glover, 1977), also focuses on applying these ideas within a framework of iterated
re-starting. Adaptive memory designs can be used to retain and analyze features of
selected solutions and thus, provide a basis for improving future executions of the
constructive process. The authors propose different memory functions, like frequency
and recency information, to design these restarting mechanisms.

Adaptive memory strategies introduced in this seminal paper have had widespread
success in solving a variety of practical and difficult combinatorial optimization prob-
lems. They have been adapted to many different fields in the combinatorial optimization
theory, since using such memory has proved to be very effective in most metaheuris-
tic methods. Some of them are explicitly based on these memory structures like tabu
search, while others, like simulated annealing or re-starting methods, have evolved
incorporating these ideas. Some applications of probabilistic forms of re-starting based
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on memory functions are given in Rochat and Taillard (1995) and Lokketangen and
Glover (1996).

Early papers in multi-start methods are devoted to the Monte Carlo random re-start
in the context of nonlinear unconstrained optimization, where the method simply eval-
uates the objective function at randomly generated points. The probability of success
approaches one as the sample size tends to infinity under very mild assumptions about
objective function. Many algorithms have been proposed that combine the Monte Carlo
method with local search procedures (Rinnooy Kan and Timmer, 1989). Solis and Wets
(1981) study convergence for random re-start methods in which the probability distri-
bution used to choose the next starting point can depend on how the search evolves.
Some extensions of these methods seek to reduce the number of complete local searches
that are performed and increase the probability that they start from points close to the
global optimum (Mayne and Meewella, 1988).

Ulder et al. (1990) combines genetic algorithms with local search strategies improv-
ing previous genetic approaches for the travelling salesman problem. We apply an
iterative algorithm to improve each individual, either before or while being combined
with other individuals to form a new solution “offspring”. The combination of these
three elements: Generation, Combination and Local Search, extends the paradigm of
Re- Start and links with other areas of the metaheuristics such as Scatter Search (Glover
et al., 2000) or Memetic Algorithms (Moscato, 1999).

From a theoretical point of view, Hu et al. (1994) study the combination of the
“gradient” algorithm with random initializations to find a global optimum. Efficacy of
parallel processing, choice of the restart probability distribution and number of restarts
are studied for both discrete and continuous models. The authors show that the uniform
probability is a good measure for restarting procedures.

Boese et al. (1994) analyze relationships among local minima “from the perspective
of the best local minimum”, finding convex structures in the cost surfaces. Based on the
results of that study, they propose a multi-start method where starting points for greedy
descent are adaptively derived from the best previously found local minima. In the
first step, Adaptive Multi-start heuristics (AMS) generate r random starting solutions
and run a greedy descent method from each one to determine a set of corresponding
random local minima. In the second step, adaptive starting solutions are constructed
based on the local minima obtained so far and improved with a greedy descent method.
This improvement is applied several times from each adaptive starting solution to yield
corresponding adaptive local minima. The authors test this method for the traveling
salesman problem and obtain significant speedups over previous multi-start imple-
mentations. Hagen and Kahng (1997) apply this method for the iterative partitioning
problem.

Moreno et al. (1995) proposed a stopping rule for the multi-start method based
on a statistical study of the number of iterations needed to find the global optimum.
The authors introduce two random variables that together provide a way of estimating
the number of global iterations needed to find the global optima: the number of initial
solutions generated and the number of objective function evaluations performed on
finding the global optima. From these measures, the probability that the incumbent
solution is the global optimum is evaluated via a normal approximation. Thus, at each
global iteration, this value is computed and if it is greater than a prefixed threshold,
the algorithm stops, otherwise a new solution is generated. The authors illustrate the
method in the median p-hub problem.
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Simple forms of multi-start methods are often used to compare other methods and
measure their relative contribution. Baluja (1995) compares different genetic algo-
rithms for six sets of benchmark problems commonly found in the GA literature:
Traveling salesman problem, job-shop scheduling, knapsack, bin packing, neural net-
work weight optimization, and numerical function optimization. The author uses the
multi-start method (Multiple restart stochastic hill-climbing, MRSH) as a baseline in
the computational testing. Since solutions are represented with strings, the improve-
ment step consists of a local search based on random flip of bits. The results indicate
that using genetic algorithms for the optimization of static functions does not yield
a benefit, in terms of the final answer obtained, over simpler optimization heuristics.
Other comparisons between MRSH and GAs can be found, for example, in Ackley
(1987) or Wattenberg and Juels (1994).

One of the most well known Multi-start methods is the greedy adaptive search
procedures (GRASP). The GRASP methodology was introduced by Feo and Resende
(1995). It was first used to solve set covering problems (Feo and Resende, 1989). Each
GRASP iteration consists of constructing a trial solution and then applying a local
search procedure to find a local optimum (i.e., the final solution for that iteration). The
construction step is an adaptive and iterative process guided by a greedy evaluation
function. It is iterative because the initial solution is built considering one element at a
time. It is greedy because the addition of each element is guided by a greedy function.
It is adaptive because the element chosen at any iteration in a construction is a function
of those previously chosen. (That is, the method is adaptive in the sense of updating
relevant information from one construction step to the next.). At each stage, the next
element to be added to the solution is randomly selected from a candidate list of
high quality elements according to the evaluation function. Once a solution has been
obtained, it is typically improved by a local search procedure. The improvement phase
performs a sequence of moves towards a local optimum solution, which becomes the
output of a complete GRASP iteration. Some examples of successful applications are
given in Laguna el al. (1994), Resende (1998) and Laguna and Martí (1999).

Hickernell and Yuan (1997) present a multi-start algorithm for unconstrained global
optimization based on quasirandom samples. Quasirandom samples are sets of deter-
ministic points, as opposed to random, that are evenly distributed over a set. The
algorithm applies an inexpensive local search (steepest descent) on a set of quasiran-
dom points to concentrate the sample. The sample is reduced replacing worse points
with new quasirandom points. Any point that is retained for a certain number of itera-
tions is used to start an efficient complete local search. The algorithm terminates when
no new local minimum is found after several iterations. An experimental comparison
shows that the method performs favorably with respect to other global optimization
procedures.

Hagen and Kang (1997) used an adaptive multi start method for the partitioning
optimization VLSI problem where the objective is to minimize the number of signals
which pass between components. The method consists of two phases: (1) To generate
a set of random starting points and perform the iterative (local search) algorithm, thus
determining a set of local minimum solutions; and (2) construct adaptive starting points
that are central to the best local minimum solutions found so far. The authors add a
preprocessing cluster module to reduce the size of the problem. The resulting Clustering
Adaptive Multi Start method (CAMS) is fast and stable and improves upon previous
partitioning results in the literature.
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Fleurent and Glover (1999) propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of Tabu Search based on both, a set of elite solutions and the intensifica-
tion strategies that rely on identifying of strongly determined and consistent variables.
Strongly determined variables are those whose values cannot be changed without signif-
icantly eroding the objective function value or disrupting the values of other variables.
A consistent variable is defined as one that receives a particular value in a significant
portion of good solutions. The authors propose the inclusion of memory structures
within the multi-start framework as those used in tabu search: recency, frequency and
attractiveness. Computational experiments for the quadratic assignment problem dis-
close that these methods improve significantly over previous multi-start methods like
GRASP and random restart that do not incorporate memory based strategies.

Multi-start procedures usually follow the global scheme given in Figure 1; but there
are some applications in which Step 2 can be applied several times within a global itera-
tion. In the incomplete construction methods, the improvement phase was periodically
invoked during the construction process of the partial solution rather than the standard
implementation after the complete construction. See Russell (1995) and Chiang and
Russell (1995) for successful applications of this approach to vehicle routing.

Patterson et al. (1999) introduce a multi-start framework (Adaptive Reasoning
Techniques, ART) based on memory structures. The authors implement the short term
and long term memory functions, proposed in the tabu search framework, to solve the
Capacitated Minimum Spanning Tree Problem. ART is an iterative, constructive solu-
tion procedure that implements learning methodologies on top of memory structures.
ART derives its success from being able to learn about, and modify the behavior of
a primary greedy heuristic. The greedy heuristic is executed repeatedly, and for each
new execution we probabilistically introduce constraints that prohibit certain solution
elements from being considered by the greedy heuristic. The active constraints are
held in a short term memory. A long term memory holds information regarding which
constraints were in the active memory for the best set of solutions.

Laguna and Martí (1999) introduced Path Relinking within GRASP as a way to
improve Multi-start methods. Path Relinking has been suggested as an approach to
integrate intensification and diversification strategies (Glover and Laguna, 1997) in the
context of tabu search. This approach generates new solutions by exploring trajectories
that connect high-quality solutions, by starting from one of these solutions and gener-
ating a path in the neighborhood space that leads toward the other solutions. This is
accomplished by selecting moves that introduce attributes contained in the “guiding”
solutions. The relinking in the context of GRASP consists of finding a path between
a solution found after an improvement phase and the chosen elite solution. Therefore,
the relinking concept has a different interpretation within GRASP, since the solutions
found from one iteration to the next are not linked by a sequence of moves (as in the
case of tabu search). The proposed strategy can be applied to any method that produces
a sequence of solutions; specifically, it can be used in any multi-start procedure. Based
on these ideas, Binato et al. (2001) proposed the Greedy Randomized Adaptive Path
Relinking.

Glover (2000) proposes approaches for creating improved forms of constructive
multi-start and strategic oscillation methods, based on new search principles: persis-
tent attractiveness and marginal conditional validity. These concepts play a key role in
deriving appropriate measures to capture information during prior search. Applied to
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constructive neighborhoods, strategic oscillation operates by alternating constructive
and destructive phases, where each solution generated by a constructive phase is
dismantled (to a variable degree) by the destructive phase, after which a new phase
builds the solution anew. The conjunction of both phases and their associated memory
structures provides the basis for an improved multi-start method.

Prais and Ribeiro (2000) propose an improved GRASP implementation, called
reactive GRASP, for a matrix decomposition problem arising in the context of traffic
assignment in communication satellites. The method incorporates a memory structure
to record information about previously found solutions. In Reactive GRASP, the basic
parameter which defines the restrictive-ness of the candidate list during the construction
phase is self-adjusted, according to the quality of the previously found solutions. The
proposed method matches most of the optimal solutions known.

An open question in order to design a good search procedure is whether it is better to
implement a simple improving method that allows a great number of global iterations
or, alternatively, to apply a complex routine that significantly improves a few gener-
ated solutions. A simple procedure depends heavily on the initial solution but a more
elaborate method takes much more running time and therefore can only be applied a
few times, thus reducing the sampling of the solution space. Some metaheuristics, such
as GRASP, launch limited local searches from numerous constructions (i.e., starting
points). In most of the tabu search implementations, the search starts from one initial
point and if a restarting procedure is also part of the method, it is invoked only a limited
number of times. However, the inclusion of re-starting strategies within the tabu search
framework has been well documented in several papers (Glover, 1977; Glover and
Laguna, 1997).

Martí et al. (2001) study the balance between restarting and search-depth (i.e., the
time spent searching from a single starting point) in the context of the bandwidth matrix
problem. They tested both alternatives and concluded that it was better to invest the time
searching from a few starting points than restarting the search more often. Although
we cannot draw a general conclusion from these experiments, the experience in the
current context and in previous projects indicates that some metaheuristics, like tabu
search, need to reach a critical search depth to be effective. If this search depth is not
reached, the effectiveness of the method is severely compromised.

3 A CLASSIFICATION

We have found three key elements in multi-start methods that can be used for clas-
sification purposes: memory, randomization and degree of rebuild. The choices for
each one of these elements are not restricted to the extreme case of “present” or
“not present”, but they represent the whole range between both extremes that can
be labeled as Memory/ Memory-less, Systematic/Randomized and Rebuild/Build from
scratch, respectively.

The first element is the Memory and it is used to identify elements that are common
to good previously generated solutions. As in the Tabu Search framework (Glover and
Laguna, 1997), it provides a foundation for incentive-based learning, by means of
incentives that reinforce actions leading to good solutions. Thus, instead of simply
resorting to randomized re-starting processes, in which current decisions derive no
benefit from knowledge accumulated during prior search, specific types of information
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are identified to exploit history. On the other hand, memory avoidance (Memory-less)
is not as unreasonable as might be imagined since the construction of “unconnected”
solutions may be interpreted as a means of strategically sampling the solution space.
It should be noted that the meaning of good is not restricted to the objective function,
but also includes the notion of diversity, as described later.

Starting solutions can be randomly generated or, on the contrary, they can be
generated in a systematic way. Randomization is a very simple way of achieving
diversification, but with no control over the diversity achieved since in some cases we
can obtain very similar solutions. We can add some mechanisms to control the simi-
larities in order to discard some solutions or generate the solutions in a deterministic
way that guarantees a certain degree of difference. The extremes of this element can be
described as Randomized where solutions are generated in a random way and System-
atic where solutions are generated in a deterministic way. Between both extremes there
are a great number of possibilities for combining random elements with deterministic
rules. GRASP construction is an example of a combined method.

The Degree of Rebuild indicates the elements that remain fixed from one generation
to another. Most applications build the solution at each generation from scratch, but
recent implementations have fixed, for a certain number of iterations, some elements
in the construction process that have appeared in previously generated solutions. Such
an approach was proposed in the context of identifying and then iteratively exploiting
‘strongly determined and consistent variables’ in Glover (1977). This selective fixing
of elements, by reference to their previous impact and frequency of occurrence in
various solution classes, is a memory-based strategy of the type commonly used in tabu
search. It can also be considered as an instance of Path Relinking (Glover and Laguna,
1993) which generates new solutions by exploring trajectories that connect high-quality
solutions. This approach seeks to incorporate the attributes of elite solutions previously
generated by creating inducements to favor these attributes in the solutions. In an
extreme case all the elements in the new solution will be fixed by the information
generated from the set of elite solutions considered. This is labeled as Rebuild.

The constructive algorithm depicted in Figure 12.2 has no memory structures, a
combination between randomization and systematic construction rules and, at each
iteration, the solution is built completely from scratch.

Given different re-starting methods for a problem, one way of comparing them is to
generate a set of solutions with each and compare their quality and diversity. Since the
quality is trivially measured by the objective function, we now propose two measures
of diversity. We restrict our attention to solutions represented by permutations.
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3.1 Diversity Measures

The first measure consists of computing the distances between each solution and a
“center” of the set of solutions P. The sum (or alternatively the average) of these |P|
distances provides a measure of the diversity of P. The second one is to compute the
distance between each pair of solutions in P. The sum of these |P × P| distances
provides another way of measuring the diversity of P.

The first diversity measure is calculated as follows:

Calculate the median position of each element i in the solutions in P.

Calculate the dissimilarity of each solution in the population with respect to the
median solution. The dissimilarity is calculated as the sum of the absolute dif-
ference between the position of the elements in the solution under consideration
and the median solution.

Calculate d as the sum of all the individual dissimilarities.

1.

2.

3.

To illustrate, suppose that P consists of the following three orderings: (A, B, C, D),
(B, D, C, A), (C, B, A, D). The median position of element A is therefore 3, since it
occupies positions 1, 3 and 4 in the given orderings. In the same way, the median
positions of B, C and D are 2, 3 and 4, respectively. Note that the median positions
might not induce an ordering, as in the case of this example. The dissimilarity of the
first solution is then calculated as follows:

In the same way, the dissimilarities of the other two solutions are and
The diversity measure of P is then given by d = 2 + 4 + 2 = 8.

The second measure is calculated, for each pair of solutions in P, as the sum of the
absolute differences between the positions of each element in both solutions. The sum
of these |P × P| values provides the measure of the diversity of the set P. The value
with solutions (A, B, C, D) and (B, D, C, A) in the previous example is computed as
follows:

In the same way, the values of the other three pairs of solutions are and
The diversity measure of P is then given by

We have computationally found that both measures are strongly correlated and
provide the same information. Since the second measure is computationally more
expensive than the first, we will use the first one (dissimilarity) in the following
experiments.

It should be noted that a third measure could be added to evaluate a set of solutions.
The notion of influence introduced by Glover (1990) in the context of Tabu Search,
can be adapted to our study. The influence considers the potential and the structure of
a solution in the search process. The authors propose memory functions that classify
moves relative to their attractiveness within “distance classes” and other measures of
their impact. Consider, for example, two solutions a and b with the same objective and
diversity values, but a is close to a local optimum with a better objective function value
than a and b, while b is itself a local optimum. Consequently, we probably obtain a
better solution with a search from a rather than from b. Therefore it is more valuable
to have a than b in the set of solutions since it has more influence in the search for the
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global optimum. Obviously we do not know a priori if a given solution is closer to a
local optimum than another, but if we identify some properties of good solutions we
will be able to define evaluators and measures to reflect the “importance” or influence
of the solutions. Good starting points for this study are given by the solution structure,
landscape and neighborhood induced by the local search method.

4 COMPUTATIONAL EXPERIMENTS

The linear ordering problem (LOP) has generated a considerable amount of research
interest over the years, as documented in Grotschel et al. (1984) and Campos et al.
(1999). Because of its practical and theoretical relevance, we use this problem as a test
case for re-start mechanisms.

Given a matrix of weights the LOP consists of finding a permutation
p of the columns (and rows) in order to maximize the sum of the weights in the upper
triangle. In mathematical terms, we seek to maximize:

where p(i) is the index of the column (and row) in position i in the permutation. Note
that in the LOP, the permutation p provides the ordering of both the columns and the
rows. The equivalent problem in graphs consists of finding, in a complete weighted
graph, an acyclic tournament with a maximal sum of arc weights (Reinelt, 1985).

Instances of input–output tables from sectors in the European Economy can be
found in the public-domain library LOLIB (1997). We employ these problem instances
to compare different restarting methods.

We have tested 10 re-starting generation methods. Six of these methods are based
on GRASP (Feo and Resende, 1995) constructions with a greedy function that selects
sectors based on a measure of attractiveness.

G1 A GRASP construction where the attractiveness of a row is the sum of the elements
in its corresponding row. The method randomly selects from a short list of the most
attractive sectors and constructs the solution starting from the first position of the
permutation.

G2 A GRASP construction where the attractiveness of a sector is the sum of the
elements in its corresponding column. The method randomly selects from a short list
of the most attractive sectors and constructs the solution starting from the first position
of the permutation.

G3 A GRASP construction where the attractiveness of a sector is the sum of the
elements in its corresponding row divided by the sum of the elements in its correspond-
ing column. The method randomly selects from a short list of the most attractive sectors
and constructs the solution starting from the first position of the permutation.

G4, G5 and G6 These methods are identical to the first three, except that sector
selection is from a short list of the least attractive and the solution is constructed starting
from the last position of the permutation.

MIX A mixed procedure derived from the previous six. The procedure generates
an even number of solutions from each of the previous six methods and combines these
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solutions into a single set. That is, if n solutions are required, then each method Gi (for
i = 1,.. . , 6) contributes with n/6 solutions.

RND A random generator. This method simply generates random permutations.
DG A general purpose diversification generator suggested in Glover (1998)

which generates diversified permutations in a systematic way without reference to
the objective function.

FQ A method using frequency-based memory, as proposed in Tabu Search (Glover
and Laguna, 1997). This method is based on modifying a measure of attractiveness
with a frequency measure that discourages sectors from occupying positions that they
have frequently occupied in previous solution generations. See Campos et al. (1999)
for a description of the method.

In our first experiment we use the instance stabu3 from the LOLIB. We have generated a
set of N = 100 solutions with each of the 10 generation methods. Figures 12.3 and 12.4
show the box and whiskers plot of the objective function value and dissimilarity,
respectively, of the solution set obtained with each method.

With both diagrams together (Figures 12.3 and 12.4) we can observe the per-
formance of the 10 generators on the problem stabu3. We have repeated the same
experiments on 10 other problems from the LOLIB, obtaining similar diagrams.

A good re-starting method must produce a set of solutions with high quality and
high diversity. If we compare, for example, generators MIX and G3 we observe in
Figure 12.3 that G3 produces slightly better solutions in terms of solution quality, but
Figure 12.4 shows that MIX outperforms G3 in terms of diversity. Therefore, we will
probably select MIX as a better method than G3.

In order to rank the methods we have computed the average of both measures across
each set. Figure 12.5 shows in the x-axis the average of the dissimilarity and in the
y-axis the average of the quality. A point is plotted for each method.
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As expected, the random generator (RND) produces the maximum diversity (as
measured by the dissimilarity value). DG matches the diversity of RND using a sys-
tematic approach instead of randomness. The mixed method MIX provides a good
balance between dissimilarity and quality, by the union of solutions generated with
methods G1 to G6.

We have standardized both averages in order to directly compare them. We think that
quality and diversity are equally important, so we have added both relative averages,
obtaining the following ranking where the overall best is the FQ generator:

G5, G4, G2, G1, DG, RND, G6, G3, MIX and FQ.

These results are in line with previous works which show the inclusion of memory
structures to be effective within the multi-start framework. However, one should note
that this method ranking has been obtained considering both measures, quality and
diversity, with equal weight. If we vary this criterion, the ranking would also change.
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5 CONCLUSIONS

The objective of this study has been to extend and advance the knowledge associated to
implementing multi-start procedures. Unlike other well-known methods, it has not yet
become widely implemented and tested as a metaheuristic itself for solving complex
optimization problems. We have shown new ideas that have recently emerged within
the multi-start area that add a clear potential to this framework which has yet to be fully
explored.
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