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Evolutionary Parameter Optimization: Introduction

Evolutionary Algorithms…

• Are function optimizers
• Inspired by natural evolution
• Population of individuals p
• Are robust, hence preferred for real world problems
• Have little theory to explain how and why they work• Have little theory to explain how and why they work
• They come with various flavours 



Evolutionary Parameter Optimization: Introduction

I am not at the top.I am not at the top.
My high is better!My high is better!

I am at the topI am at the top
Height is ...Height is ...

I will continueI will continue



Evolutionary Parameter Optimization: Introduction



Evolutionary Parameter Optimization: Introduction

F(x1,x2,x3,…)

Evolutionary Algorithms don’ty g
have this problem!!!



Evolutionary Parameter Optimization: Introduction

• The idea of using simulated evolution to solve 
i i d d i bl h b d iengineering and design problems have been around since 

the 1950’s (Fogel, 2000).
B 1962– Bremermann, 1962

– Box, 1957
Friedberg 1958– Friedberg, 1958

• However it wasn’t until the early 1960’s that we began• However, it wasn t until the early 1960 s that we began 
to see three influential forms of EC emerge (Back et al, 
1997):1997):
– Evolutionary Programming (Lawrence Fogel, 1962),
– Genetic Algorithms (Holland, 1962)g ( , )
– Evolution Strategies (Rechenberg, 1965 & Schwefel, 1968),



Evolutionary Parameter Optimization: Introduction

• The designers of each of the EC techniques saw thatThe designers of each of the EC techniques saw that 
their particular problems could be solved via simulated 
evolution.

– Fogel was concerned with solving programs evolution.oge was co ce ed w so v g p og a s evo u o .

– Rechenberg & Schwefel were concerned with solving g g
parameter optimization problems.

– Holland was concerned with developing robust adaptive 
systems.



Evolutionary Parameter Optimization: Introduction

We focus our attention on the problem of finding the 
global optimum of a function that is characterized by: 

multiple minimamultiple minima
non-differentiable
non linearnon-linear
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Evolutionary Parameter Optimization: Introduction

Problem MotivationProblem Motivation
• There are a lot of applications where a scientist/engineer 

has to optimize a non-linear, non-differentiable functionhas to optimize a non linear, non differentiable function 
that has multiple minima.

• An example of such an application is 
found in the field of neural networks 
where one has to optimize the p
topology and weights of a neural 
network to solve a mapping problem

• Neural networks have been• Neural networks have been 
extensively used in the literature to 
solve classification problems, 

i bl di tiregression problems, prediction 
problems



Evolutionary Parameter Optimization: Introduction

M t P l R lM t P l R l P tP tMost Popular RealMost Popular Real--Parameter Parameter 
Evolutionary AlgorithmsEvolutionary Algorithms

RealReal--coded (parameter)  genetic algorithm (RCGAscoded (parameter)  genetic algorithm (RCGAs))

y gy g

(p ) g g ((p ) g g ( ))
Evolution strategies (ES)Evolution strategies (ES)
P i l i i i (PSO)P i l i i i (PSO)Particle swarm optimization (PSO)Particle swarm optimization (PSO)
Differential Differential evolution (DEevolution (DE))(( ))
Real coding Real coding memeticmemetic algorithms (RCMA)algorithms (RCMA)
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Pioneers and outstanding work

Binary CodingBinary CodingBinary CodingBinary Coding



Pioneers and outstanding work

Binary GAs in Continuous Search Space Binary GAs in Continuous Search Space 
Diffi lti ith biDiffi lti ith bi d d EAd d EADifficulties with binaryDifficulties with binary--coded EAscoded EAs

Binary GAs make the search space discreteBinary GAs make the search space discreteBinary GAs make the search space discreteBinary GAs make the search space discrete
Hamming cliffs: (10000)'s neighbor (01111)Hamming cliffs: (10000)'s neighbor (01111)

Gray coding isn't the solutionGray coding isn't the solutionGray coding isn t the solution Gray coding isn t the solution 
Arbitrary precision impossible due to fixedArbitrary precision impossible due to fixed--length codinglength coding
Search restricted with variable boundariesSearch restricted with variable boundaries
Not all Holland's schemata are important Not all Holland's schemata are important 

(1****) more important than (****1)(1****) more important than (****1)

Solution:Solution: Redesign crossover which gives more importance Redesign crossover which gives more importance 
to meaningful schemata in real spaceto meaningful schemata in real spaceto meaningful schemata in real spaceto meaningful schemata in real space



Pioneers and outstanding work

Real Coding Genetic AlgorithmsReal Coding Genetic Algorithms

Decision variables are coded directly instead of usingDecision variables are coded directly instead of using

Real Coding Genetic AlgorithmsReal Coding Genetic Algorithms

Decision variables are coded directly, instead of using Decision variables are coded directly, instead of using 
binary stringsbinary strings
RecombinationRecombination and and mutationmutation need structural changesneed structural changes

Recombination Mutation

?  

Selection operator remains the sameSelection operator remains the same

?   ?................21 nxxx

Selection operator remains the sameSelection operator remains the same
Simple exchanges are not adequateSimple exchanges are not adequate



Pioneers and outstanding work

Problems with real crossover: Neighbourhood and Crossover

Crossover idea: combining 
parents genotypes to get p g yp g
children genotypes 
“somewhere in between” 
them

Interpretation & Generalization

Traditional mutation & crossover have a natural interpretation in 
the neighbourhood structure in terms of closeness and betweennessg



Pioneers and outstanding work

First Real Coding proposal: Linear/Arithmetical crossover
Wright A (1991) Genetic Algorithms for Real Parameter Optimization FOGA 1 205‐218Wright, A. (1991). Genetic Algorithms for Real Parameter Optimization. FOGA 1, 205‐218. 

• Linear Crossover
F 2 i 3 i d– From 2 parent points, 3 new points are generated:

• (1/2)p1 + (1/2)p2, (3/2)p1 - (1/2)p2, (-1/2)p1+(3/2)p2
– (1/2)p1 + (1/2)p2 is the midpoint of p1 and p2
– The others are on the line determined by p1 and p2

– The best 2 of the 3 points are sent to the next generation
Disadvantage Highly disrupted schemata It is not compatible with– Disadvantage - Highly disrupted schemata. It is not compatible with 
the schema theorem described in the next slide.

Extended models:  Arithmetical crossover (Michalewicz, 1992), 
Max-Min Arithmetic operator (Herrera, Lozano, Verdegay, 1995)



Pioneers and outstanding work

VariableVariable--wise recombinationwise recombination: Blend Crossover (BLX-αα))
Eshelman L J Schaffer J D (1993) Real‐Coded Genetic Algorithms and Interval‐Schemata FOGA 2 187‐202

Exploration Exploration

Eshelman L.J., Schaffer J.D. (1993). Real Coded Genetic Algorithms and Interval Schemata. FOGA 2, 187 202.

Exploration Exploration

cmin- ·I cmax + ·II

ai c1
i c2

i bic i c i bi

Explotation

Uniform probability distribution within a bound controlled by ααUniform probability distribution within a bound controlled by αα
Diversity in children proportional to that in parents
The search is too wide if parents are distant



Pioneers and outstanding work

R lR l d dd d G i Al i h Fi diG i Al i h Fi diRealReal--codedcoded Genetic Algorithms: First studiesGenetic Algorithms: First studies
1 2

• Goldberg D.E. (1991). 
Real‐Coded Genetic Algorithms, 
Vi t l Al h b t d Bl ki

1 2 1 2

Virtual Alphabets, and Blocking. 
Complex Systems 5, 139‐167.

• Wright A (1991) Genetic Algorithms for Real Parameter

12 2 1

• Wright, A. (1991). Genetic Algorithms for Real Parameter 
Optimization. FOGA 1, 205‐218. 
• Eshelman L.J., Schaffer J.D. (1993). Real‐Coded Genetic 
Algorithms and Interval‐Schemata. FOGA 2, 187‐202. 



Pioneers and outstanding work

VariableVariable--wise recombination of Parents wise recombination of Parents 
(RCGA fi t ti )(RCGA fi t ti )

Use a probability distribution to create Use a probability distribution to create offspringoffspring
iff i l i iiff i l i i

(RCGA first generation)(RCGA first generation)

Different implementations since 1991: Different implementations since 1991: 
Blend crossover (BLXBlend crossover (BLX--αα), 1993), 1993
Simulated binary crossover (SBXSimulated binary crossover (SBX--ββ), 1995), 1995
Fuzzy recombination (FRFuzzy recombination (FR--d), 1995d), 1995
Fuzzy connectives based operator (FCB), 1994Fuzzy connectives based operator (FCB), 1994

Main feature: Main feature: Difference between parents used to create Difference between parents used to create 
hildhildchildrenchildren

Provides selfProvides self--adaptive propertyadaptive property
Experimental analysis:   F. Herrera, M. Lozano, J.L. Verdegay (1998).  Tackling real‐coded 
genetic algorithms: operators  and tools for the behavioural analysis. 
Artificial Intelligence Reviews 12(4): 265‐319



Pioneers and outstanding work

Fuzzy Connectives based
Operator (Herrera et al. 1994)



Pioneers and outstanding work

Taxonomy of Crossover operatorsTaxonomy of Crossover operators

Discrete crossoverDiscrete crossover

Aggregation basedAggregation basedAggregation based  Aggregation based  
Crossover Crossover 

Neighborhood Neighborhood 
based Crossoverbased Crossover

Herrera, F., Lozano, M., Sánchez, A.M. (2003). A taxonomy for the crossover operator for real-coded 
genetic algorithms. An experimental study. International Journal of Intelligent Systems 18(3): 309-338.



Pioneers and outstanding work

Parent Center based Crossover operatorsParent Center based Crossover operatorsParent Center based Crossover operatorsParent Center based Crossover operators

Similar Similar behaviourbehaviour than autothan auto--adapted operatorsadapted operators



Pioneers and outstanding work

VectorVector--WiseWise Recombination OperatorsRecombination Operators
VariableVariable--wise recombination cannot capture nonlinear wise recombination cannot capture nonlinear 
interactionsinteractions
Alternative:Alternative: Recombine parents as vectors Recombine parents as vectors (RCGA second (RCGA second 
generation)generation)g )g )

ParentParent--centric recombination (PCX)centric recombination (PCX)
UnimodalUnimodal normallynormally--distributed crossover (UNDX)distributed crossover (UNDX)
Simplex crossover (SPX)Simplex crossover (SPX)

Difference between parents is used to create offspring solutions Difference between parents is used to create offspring solutions 
((somesome models in this special issuemodels in this special issue). ). 



Pioneers and outstanding work

Recombine parents as vectorsRecombine parents as vectors

PCXPCX UNDXUNDX SPXSPX

PCX, UNDX & SPX Operators

PCXPCX UNDXUNDX

Deb, K., Anand, A., Joshi, D. (2002). A computationally efficient evolutionary algorithm for
real-parameter evolution.Evolutionary Computation Journal 10(4): 371-395.



Pioneers and outstanding work

VectorVector--WiseWise Recombination OperatorsRecombination Operators
VariableVariable--wise recombination cannot capture nonlinear wise recombination cannot capture nonlinear 
interactionsinteractions
Alternative:Alternative: Recombine parents as vectors Recombine parents as vectors (RCGA second generation)(RCGA second generation)

ParentParent--centric recombination (PCX)centric recombination (PCX)ParentParent centric recombination (PCX)centric recombination (PCX)
UnimodalUnimodal normallynormally--distributed crossover (UNDX)distributed crossover (UNDX)
Simplex crossover (SPX)Simplex crossover (SPX)p ( )p ( )

Difference between parents is used to create offspring solutions Difference between parents is used to create offspring solutions 
(some(some models in this special issue). models in this special issue). (( p )p )

New algorithmsNew algorithms (second(second EAsEAs generation):generation): DE, PSO, CMADE, PSO, CMA--ESESNew algorithmsNew algorithms (second (second EAs EAs generation): generation): DE, PSO, CMADE, PSO, CMA ESES



Pioneers and outstanding work

Evolution StrategiesEvolution StrategiesEvolution StrategiesEvolution Strategies
Rechenberg & Schwefel (1964) were concerned with solving parameter 
optimization problems. Autoadaptation of parameters. p p p p

Mut: I  I

Mut (x) = x’ = (x1 + z1, ...., xn + zn)( ) ( 1 1, , n n)

zi Ni(0,’2)i i( , )

State of the art of the first generation: Schwefel, H.P. Evolution and Optimum 
Seeking. Sixth-Generation Computer Technology Series. Wiley, New York, 1995.



Pioneers and outstanding work

State of the art of the ES second generation: CMA-ES
Evolution Strategy with Covariance Matrix Adaptation (Hansen &(Hansen & OstermeierOstermeier 1996)1996)Evolution Strategy with Covariance Matrix Adaptation (Hansen & (Hansen & OstermeierOstermeier, 1996), 1996)

SelectionSelection--mutation ES is run mutation ES is run 
forfor nn iterationsiterationsfor for n n iterationsiterations
Successful steps are recordedSuccessful steps are recorded
They are analyzed to findThey are analyzed to findThey are analyzed to find They are analyzed to find 
uncorrelated basis directions uncorrelated basis directions 
and strengthsand strengthsgg
Required Required O(nO(n33)) computations to computations to 
solve an solve an eigenvalueeigenvalue problem problem • Hansen, N. and A. Ostermeier (2001). 

Rotation invariantRotation invariant Completely Derandomized Self-Adaptation in 
Evolution Strategies. Evolutionary Computation, 
9(2), pp. 159-195; 

• Hansen, N., S.D. Müller and P. Koumoutsakos
(2003) R d i th Ti C l it f th(2003). Reducing the Time Complexity of the
Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). 
Evolutionary Computation, 11(1), pp. 1-18; 

Nikolaus Hansen
www.lri.fr/~hansen/



Pioneers and outstanding work

Particle Swarm OptimizationParticle Swarm OptimizationParticle Swarm OptimizationParticle Swarm Optimization

The PSO (Kennedy and Eberhart (1995)) starts 
from an initial population of solutions (particles) 
for the optimization problem.
It finds new solutions by co-jointly exploring the 
space and exploiting the information provided by 
already found, good solutions.

J. Kennedy and R.C. Eberhart. Particle Swarm Optimization. 
Proceeding of IEEE International Conference on Neural Networks, IV, pages 1942–1948, 1995.



Pioneers and outstanding work

Particle Swarm OptimizationParticle Swarm Optimizationpp

Particles fly through the search spaceParticles fly through the search space
(bi l i l i i i )(bi l i l i i i )(biological inspiration)(biological inspiration)

Kennedy, J., Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kauffmann. 



Pioneers and outstanding work

Particle Swarm OptimizationParticle Swarm OptimizationParticle Swarm OptimizationParticle Swarm Optimization
Kennedy and Kennedy and EberhartEberhart, 1995, 1995
Particles fly through the search spaceParticles fly through the search spaceParticles fly through the search spaceParticles fly through the search space
Velocity dynamically adjustedVelocity dynamically adjusted
xx == xx +v+v

VectorVector--Wise Wise 
Recombination Recombination 

xxii = = xxii+v+vii
vvii = v= vii+c+c11rnd()(rnd()(ppi,besti,best--xxii)+c)+c22rnd()(prnd()(pgg--xxii))
ppii: best position of: best position of ii--thth particleparticle  

PSO at Different Iterations
DeJong

ppii: best position of : best position of ii thth particleparticle
ppgg: position of best particle so far: position of best particle so far

11stst term: momentum part (history)term: momentum part (history) 10 iter

22ndnd term: cognitive part (private thinking)term: cognitive part (private thinking)
33rdrd term: social part (collaboration)term: social part (collaboration)

i [0 2]i [0 2]

5

5
0

20

40 100 iter

1000 iter

cc11, c, c22 in [0,2]in [0,2]

-5

0
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Evolutionary Parameter Optimization: Introduction

Differential EvolutionDifferential Evolution

The DE approach (Storn and Price (1997)) starts 
from an initial population of solutions that are 

t t d d d t t ll bt imutated and crossed over to eventually obtain 
better solutions for the optimization problem at 
handhand.

R. Storn and K. V. Price, “Differential evolution-A simple and Efficient Heuristic for Global 
Optimization over Continuous Spaces,” Journal of Global Optimization, 11:341-359,1997.



Pioneers and outstanding work

Differential EvolutionDifferential Evolution
1.1. Start with a pool of random Start with a pool of random 

solutionssolutionssolutionssolutions
2.2. Create a child vCreate a child v
33 xx and v are recombined withand v are recombined with3.3. xxkk and v are recombined with and v are recombined with 

pp
4.4. Keep better of y and xKeep better of y and x(k)(k)p yp y
•• Difference of parents in Difference of parents in 

creating a child is importantcreating a child is important
•• A number of modifications A number of modifications 

existexist

VectorVector--Wise Recombination Wise Recombination 
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Milestone: CEC’2005 Real Parameter 

Optimization Session and BenchmarkOptimization Session and Benchmark
Special Session on Real-Parameter Optimization. 
2005 IEEE CEC Edinburgh UK Sept 2 5 20052005 IEEE CEC, Edinburgh, UK, Sept 2-5. 2005. 

Organizers: K. Deb and P.N. Suganthan.

The study was made with dimensions D = 10, D = 30, D=50. 
The maximum number of fitness evaluations is 10,000·D. 
Each run stops when the maximal number of evaluations is achieved.

P N Suganthan N Hansen J J Liang K Deb Y -P Chen A Auger and S Tiwari "ProblemP. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger and S. Tiwari, Problem
Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization", Technical Report, Nanyang Technological University, Singapore, May 2005 AND
KanGAL Report #2005005, IIT Kanpur, India.



Milestone: CEC’2005 Real Parameter 

Optimization Session and BenchmarkOptimization Session and Benchmark
Special Session on Real-Parameter Optimization. 
2005 IEEE CEC Edinburgh UK Sept 2 5 20052005 IEEE CEC, Edinburgh, UK, Sept 2-5. 2005. 

Organizers: K. Deb and P.N. Suganthan.

6 functions

6 functions

13 functions



Milestone: CEC’2005 Real Parameter 

Optimization Session and BenchmarkOptimization Session and Benchmark
(11 algorithms)



Milestone: CEC’2005 Real Parameter 

Optimization Session and BenchmarkOptimization Session and Benchmark

S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric Tests for Analyzing the 
Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Real Parameter 
Optimization. Journal of Heuristics, 15 (2009) 617-644. doi: 10.1007/s10732-008-9080-4.



Milestone: CEC’2005 Real Parameter 

Optimization Session and BenchmarkOptimization Session and Benchmark

G-CMAES versus the remaining algorithms.  D = 10 
P-value obtained through normal approximation
S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric Tests for Analyzing the 
Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Real Parameter 
Optimization. Journal of Heuristics, 15 (2009) 617-644. doi: 10.1007/s10732-008-9080-4.

g pp



Milestone: CEC’2005 Real Parameter 

Optimization Session and BenchmarkOptimization Session and Benchmark
Two recent algorithms with good ranking and similar statistical
behaviour:behaviour: 

AMALGAM – SO: Vrugt, J.A.; Robinson, B.A.; Hyman, J.M.; , "Self-Adaptiveg , ; , ; y , ; , p
Multimethod Search for Global Optimization in Real-Parameter Spaces," Evolutionary
Computation, IEEE Transactions on , vol.13, no.2, pp.243-259, April 2009 
http://math.lanl.gov/~vrugt/software/p g g

AMALGAM - SO: A Multi ALgorithm Genetically Adaptive Method for Single 
Objective Optimization This method simultaneously merges the strengths of theObjective Optimization. This method simultaneously merges the strengths of the 
Covariance Matrix Adaptation (CMA) evolution strategy, Genetic Algorithm 
(GA) and Particle Swarm Optimizer (PSO) for population evolution and 
i l lf d i l i i ll h b fimplements a self-adaptive learning strategy to automatically tune the number of 
offspring these three individual algorithms are allowed to contribute during each 
generation. 



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark
Two recent algorithms with good ranking and similar statistical
behaviour:

Optimization Session and Benchmark

behaviour: 
MA-CMA-Chains: D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms
for Continuous Optimization Based on Local Search Chains. Evolutionary Computation, 18(1), 
2010, 27–63.

MA-CMA-Chains: Local search adaptation



Milestone: CEC’2005 Real Parameter 

Optimization Session and BenchmarkOptimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

E ti th LS l ith i li d t fi ti l h fi d LS

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation

Every time the LS algorithm is applied to refine a particular chromosome, a fixed LS 
intensity should be considered for it, which will be called LS intensity stretch (I_str). In 
this way, a LS chain formed throughout n_app LS applications and started from solution 
s 0 will return the same solution as the application of the continuous LS algorithm to s 0s_0 will return the same solution as the application of the continuous LS algorithm to s_0 
employing n_app · I_str fitness function evaluations.

After the LS operation the parameters that define the current state of the LS processingAfter the LS operation, the parameters that define the current state of the LS processing 
are stored along with the reached final individual (in the steady-state GA population). 
When this individual is latter selected to be improved, the initial values for the 
parameters of the LS algorithm will be directly available. For example, if we employ theparameters of the LS algorithm will be directly available. For example, if we employ the 
Solis and Wets’ algorithm as LS algorithm, the stored strategy parameter may be the 
current value of the ρ parameter. For the more elaborate CMA-ES, the state of the LS 
operation may be defined by the covariance matrix (C), the mean of the distribution p y y ( ),
(~m), the size (σ), and some additional variables used to guide the adaptation of these 
parameters.



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation

45



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation

MA-LSCh-CMA

Steady-state GA.

BLX-α.
Negative Assortative Mating.
BGA Mutation Operator.
St d d l t t tStandard replacement strategy

CMA-ES as Continuous LS algorithm.

Parameter setting For the experiments MA-LSCh-CMA applies BLX-α with α = 0 5

Hansen, N. and Ostermeier,A. (2001). Completely 
derandomized self-adaptation in evolution strategies. 
Evolutionary Computation 9(2): 159–195.

Parameter setting. For the experiments,MA-LSCh-CMA applies BLX-α with α  0.5. 
The population size is 60 individuals and the probability of updating a chromosome by 
mutation is 0.125. The n_ass parameter associated with the negative assortative mating is 
set to 3. The value of the L G ratio, r L/G, was set to 0.5, which represents an equilibratedset to 3. The value of the L G ratio, r_L/G, was set to 0.5, which represents an equilibrated 
choice. Finally, a value of 1e-8 was assigned to the δmin LS threshold.



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation

I_str = 500 is the best choice



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation



Milestone: CEC’2005 Real Parameter 

Optimization Session and Benchmark

MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation

C i ith St t f th A t MACOComparison with State-of-the-Art MACOs

Noman, N. and Iba, H. (2008). Accelerating differential evolution using an adaptive local search. 
IEEE Transactions on Evolutionary Computation. 12:1 (2008)107–125.
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MA-CMA-Chains: Local search adaptation

Optimization Session and Benchmark

D. Molina, M. Lozano, C. García-Martínez, F. Herrera, Memetic Algorithms for Continuous Optimization Based on Local Search
Chains. Evolutionary Computation, 18(1), 2010, 27–63

MA-CMA-Chains: Local search adaptation

C i ith th Wi f th CEC2005 C titi G CMA ESComparison with the Winner of the CEC2005 Competition: G-CMA-ES

5252

Auger A and Hansen N (2005a) A restart CMA evolution strategy with increasing population size InAuger, A. and Hansen, N. (2005a). A restart CMA evolution strategy with increasing population size. In 
Proc. of the 2005 IEEE Congress on Evolutionary Computation, pages 1769-1776.

S. García, D. Molina, M. Lozano, F. Herrera, A Study on the Use of Non-Parametric Tests for Analyzing 
the Evolutionary Algorithms' Behaviour: A Case Study on the CEC'2005 Special Session on Realthe Evolutionary Algorithms  Behaviour: A Case Study on the CEC 2005 Special Session on Real 
Parameter Optimization. Journal of Heuristics, doi: 10.1007/s10732-008-9080-4, 15 (2009) 617-644



Milestone: CEC’2005 Real Parameter 
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OTHER SPECIAL TRACKS

Optimization Session and Benchmark

OTHER SPECIAL TRACKS

A GECCO 2009 W k h f R l P t O ti i ti Bl kA GECCO 2009 Workshop for Real-Parameter Optimization: Black-
Box Optimization Benchmarking (BBOB) 2009. GECCO 2009, 
Montreal, Canada, July 8-12 2009. Organizers: Anne Auger, Hans-
Georg Beyer Nikolaus Hansen Steffen Finck Raymond Ros MarcGeorg Beyer, Nikolaus Hansen, Steffen Finck, Raymond Ros, Marc 
Schoenauer, and Darrell Whitley.

A GECCO 2010 Workshop for Real-Parameter Optimization: Black-
Box Optimization Benchmarking (BBOB) 2010. GECCO 2010, 
Portland, USA, July 7-11 2010. Organizers: Anne Auger, Hans-Georgy g g g
Beyer, Steffen Finck, Nikolaus Hansen, Petr Posik, Raymond Ros.
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Large Scale Global Optimization

Nowadays, the ability to tackle high-dimensional problems y , y g p
is crucial to many real problems (bio-computing, data 
mining, etc.), arising high-dimensional optimization 
problems as a very interesting field of research. 

The ability of being scalable for high dimensional problemsThe ability of being scalable for high-dimensional problems 
becomes an essential requirement for modern optimization 
algorithm approaches.g pp

G-CMA-ES  presents good results with a low/medium
f i i i inumber of variables but its drawback is associated to the

scalability – More than 100 variables 



Large Scale Global Optimization

Special Session & Competition on Large Scale Global 
Optimization at CEC 2008Optimization at CEC 2008.

Workshop for Evolutionary Algorithms and other Metaheuristics
for Continuous Optimization Problems A Scalability Test atfor Continuous Optimization Problems - A Scalability Test at 
ISDA 2009.

Special Session & Competition on Large Scale GlobalSpecial Session & Competition on Large Scale Global 
Optimization at CEC 2010.

Winner: Algorithm: MA-SSW-Chains
MA-SW-Chains: Memetic Algorithm Based on Local Search Chains for Large Scale
Continuous Global Optimization
D. Molina, M. Lozano, F. Herrera
Evolutionary Computation, 2010. WCCI 2010 IEEE World Congress on Computational
Intelligence.  IEEE Congress on July, 18-23, 2010 Page(s): 3153 - 3160 .



Large Scale Global Optimization

Special Issue of Soft Computing: 
S l bilit f E l ti Al ith d th M t h i tiScalability of Evolutionary Algorithms and other Metaheuristics
for Large Scale Continuous Optimization Problems
Volume 15, Number 11, 2011

http://sci2s.ugr.es/EAMHCO/#LSCOP-special-issue-SOCO
6. Complementary Material: SOCO Special Issue on Large Scale Continuous Optimization 
Problems

Th t d d ith di i D 50 D 100 D 200 D 500 d DThe study was made with dimensions D = 50, D = 100, D=200, D=500, and D = 
1,000. The maximum number of fitness evaluations is 5,000·D. 
Each run stops when the maximal number of evaluations is achieved.



Large Scale Global Optimization

Special Issue of Soft Computing:  Scalability of Evolutionary Algorithms and other Metaheuristics for 
Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011 (7 DE approaches)

P01 - SOUPDE   Shuffle Or Update Parallel Differential Evolution for Large Scale Optimization
P02 - DE-D^40+M^m  Role Differentiation and Malleable Mating for Differential Evolution: An Analysis on 
Large Scale Optimisation
P03 GODE Enhanced Opposition Based Differential Evolution for Solving High Dimensional ContinuousP03 -GODE  Enhanced Opposition-Based Differential Evolution for Solving High-Dimensional Continuous 
Optimization Problems 
P04 - GaDE Scalability of Generalized Adaptive Differential Evolution for Large-Scale Continuous Optimization
P05 - jDElscop Self-adaptive Differential Evolution Algorithm using Population Size Reduction and Three 
S iStrategies
P06 - SaDE-MMTS  Self-adaptive Differential Evolution with Multi-trajectory Search for Large Scale 
Optimization  
P07 - MOS  A MOS-based Dynamic Memetic Differential Evolution Algorithm for Continuous Optimization A 
Scalability Test (best results)
P08 - MA-SSW-Chains Memetic Algorithms Based on Local Search Chains for Large Scale Continuous 
Optimisation Problems: MA-SSW-Chains
P09 - RPSO-vm Restart Particle Swarm Optimization with Velocity Modulation: A Scalability TestP09 RPSO vm Restart Particle Swarm Optimization with Velocity Modulation: A Scalability Test 
P10 - Tuned IPSOLS An Incremental Particle Swarm for Large-Scale Optimization Problems: An Example of 
Tuning-in-the-loop (Re)Design of Optimization Algorithms
P11 -multi-scale PSO Multi-Scale Particle Swarm Optimization Algorithm
P12 EvoPROpt Path Relinking for Large Scale Global OptimizationP12 - EvoPROpt Path Relinking for Large Scale Global Optimization
P13 - EM323 EM323 : A Line Search based algorithm for solving high-dimensional continuous non-linear 
optimization problems
P14 – VXQR  VXQR: Derivative-free unconstrained optimization based on QR factorizations



Large Scale Global Optimization

Special Issue of Soft Computing:  Scalability of Evolutionary Algorithms and other Metaheuristics for 
Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011

D = 500

D = 1000D = 1000

A MOS-based Dynamic Memetic Differential Evolution Algorithm for Continuous Optimization A 
Scalability Test. A. LaTorre, S. Muelas, J.M. Peña. Soft Computing, 15, pages: 2187-2199, 2011.



Large Scale Global Optimization

Special Issue of Soft Computing:  Scalability of Evolutionary Algorithms and other Metaheuristics for 
Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011

D = 500



Large Scale Global Optimization

Special Issue of Soft Computing:  Scalability of Evolutionary Algorithms and other Metaheuristics for 
Large Scale Continuous Optimization Problems Volume 15, Number 11, 2011

D = 1000
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Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on 
Real world Numerical Optimization Problems CEC'2011 NewReal-world Numerical Optimization Problems CEC'2011, New 
Orleans, USA, Jun 5 - 8, 2011. Organizer: P.N. Suganthan.

4. Special Sessions and Workshops: Problem definitions and contributions (pdf files)

1. Parameter Estimation for Frequency-Modulated (FM) Sound Waves
2. Lennard-Jones Potential Problem

http://sci2s.ugr.es/EAMHCO/#SS

. e a d Jo es ote t a ob e
3. The Bifunctional Catalyst Blend Optimal Control Problem
4. Optimal Control of a Non-Linear Stirred Tank Reactor
5. Tersoff Potential Function Minimization Problem

13 Algorithms
participate in the

6. Spread Spectrum Radar Polly phase Code Design
7. Transmission Network Expansion Planning (TNEP) Problem
8. Large Scale Transmission Pricing Problem

p p
Special Track

9. Circular Antenna Array Design Problem
10. Dynamic Economic Dispatch (DED) Problem
11. Static Economic Load Dispatch (ELD) Problem
12. Hydrothermal Scheduling Problem
13. Messenger: Spacecraft Trajectory Optimization Problem
14. Cassini 2: Spacecraft Trajectory Optimization Problem



Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on 
Real world Numerical Optimization Problems CEC'2011 NewReal-world Numerical Optimization Problems CEC'2011, New 
Orleans, USA, Jun 5 - 8, 2011. Organizer: P.N. Suganthan.

4. Special Sessions and Workshops: Problem definitions and contributions (pdf files)

1. Algorithm: Hybrid DE-RHC 
2. Algorithm: GA-MPC (GA with a New Multi-Parent Crossover)

http://sci2s.ugr.es/EAMHCO/#SS (9 DE approaches)

3. Algorithm: SAMODE (Differential Evolution with Multiple Strategies)
4. Algorithm: Elite GA (Genetic Algorithm)
5. Algorithm: IADE  (Adaptive Differential Evolution Algorithm)
6 Al ith ED DE (E ti ti f Di t ib ti d Diff ti l E l ti C ti )6. Algorithm: ED-DE  (Estimation of Distribution and Differential Evolution Cooperation)
7. Algorithm: EA-DE-MA (Hybrid EA-DE-Memetic Algorithm)
8. Algorithm: CDASA  (Continuous Differential Ant-Stigmergy Algorithm)
9 Algorithm: SAPMCSBX (Modified SBX and Adaptive Mutation)9. Algorithm: SAPMCSBX (Modified SBX and Adaptive Mutation)
10. Algorithm: SACWIDE (Self Adaptive Cluster Based and Weed Inspired Differential 

Evolution)
11. Algorithm: DE-Acr (Hybrid DE Algorithm With Adaptive Crossover Operator)g ( y g p p )
12. Algorithm: EPSDE (Ensemble Differential Evolution)
13. Algorithm: CDELS (Modified Differential Evolution with Local Search) 



Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on Real-world Numerical 
Optimization Problems CEC'2011, New Orleans, USA, Jun 5 - 8, 2011. : P.N. Suganthan.

Algorithm: GA-MPCAlgorithm: GA-MPC
GA with a New Multi-Parent Crossover for Solving IEEE-CEC2011 Competition Problems
Saber M. Elsayed; Ruhul A. Sarker; Daryl L. Essam
IEEE Congress on Evolutionary Computation, 2011. Jun, 5-8, 2011 Page(s): 1034 - 1040IEEE Congress on Evolutionary Computation, 2011. Jun, 5 8, 2011 Page(s): 1034 1040



Real-world Numerical Optimization Problems

Special Track: Competition: Testing Evolutionary Algorithms on Real-world Numerical 
Optimization Problems CEC'2011, New Orleans, USA, Jun 5 - 8, 2011. : P.N. Suganthan.

Algorithm: GA-MPC: GA with a New Multi-Parent Crossover for Solving IEEE-CEC2011 Competition Problems
Saber M. Elsayed; Ruhul A. Sarker; Daryl L. Essam
Evolutionary Computation, 2011.  IEEE Congress on Jun, 5-8, 2011 Page(s): 1034 - 1040
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Non Rigorous Experiments: 
Local vs Global ComparisonLocal vs Global Comparison

It is usual to find a paper with a novel proposal:   
“Advanced xxx algorithm”Advanced xxx algorithm

For example:  Advanced PSO, advanced DE ….

Authors compare the new proposal “Advanced xxx algorithm” with
the basic “xxx algorithm” or recent “xxx algorithms” that are far from
the state of the art. 

The proposal “Advanced xxx algorithm” is better than previousThe proposal Advanced xxx algorithm   is better than previous
ones (of course) and authors claim on the “high quality of the
proposal” 

From the local point of view is good but ...  But the proposal
“Advanced xxx algorithm” is far from the state of the art (G-Advanced xxx algorithm   is far from the state of the art (G
CMAES, MA-CMA-Chais, AMALGAM – SO)



Non Rigorous Experiments: 
Local vs Global Comparison

Examples for comparison: 

Local vs Global Comparison

SaDE: A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary 
Computation, vol. 13, number 2, pp 398–417. 2009.
JADE: J. Zhang, A. C. Sanderson, JADE: Adaptive differential evolution with optional 
external archive, IEEE Transactions on Evolutionary Computation, vol. 13, number 5, pp. 
945 958 2009945–958. 2009.
DEGL: S. Das, A. Abraham, U. K. Chakraborty, A. Konar, Differential evolution using a
neighborhood-based mutation operator, IEEE Transactions on Evolutionary Computation, 
vol 13vol. 13,
number 3, pp 526–553. 2009.
Frankestein PSO: MA. Montes de Oca, T. Stützle, M. Birattari, M. Dorigo, 
Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm IEEEFrankenstein s PSO: A Composite Particle Swarm Optimization Algorithm IEEE 
Transactions on Evolutionary Computation, Vol 13:5 (2009) pp. 1120-1132
OLPSO: Z-H Zhan, J. Zhang, Y. Li, Y-H. Shi, Orthogonal Learning Particle
Swarm Optimization IEEE Transactions on Evolutionary Computation (2011)Swarm Optimization, IEEE Transactions on Evolutionary Computation, (2011)



Non Rigorous Experiments: 
Local vs Global ComparisonLocal vs Global Comparison

Table 1: Results obtained by the 
Wilcoxon test for algorithm G-
CMA-ES (D=10)CMA ES (D 10)

Table 2: Results obtained by the 
Wilcoxon test for algorithm G-
CMA ES (D 30)CMA-ES (D=30)

Table 3: Results obtained by the 
Wilcoxon test for algorithm G-
CMA-ES (D=50)



Non Rigorous Experiments: 
Local vs Global Comparison

Of course, the two following kind of studies are important : 

Local vs Global Comparison

A) To propose new advances inside of techniques (DE, PSO, …),  
b t th t t t h th t t f th tbut authors must try to reach the state of the art. 

B) New optimization frameworks, as a first idea on a new researchB) New optimization frameworks, as a first idea on a new research
branch, are welcome: (third generation?)

Estimation of Distribution AlgorithmsEstimation of Distribution Algorithms
Chang Wook Ahn, Ramakrishna, R.S. (2008). On the scalability of real-coded bayesian
optimization algorithm. IEEE Transaction of Evolutionary Computation 12(3), 307-322 doi: 
10 1109/TEVC 2007 90285610.1109/TEVC.2007.902856.

Central Force Optimization
Formato, R.A. (2007). Central Force Optimization: A New Metaheuristic with Applications , ( ) p pp
in Applied Electromagnetics. Progress In Electromagnetics Research 77, 425-491 doi: 
10.2528/PIER07082403.



Non Rigorous Experiments: 
Local vs Global Comparison

B) New optimization frameworks, as a first idea on a new research

Local vs Global Comparison

branch, are welcome: 

Artificial Bee Colony Optimizationy p
Karaboga, D., Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global 
Optimization, 39, 459-471 doi: 10.1007/s10898-007-9149-x. p

Variable mesh optimization
A. Puris, R. Bello, D. Molina, F. Herrera, Variable mesh optimization for continuous
optimization problems. Soft Computing - A Fusion of Foundations, Methodologies and 
Applications (2011) 1-15, doi: 10.1007/s00500-011-0753-9, in press (2011).

N i i d i h d l fNow it is necessary to advance in the development of 
new/novel   proposals inside of these frameworks, 
making them competitive with the state of the artmaking them competitive with the state of the art. 



Contents
I. Evolutionary Parameter Optimization: Introduction

II. Pioneer and outstanding work

III. Milestone: CEC’2005 Real Parameter Optimization 

Session and Benchmark

IV. Large Scale Optimization 

V. Real-world Numerical Optimization Problems

VI Non Rigorous Experiments: Local vs Global ComparisonVI. Non Rigorous Experiments: Local vs Global Comparison

VII. Current Trends

VIII. Final Comments



Current trends

There are different areas of research that focus the attention ofThere are different areas of research that focus the attention of 
researchers in “evolutionary parameter optimization”: 

• The algorithms’ scalability:  High dimensional problems

• Multi modal problems with multiple solutions• Multi-modal problems with multiple solutions

Recent review

Real-parameter evolutionary multimodal optimization — A survey 
of the state-of-the-art
S d E l ti C t ti 1 2 (2011) 71 88Swarm and Evolutionary Computation, 1:2 (2011), 71-88
Swagatam Das, Sayan Maity, Bo-Yang Qu, P.N. Suganthan



Current trends

There are different areas of research that focus the attention of 
researchers in “evolutionary parameter optimization”: 

• Constraint optimizationConstraint optimization

Recent event: CEC10 Special Session / Competition on Evolutionary Constrained 
Real Parameter single objective optimizationReal Parameter single objective optimization

• Multi-objective optimization

The last high quality algorithm (state of the art): MOEA/D Homepage
http://dces.essex.ac.uk/staff/qzhang/webofmoead.htm

Q. Zhang and H. Li, MOEA/D: A Multi-objective Evolutionary Algorithm Based on Decomposition, 
IEEE Trans. on Evolutionary Computation, vol.11, no. 6, pp712-731 2007.
H. Li and Q. Zhang, Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D
and NSGA-II, IEEE Trans on Evolutionary Computation, vol. 12, no 2, pp 284-302, April/2009
Q. Zhang, W. Liu, E. Tsang and B. Virginas, Expensive Multiobjective Optimization by MOEA/D with
Gaussian Process Model, IEEE Trans on Evolutionary Computation, vol. 14, no.3, pp 456-474, 2010. 



Current trends

There are different areas of research that focus the attention of 
researchers in “evolutionary parameter optimization”: 

• New frameworks for Evolutionary parameter optimizationNew frameworks for Evolutionary parameter optimization
and the development of advanced approaches to compete 
with the state of the art. 

• Memetic Algorithms as the extension of hybrid approaches
( f k d l l h)(new frameworks and local search). 

Recent high quality methods are MAs: MA-CMA-Chains
(Genetic Algorithm and CMAES as local search, standar dimension) MOS 
(Dynamic Memetic Differential Evolution , large scale optimization)
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Final Comments

 Many real-world problems may be formulated as Many real world problems may be formulated as 
optimization problems of parameters with variables in 
continuous domains (parameter optimization problems). 

 The development of high quality  evolutionary algorithms 
(i i k d l i l ith ) ll(improving known or developing new algorithms ) allows  us 
to tackle a large number of real-world applications.

 It is very important to understand stochastic search in 
continuous and high-dimensional search spaces to advance in 
the topic. 



Final Comments

Website: Evolutionary Algorithms and other Metaheuristics
for Continuous Optimization Problemsfor Continuous Optimization Problems
http://sci2s.ugr.es/EAMHCO/


