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A B S T R A C T

We live in a world were data are generated from a myriad of sources, and it is really cheap to collect and storage
such data. However, the real benefit is not related to the data itself, but with the algorithms that are capable of
processing such data in a tolerable elapse time, and to extract valuable knowledge from it. Therefore, the use of
Big Data Analytics tools provide very significant advantages to both industry and academia. The MapReduce
programming framework can be stressed as the main paradigm related with such tools. It is mainly identified by
carrying out a distributed execution for the sake of providing a high degree of scalability, together with a fault-
tolerant scheme.

In every MapReduce algorithm, first local models are learned with a subset of the original data within the so-
called Map tasks. Then, the Reduce task is devoted to fuse the partial outputs generated by each Map. The ways
of designing such fusion of information/models may have a strong impact in the quality of the final system. In
this work, we will enumerate and analyze two alternative methodologies that may be found both in the spe-
cialized literature and in standard Machine Learning libraries for Big Data. Our main objective is to provide an
introduction of the characteristics of these methodologies, as well as giving some guidelines for the design of
novel algorithms in this field of research. Finally, a short experimental study will allow us to contrast the
scalability issues for each type of process fusion in MapReduce for Big Data Analytics.

1. Introduction

Big Data Analytics is nowadays one of the most significant and
profitable areas of development in Data Science [1–6]. One of the main
reasons of its success is related with the Internet-of-Things (IoT), the
Web 2.0 and the social networks, and all the myriad of data from dif-
ferent sources that can be collected and processed [6–8]. In this sense,
corporations that are able to extract valuable knowledge from large
volumes of data in a reasonable time, may obtain significant advantages
over their competitors [9,10]. Researchers from academia are also
aware of the interest in developing robust and accurate models for Data
Mining in Big Data applications [11,12]. There is a clear growing rate in
the number of research studies [13,14], and the trend is not expected to
change in the short future.

However, even years after the boom of Big Data, there is still a
misleading definition for the concept itself [15]. We must stress that the
topic of Big Data is strongly linked with the scalability issue [16]. Those
models developed in this context must be able to adapt dynamically the
data growth, as well as being fault tolerant to be reliable in case of time

consuming operations. In order to fulfill these requirements, a change
in the traditional technology and framework for carrying out the
learning process is mandatory [17].

MapReduce (MR) has established as a de-facto solution that com-
prises all the previous capabilities [18–20]. It is basically an execution
environment which lays over a distributed file system [21]. By means of
two simple functions, Map and Reduce, any implementation can be
automatically parallelized in a transparent way for the programmer,
also supporting by default the aforementioned fault-tolerant scheme.

• The Map function is devoted to divide the computation into dif-
ferent subparts, each one related to a partial set of the data.

• The Reduce function needs to fuse the local outputs into a single
final model.

Whereas the procedure to be included in the Map task is, most
times, straightforward to determine, the hitch comes when deciding
how to carry out the models’ fusion within the Reduce task. At this
point, the design depends on many factors, namely whether the
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submodels are different and independent among them, or they have a
nexus for being able to join them directly.

In this paper, we aim at analyzing the different alternatives on
process fusion for Big Data Analytics models under the MR framework.
To do so, we propose a brief taxonomy distinguishing two types of
approaches.

1. Direct fusion of models: approximate methods. We refer to those
that carry out a direct fusion of partial models via an ensemble
system [22].

2. Exact fusion for scalable models: distributed data and models’ par-
tition. In this case, they are those designs that carry out a global
distribution of both data and sub-models (the prior types mentioned
just considered data division), and iteratively build the final system.

We will carry out a practical study on scalability for each of the
different fusion proposals with the sake of contrasting how time and
accuracy performance vary as resources increase. In order to provide a
better understanding of each type of implementation, we will present
some case studies of these algorithms from both well-known Machine
Learning libraries such as Mahout [23–25] (from Apache Hadoop
[26,27]) and MLlib [28] (from Apache Spark [29,30]).

In order to address all these objectives, this paper is organized as
follows. First, Section 2.1 presents an introduction on the MR pro-
gramming framework, also stressing some alternatives for Big Data
processing. Section 3 includes an overview on those technologies cur-
rently available to address Big Data problems from a distributed per-
spective. Section 4 presents the core of this paper, analyzing the dif-
ferent design options for developing Big Data Analytics algorithms
regarding how the partial data and models are fused. Then, we show a
case study in Section 5 to contrast the capabilities regarding scalability
of the different approaches previously introduced. In Section 6 we
present a discussion on the findings obtained in this research, as well as
several guidelines for future study on the topic. Finally, Section 7
summarizes and concludes this paper.

2. MapReduce as information and process fusion

The rapid growth and influx of data from private and public sectors,
and the novel opportunities derived from the IoT [31], have popular-
ized the notion of “Big data [3,4,11]”. This scenario has led to the
development of custom paradigms for distributed processing that are
able to extract significant value and insight in different areas such as
Bioinformatics [32], health care [33], social mining [34,35], and so on.

Although focused on standard processing, distributed paradigms
have also been widely utilized for fusing information [36,37] (ontolo-
gies and genetic data) and learning models [38,39] (trees and fuzzy
rules). This section describes in detail these paradigms, paying more
attention to the most widespread paradigm in the market: MR. Fur-
thermore, several examples on how MR is applied as a fusion process
are given here.

2.1. MapReduce programming model

The MR execution environment [18] is the most common paradigm
used in the distributed processing scenario. Being a privative tool, its
open source counterpart, known as Hadoop, has been traditionally used
in academia research [27]. It has been designed to allow distributed
computations in a transparent way for the programmer, also providing
fault tolerance, automatic data partition and management, and auto-
matic job/resource scheduling. To take advantage of this scheme, any
algorithm must be divided into two main stages: Map and Reduce. The
first one is devoted to split the data for processing, whereas the second
collects and aggregates the results.

Additionally, the MR model is defined with respect to an essential
data structure: the (key,value) pair. The processed data, the

intermediate and final results work in terms of (key,value) pairs. To
summarize its procedure, Fig. 1 illustrates a typical MR program with
its Map and Reduce steps.

The MR scheme can be described as follows.

• Map function first reads data and transforms records into a key-
value format. Transformations in this phase may apply any sequence
of operations on each record before sending the tuples across the
network.

• Output keys are then shuffled and grouped by key value so that
coincident keys are grouped together to form a list of values. Keys
are then partitioned and sent to the Reducers according to some key-
based scheme previously defined.

• Finally, the Reducers perform some kind of fusion on the lists to
eventually generate a single value for each pair. As a further opti-
mization, the reducer is also used as a combiner on the map outputs.
This improvement reduces the total amount of data sent across the
network by combining each word generated in the Map phase into a
single pair.

Apart from considering MR as a processing paradigm, this scheme
(concretely, the Reduce stage) can also be seen as a fusion process that
allows to blend partial models and information schemes into a final
fused outcome. Fusion of models in MR is typically performed following
some sort of ensemble strategy that combine multiple hypothesis
through voting or attachment. Also other proposals exist that go beyond
ensemble learning, and offers as outcome a single coalesced model. For
example, logistic regression in Spark is composed by several sub-
gradients that are locally computed and eventually aggregated (more
examples will be given in Section 4). From another perspective, we may
refer to aggregation of partial information collected within different
maps. In this case, the fusion process will be more dependent from the
input domain. The amount of scenarios that can be found in this context
is highly diverse. Use cases for MR in the literature range from fusion of
ontologies [36] to the composition of fuzzy rules [39], among others.

Word Count comes to be one of the most widespread examples to
illustrate the intrinsic information fusion process behind MR.
WordCount is intended to count the number of occurrences per word in
a set of input text files. Each mapper reads a set of blocks formed by
lines, and splits them into words. It then emits a key-value pair with the
word as key, and 1 as value. Afterwards, each reducer sums the scores
for each word, and outputs a single key-value pair with the word and
sum.

Consider the phrase ‘knock, knock, who is there?”. A single mapper
would receive and split this sentence as words, and then, it would form
the initial pairs as: (knock,1), (knock,1), (who,1), (is,1), (there,1). In
reducers, the keys are grouped together and the count values for
identical keys (words) are added. In this case only one pair of similar
keys ‘knock’ would be aggregated so that the output pairs would be as

Fig. 1. The MapReduce programming model. k elements represent the keys in the pairs,
whereas v the values.
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follows: (knock,2), (who,1), (is,1), (there,1). As result, the user would
receive the final number of hits for each word.

2.2. Alternative distributed processing paradigms

Although MR is the most popular paradigm to tackle distributed
processing, there exist other modern distributed frameworks, conceived
prior to the dawn of MR, that offer other alternatives for information
and model fusion. Most of them follows a Single Instruction Multiple
Datasets (SIMD) [40] scheme to execute the same sequence of in-
structions simultaneously on a distributed set of data partitions. In this
section we focus on two paradigms (graph and bulk processing) re-
levant for current Big Data platforms.

2.2.1. Directed Acyclic Graph Parallel processing
All distributed frameworks based on Directed Acyclic Graph (DAG)

[41], like Spark, organize their jobs by splitting them into a smaller set
of atomic tasks. In this model vertexes correspond with parallel tasks,
whereas edges are associated with exchange of information. As shown
in Fig. 2, vertexes can have multiple connections between inputs and
outputs, which imply that the same task can be run in different data and
the same data in different partitions. Data flows are physically sup-
ported by shared memory, pipes, or disks. Instructions are duplicated
and sent from the master to the slave nodes for a parallel execution.
Notice that MR can be deemed as an specific implementation of DAG-
based processing, with only two functions as vertexes.

2.2.2. Bulk Synchronous Parallel processing
Bulk Synchronous Parallel (BSP) [42] systems are formed by a series

of connected supersteps, implemented as directed graphs. In this
scheme input data is the starting point. From here to the end, a set of
Supersteps are applied on partitioned data in order to obtain the final
output. As mentioned before, each Superstep correspond with an in-
dependent graph associated with a subtask to be solved. Once all
compounding subtasks end, bulk synchronization of all outputs is
committed. At this point vertexes may send messages to the next Su-
perstep, or receive some from previous steps, and also to modify its
state and outgoing edges. Fig. 3 shows a toy example for BSP processing

with two Supersteps and one synchronization barrier.

3. Big Data technologies for analytics

Nowadays, the volume of data currently managed by our storage
systems have surpassed the processing capacity of traditional systems
[11], and this applies to Data Mining as well. Distributed computing has
been widely used by experts and practitioners before the advent of Big
Data to boost up sequential solutions in medium-size data. Never-
theless, for most of current massive problems, a distributed approach
becomes mandatory nowadays since no batch architecture is able to
address such magnitudes.

Beyond High Performance Computing solutions, new large-scale
processing platforms are intended to bring closer distributed processing
to practitioners and experts by hiding the technical nuances derived
from these environments. Novel and complex designs are required to
create and maintain these platforms, which generalizes the utilization
of distributed computing for standard users.

As a result of the fast evolving of Big Data environment, a myriad of
tools, paradigms and techniques have surged to tackle different use
cases in industry and science. However, because of this large number of
alternatives, it is often difficult for practitioners and experts to analyze
and select the right tool for each goal.

In this section we present and analyze three well-known alternatives
for distributed processing belonging to the “Apache Hadoop eco-
system.” The objective is providing the necessary knowledge that helps
users to decide which alternative better fits their requirements. We also
outline the software libraries that gives support to the distributed
learning task in these platforms, being summarized in Table 1.

3.1. Apache Hadoop

Undoubtedly Hadoop MapReduce may be deemed as the primary
platform in the Big Data space. After the presentation of MR by Google
designers [43], Hadoop MapReduce was grown by the community, and
became the most used and powerful open-source implementation of
MR. Nowadays leading companies such as Yahoo has scaled from 100-
node Hadoop clusters to 42K nodes and hundreds of petabytes [44]
thanks to the outstanding performance of Hadoop.

The main idea behind Hadoop was to create a common framework
which can process large-scale data on a cluster of commodity hardware,
without incurring in a high cost in developing (in contrast to HPC so-
lutions) and execution time. Hadoop MapReduce was originally com-
posed by two elements: the first one was a distributed storage system
called Hadoop Distributed File System (HDFS), whereas the second one
was a data processing framework that allows to run MR-like jobs. Apart
from these goals, Hadoop implements primitives to address cluster
scalability, failure recovery, and resource scheduling, among others.

But Hadoop is today more than a single technology, but a complete
software stack and ecosystem formed by several top-level components
that address diverse purposes. For instance, Apache Giraph for graph
processing or Apache Hive for data warehousing. The common factor is
that all of them rely on Hadoop, and are tightly linked to this tech-
nology. Some projects are actually Apache top-level projects [45],
whereas others are continuously evolving or being created.

HDFS [46] can be deemed as the main module of Apache Hadoop. It
supports distributed storage for large-scale data through the use of
distributed files, which themselves are composed by fixed-size data
blocks. These blocks or partitions are equally distributed among the
data nodes in order to balance as much as possible the overall disk
usage in the cluster. HDFS also allows replication of blocks across dif-
ferent nodes and racks. In HDFS, the first block is ensured to be placed
in the same processing node, whereas the other two replicas are sent to
different racks to prevent abrupt ends due to inter-rack issues.

HDFS was thought to work with several storage formats. It offers
several APIs to read/write registers. Some relevant APIs are:

Fig. 2. Direct Acyclic Graph Parallel Processing. Squares represent the tasks to process
and the nodes in the graph, arrows connecting nodes represent the data flow between
nodes and the vertexes in the graph, dashed lines represent the dependencies between
data blocks (cylinders).
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InputFormat (to read customizable registers), or RecordWriter (to write
record-shaped elements). Users can also developed their own storage
format, and to compress data according to their requirements.
Persistence in Hadoop is mainly performed in disk. However, there are
some novel advances to optimize persistence by introducing some
memory usage. For instance, in Apache Hadoop version 3.0 was in-
troduced the option of memory usage as temporary storage.

Although MR [43] is the native processing solution in Apache Ha-
doop, today it supports multiple alternatives with different processing
schemes. All these solutions have in common that use a set of data
nodes to run tasks on the local data blocks, and one master node (or
more) to coordinate these tasks. For instance, Apache Tez [47] is a
processing engine that transforms processing jobs into direct acyclic
graphs (DAGs). Thanks to Tez, users can run any arbitrary complex
DAG of jobs in HDFS. Tez thus efficiently solves interactive and itera-
tive processes, like those present in machine learning processes. Its
most relevant contribution is that Tez translate any complex job to a
single MR phase. Furthermore, it does not need to store intermediate
files and reuses idle resources, which highly boost the overall perfor-
mance.

Hadoop MapReduce evolves to a more general component, called
Yet Another Resource Negotiator (YARN) [48], which provides extra
management and maintenance services relied to other components in
the past. YARN also acts as a facade for different types of distributed
processing engines based on HDFS, such as Spark, Flink or Storm. In
short, YARN was intended as a generic purpose system that separates
the responsibilities of resource management (performed by YARN), and
running management (performed by top-level applications).

Among the full set of advantages claimed by YARN, we can high-
light its capacity to run several application on the same cluster without
the necessity of moving data. In fact, YARN allows reusing resources
across alike applications in parallel, which improves the overall usage
of resources.

3.1.1. Apache Mahout
Since the magnitude of learning problems has been growing ex-

ponentially, data scientists demands rapid tools that efficiently extract
knowledge from large-scale data. This problem has been solved by MR
and other platforms by providing scalable algorithms and miscellaneous
utilities in form of machine learning libraries. These libraries are
compatible with the main Hadoop engine, and use as input the data
stored in the storage components.

Apache Mahout [49] was the main contribution from Apache Ha-
doop to this field. Although it can be deemed as mainly obsolete
nowadays, Mahout is considered as the first attempt to fill the gap of
scalable machine learning support for Big Data. Mahout comprises
several algorithms for plenty of tasks, such as: classification, clustering,
pattern-mining, etc. Among a long list of golden algorithms in Mahout,
we can highlight Random Forest or Naïve Bayes.

The most recent version (0.13.0) provides three new major features:
novel support for Apache Spark and Flink, a vector math experi-
mentation for R, and GPU support based on large matrix multi-
plications. Although Mahout was originally designed for Hadoop, some
algorithms have been implemented on Spark as a consequence of the
latter one’s popularity. Mahout is also able to run on top of Flink, being
only compatible for static processing though.

3.2. Spark

Apache Spark Framework [50] was born in 2010 with the pub-
lication of Resilient Distributed Datasets (RDD) structures [30], the
keystone behind Spark. Although Spark has a close relationship with
Hadoop Ecosystem, it provides specific support for every step in the Big
Data stack, such as its own processing engine, and machine learning
library.

Apache Spark [51] is defined as a distributed computing platform
which can process large volume data sets in memory with a very fast
response time due to its memory-intensive scheme. It was originally
thought to tackle problems deemed as unsuitable for previous disk-
based engines like Hadoop. Continued use of disk is replaced in Spark
by memory-based operators that efficiently deal with iterative and in-
teractive problems (prone to multiple I/O operations).

As stated previously, the heart of Spark is formed by RDDs, which
transparently controls how data are distributed and transformed across
the cluster. Users just need to define some high-level functions that will
be applied and managed by RDDs. These elements are created when-
ever data are read from any source, or as a result of a transformation.

Fig. 3. Bulk Synchronous Parallel processing.
Subtasks in each Superstep are depicted as rec-
tangles with variable height (task duration), and
data flows as dashed lines. Synchronization barrier
acts as a time proxy between stages.

Table 1
Analytics tools for each Big Data platform.

Big Data distributed platforms Analytics tools

Hadoop Mahout
Spark MLlib
Flink FlinkML
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RDDs consist of a collection of data partitions distributed across several
data nodes. A wide range of operations are provided for transforming
RDDs, such as: filtering, grouping, set operations, among others.
Furthermore RDDs are also highly versatile as they allows users to
customize partitioning for an optimized data placement, or to preserve
data in several formats and contexts.

In Spark, fault tolerance is solved by annotating operations in a
structure called lineage. Spark transformations annotated in the lineage
are only performed whenever a trigger I/O operations appears in the
log. In case of failure, Spark re-computes the affected brach in the
lineage log. Although replication is normally skipped, Spark allows to
spill data in local disk in case the memory capacity is not sufficient.

Spark developers provided another high-level abstraction, called
DataFrames, which introduces the concept of formal schema in RDDs.
DataFrames are distributed and structured collections of data organized
by named columns. They can be seen as a table in a relational database
or a dataframe in R, or Python (Pandas). As a plus, relational query
plans built by DataFrames are optimized by the Spark’s Catalyst opti-
mizer throughout the previously defined schema. Also thanks to the
scheme, Spark is able to understand data and remove costly Java seri-
alization actions.

A compromise between structure awareness and the optimization
benefits of Catalyst is achieved by the novel Dataset API. Datasets are
strongly typed collections of objects connected to a relational schema.
Among the benefits of Datasets, we can find compile-time type safety,
which means applications can be sanitized before running.
Furthermore, Datasets provide encoders for free to directly convert JVM
objects to the binary tabular Tungsten format. These efficient in-
memory format improves memory usage, and allows to directly apply
operations on serialized data. Datasets are intended to be the single
interface in future Spark for handling data.

3.2.1. MLlib
MLlib project [28] was born in 2012 as an extra component of

Spark. It was released and open-sourced in 2013 under the Apache 2.0
license. From its inception, the number of contributions and people
involved in the project have been growing steadily. Apart from official
API, Spark provides a community package index [52] (Spark Packages)
to assemble all open source algorithms that work with MLlib.

MLlib is a Spark library geared towards offering distributed machine
learning support to Spark engine. This library includes several out-of-
the-box algorithms for alike tasks, such as: classification, clustering,
regression, recommendation, even data preprocessing. Apart from dis-
tributed implementations of standard algorithms, MLlib offers:

• Common Utilities: for distributed linear algebra, statistical analysis,
internal format for model export, data generators, etc.

• Algorithmic optimizations: from the long list of optimizations in-
cluded, we can highlight some: decisions trees, which borrow some
ideas from PLANET project [53] (parallelized learning both within
trees and across them); or generalized linear models, which benefit
from employing fast C++++-based linear algebra for internal
computations.

• Pipeline API: as the learning process in large-scale datasets is tedious
and expensive, MLlib includes an internal package (spark.ml) that
provides an uniform high-level API to create complex multi-stage
pipelines that connect several and alike components (preprocessing,
learning, evaluation, etc.). spark.ml allows model selection or hyper-
parameter tuning, and different validations strategies like k-fold
cross validation.

• Spark integration: MLlib is perfectly integrated with other Spark
components. Spark GraphX has several graph-based implementa-
tions in MLlib, like LDA. Likewise, several algorithms for online
learning are available in Spark Streaming, such as online k-Means.
In any case, most of component in the Spark stack are prepared to
effortlessly cooperate with MLlib.

3.3. Flink

Apache Flink [54] is a distributed processing component focused
on streaming processing, which was designed to solve problems derived
from micro-batch models (Spark Streaming). Flink also supports batch
data processing with programming abstractions in Java and Scala,
though it is treated as a special case of streaming processing. In Flink,
every job is implemented as a stream computation, and every task is
executed as cyclic data flow with several iterations.

Flink provides two operators for iterations [55], namely, standard
and delta iterator. In standard iterator, Flink only works with a single
partial solution, whereas delta iterator utilizes two worksets: the next
entry set to process and the solution set. Among the set of advantages
provided by iterators is the reduction of data to be computed and sent
between nodes [56]. According to the authors, new iterators are spe-
cially designed to tackle machine learning and data mining problems.

Apart from iterators, Flink leverages from an optimizer that ana-
lyzes the code and the data access conflicts to reorder operators and
create semantically equivalent execution plans [57,58]. Physical opti-
mization is then applied on plans to boost data transport and operators’
execution on nodes. Finally, the optimizer selects the most resource-
efficient plan, regarding network and storage.

Furthermore, Flink provides a complex fault tolerance mechanism
to consistently recover the state of data streaming applications. This
mechanism is generating consistent snapshots of the distributed data
stream and operator state. In case of failure, the system can fall back to
these snapshots.

FlinkML is aimed at providing a set of scalable ML algorithms and
an intuitive API to Flink users. Until now, FlinkML provides few alter-
natives for some fields in machine learning: SVM with CoCoA [59], or
Multiple Linear regression for supervised learning, k-NN join for un-
supervised learning, scalers and polynomial features for preprocessing,
Alternating Least Squares for recommendation, and other utilities for
validation and outlier selection, among others. FlinkML also allows
users to build complex analysis pipelines via chaining operations (like
in MLlib). FlinkML pipelines are inspired by the design introduced by
sklearn in [60].

3.4. Comparison among Big Data alternatives (Hadoop, Spark and Flink)

Main divergence between Big Data frameworks rests on its design
philosophy, and how they respond to different data formats such as
data streams. Starting from Hadoop, we can directly assert that Hadoop
is essentially batch-oriented due to its intensive disk usage. In contrast,
Flink is a native streaming technology originally designed to work with
memory-based streams. Although Apache Spark was not originally de-
signed for static problems, it provides a micro-batching strategy capable
of easily processing streaming data. Spark micro-batching however may
be deteriorated when it faces low latency requirements.

Unlike Hadoop MapReduce, Spark and Flink both offer native sup-
port for in-memory persistence and iterative processing. Spark allows
users to persist data in memory, and load them in several occasions.
Regarding the execution engine, Spark relies on an acyclic graph
planner formed by vertices and edges, which can be seen as a strict
generalization of MapReduce. In counterpart, Flink utilizes a thor-
oughly iterative processing scheme created from the scratch, which is
based on cyclic data flows (a single iteration per schedule).

Moving to optimization matters, Spark and Flink both provide me-
chanisms to analyze, control and optimize user code so that the best
execution plan for each program is obtained. Spark mainly exploits new
SQL-based DataFrame API and the Tungsten engine for optimization,
whereas Flink did that as first citizen. Manual optimization can also be
carried out by controlling how data are partitioned, or transmitted
across the network.

Finally, Apache Spark and Flink offer plenty of alternatives to co-
ders specially attached with a given programming language. Namely,
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Spark offers ad-hoc APIs for R, Java or Python, and a native support for
the Scala language, whereas Apache Flink only focus on Java Virtual
Machine, providing full APIs for Scala and Java. In contrast, Hadoop
only supports Java. For further comparison insights, please refer to
García-Gil et al. [61].

4. Big Data analytics as a process fusion

“Synchronizing flags” in every distributed algorithmic approach is
undoubtedly the most challenging part during the design process. This
issue is not an exception in the MR scheme. In this particular case,
developers must take two significant decisions. On the one hand, the
components selected for the key-value representation in both the Map
and Reduce input and outputs. On the other hand, how the list of values
are aggregated in the Reduce step. In this section, we want to analyze in
detail this characteristic of the MR programming environment by in-
troducing a taxonomy to organize current state-of-the-art approaches
regarding how partial models from the Map task are aggregated. We
will determine how this fact may also affects the actual scalability of the
whole system.

Specifically, we distinguish among two different type of models
according to the fusion strategy implemented. First, those that produce
an approximate model by applying a direct process fusion on partial
submodels (Section 4.1). Second, those that distribute both data and
models to iteratively build a final exact system (Section 4.2).

Besides this standard categorization, some further considerations
must be taken into account in order to properly classify large-scale
learning algorithms. Among others, we must distinguish between:

• Whether the model (or required statistics) is evaluated (or are
computed) on all the distributed partitions (global), or local sub-
models are independently yielded by each task and then fused
(local).

• Whether algorithms only consist of a single stage (1-step) or several
iterations/stages are required (multistage).

• Whether a master node guides the model construction process
(guided) or it is fully decoupled (unguided).

Table 2 enumerates and categorizes the distributed methods de-
scribed below according to the previous taxonomy. Note that although
some categories appear more frequently with others, all categories are
independent.

4.1. Direct fusion of models: approximate methods

Roughly, approximate distributed models are those that emulate the
learning behavior of sequential algorithms, yet generating a completely
different and non-exact solution. Most of them follows an ensemble
paradigm, which is straightforwardly parallelizable in the MR

framework following the rule of thumb: one submodel per mapper. The
compounding model will be eventually generated by directly joining all
submodels in the reduce phase [71]. Note that the MR approach re-
minds of the traditional bootstrap aggregating (bagging) approach; yet in
this case with no replacement.

The premise for this type of methodologies is simple yet effective.
Each Map task works independently on its chunk of data. Depending on
the user’s requirements, each Map function is devoted to build one or
more models. For example, a pool of 100 classifiers to be obtained from
5 Maps will result on 20 classifiers per Map, each one of them built from
a 20%% of the original dataset. The “key” is shared by all values given
as output from the Map. This fact makes the logic of the Reduce phase
to stress for its simplicity. Every single classifier is directly joined into
the final system. In the following, we shortly describe some algorithms.

• One of the first approaches to build an approximate ensemble with
MapReduce was the Random Forest for Hadoop [72,73], whose
implementation can be found at Mahout-MapReduce Machine
Learning library [23,24]. The algorithm consist of two MR phases:
the first one is devoted to the development of the model (where
model fusion occurs), and the second one is focused on class pre-
diction once the model is built.
In the first phase, each Map creates several random trees (a subset of
the forest) using the partitions given as input [74]. The reduce phase
simply concatenates all the trees forming the final forest of random
trees. The second task replicates the forest across the nodes, and
launches the mappers on the test set partitions. Mappers predict the
class for each record assigned by using the final model. Finally,
reducers concatenate predictions in a single file.

• Another interesting approaches come from the boosting perspective
[75], which are AdaBoost.PL, LogitBoost.PL and MultiBoost.PL [64].
These include an ensemble of ternary classifiers [76], or an en-
semble of ensembles. In this case, the reduce phase is much more
complex than applying a simple voting or coalescing scheme. Con-
cretely, the whole boosting procedure, i.e. T iterations, is carried out
within each Map, so M ensembles of T classifiers are obtained, being
M the number of maps. Then, the T classifiers are arranged ac-
cording to their score, i.e. the weighted error, and then emitted to
the Reducers using their index as “key” and the model as value.
Finally, each Reduce process takes all classifiers with the same index
(key) and compute an average weight for this ensemble. At classi-
fication time, each “sub-ensemble” provides a vote for its class,
whose value is exactly the aforementioned weighted average score.

• Prototype Reduction [65] is also a another significant example that
provides a further complex and effective reduce process. First, each
Map process works with a different chunk of data by applying any
available reduction procedure [77]. Then, selected prototypes are
fed to a single reducer that is devoted to eliminate redundant ones.
This implies a clear fusion of data in order to obtain a final model, in
this case by merging similar examples.

• Fuzzy Rule Based Classification Systems [78] are probably one of
the clearest type of models in this category. The pioneer im-
plementation was based on the Chi et al. approach [62,63]. Each
Map task comprises a complete fuzzy learning procedure to obtain
an independent rule base. To do so, all examples from the input data
chunk are iterated deriving a single rule per example, while merging
those with the same antecedent and consequent. Then, rule weights
are computed based on a fuzzy confidence value from the input
examples, also allowing to determine the output class. We must
acknowledge that at this stage every single rule base might be used
for classification purposes. However, the system can be further en-
hanced by combining all partial models for every Map, as stated in
the beginning of this section. To do so, the Map writes as key-value
pair the antecedent and consequent (including class and rule
weight) respectively. Reducers then merges those rules with the
same antecedent (key) by averaging the values of the rule weights

Table 2
Categorization of distributed models for large-scale machine learning. Pseudonym and
reference for each method are provided.

Method Fusion tactic Model
scope

Model phases Model
guidance

Mahout-RF [23] approximate local 1-step unguided
FRBS [62,63] approximate local 1-step unguided
Boost.PL [64] approximate local 1-step unguided
Spark-PR [65] approximate local 1-step unguided
Spark-Trees [66] exact global multistage guided
Spark-Gradient

[67]
exact global multistage unguided

Spark-kMeans
[68]

exact global multistage guided

Spark-kNN [69] exact global 1-step unguided
IFSF [70] exact local multistage guided
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for the same class consequents, and then the class with the highest
rule weight is finally maintained.

There are two main advantages for this type of design. On the one
hand, we have stressed its direct synergy with the MR programming
model, easing the programmer implementation. On the other hand, we
must refer to the degree of diversity of those models obtained from
different Maps, being a crucial characteristic for the success of these
types of methods [79].

In spite of the previous goodness, there is one significant problem:
there is a limit in the scalability degree. It must be acknowledge that
there is a strong relationship between the number of Maps and the
required number of models. In other words, we cannot decrease the
total running time by adding a larger number of Maps, as this may
result in “void” functions with a data input but no output.

One final drawback that must be stressed is related to the inner
concept of ensemble. Being composed of a “large” set of individual
models, two facts must be taken into account. On the one hand, since all
of them are considered for the classification step, it is hard to under-
stand the actual reason for the labeling of the queried data. On the other
hand, the robustness of the whole ensemble system somehow depends
on the individual quality of its components, as well as their diversity.
Both properties are not easy to hold, and impose a restriction in the
building of the ensemble, for both standard and Big Data applications.

Throughout this section we have presented a short overview on
those MR methods that are based on fusion of partial models. As such,
they allow to reinforce the abilities of those individual systems, leading
to possibly more robust approaches. However, two issues must be taken
into account:

1. The key-value representation to link the Map and Reduce processes.
It must be very carefully selected as it has a strong influence in the
design of the Map function. Although the procedure is usually im-
plemented to be independent among Maps, a common point should
be given in order to allow the final combination.

2. The fusion function in the Reducer. It has a clear dependence on the
previous item, so that these must be designed as a whole to ensure a
robust workflow.

Both points will determine the scalability and exactness of the
output system. We refer to the changes in behavior when increasing the
number of Maps. Concretely, the efforts must be mostly focused on the
development of the partial models, regarding the influence of the lack
of data and/or whether the knowledge acquired from different subsets
of the problem space are able to be accurately merged.

4.2. Exact fusion for scalable models: distributed data and models’ partition

The previous scheme based on approximate models is presented as
ideal for distributed learning since submodel creation is naturally par-
allelizable and applicable to most of standard algorithms. Nevertheless,
in approximate fusion, models suffers from several deficiencies, such as:
extra parameter configuration (e.g.: number of map tasks), or a sub-
sequent drop on generalization due to a narrower view in submodel
creation. Indeed, most of supervised methods demand to access to a
large percentage of instances (usually, the whole set) during the
training step. In this scenario submodel creation is not possible because
of the strong dependency between data partitions. Throughout this
section, we analyze those algorithms whose scheme were noted as
“exact” in Table 2.

Decision trees (DT), as supervised algorithms, are an example of
methods that do not naturally support partial construction in dis-
tributed processing. They are top-down algorithms that continuously
evaluate splits by using statistics sketches computed on the entire da-
taset. In this case, all instances (and data partitions) are involved on the
statistics computation at every step, except in the rare scenario where

all feature values in a partition belongs to leaves nodes. Parallelization
here is then considered as a much more complex task.

A possible solution to this problem is to utilize partitioned data to
make decisions about how to construct a single exact model. For DTs,
statistics for each split considered are collected from the datanodes, and
used in the master node to decide which split is the best option for the
current state of the model (guided model construction).

This scheme was originally implemented in the Parallel Learner for
Assembling Numerous Ensemble Trees (PLANET) method [53]. In
PLANET, master node controls the complete tree induction process, and
launches the MR jobs that construct the nodes. It also maintains the tree
model in memory, decides which split predicates will be evaluated, and
eventually replicates the updated model across the nodes. Nodes to be
evaluated are organized through several queues, one with nodes for
MR-based evaluation and another for in-memory evaluation. De-
pending on the amount of instances involved in computations, nodes
are pushed to one queue or the other. Here we focus on MR evaluation
of nodes which is more common.

As tree construction proceeds, the master node retrieves nodes from
the queue, and schedules MR jobs to evaluate splits. Inside these jobs,
statistics for splits are computed in the map side by using the instances
in the data partitions. Finally, the reduce side decides which split is
more convenient for the tree model. Once a MR job ends, the master
nodes updates the model with the nodes and the splits predicates se-
lected, and updates the queues with new nodes at the periphery.

Notice that in this scheme, each MR job fetches the entire dataset in
order to avoid determining which records are required by each node,
and the extra communication that this step conveys. Instead, it per-
forms a level-wise computation of splits so that the tree is constructed
by following a breadth-first strategy. Thanks to this scheme, all nodes at
a given level are expanded at the same step, and every instance is part
of the input to some analyzed node.

PLANET project does not only offer an elegant solution for single
tree induction, but it also extends the original idea to provide powerful
exact algorithms based on bagging and boosting ensembles [80]. Con-
cerning bagging, PLANET allows to build multiple trees by maintaining
a single queue of nodes for the whole set of trees. By alternating eva-
luation of nodes from several trees, PLANET can build the random
forest in a parallel way. During boosting, PLANET constructs weak
learners sequentially as usual. Here training is only parallelized at the
tree level. Residuals are easily computed since the model is sent to
every MR job in full.

Based on PLANET, MLlib’ creators [28] developed two ensemble
classifiers for exact fusion: one based on random forest of trees, and
another based on gradient boosted trees [66]. Standard DTs are also
adopted in MLlib, however, note that they are implemented as an sin-
gular case of random forest with a single tree and the full feature set. In
general, all aforementioned tree-based algorithms have incorporated
several optimizations [81] with respect to PLANET, intended to boost
up the tree induction process. Major features introduced are describe
below:

• Efficient bootstrapping: one of the major drawbacks in PLANET is that
its does not allow bootstrapping in bagging. This fact was overcome
with MLlib where each record has associated a vector that indicates
the number of replicas of each instance in each tree. Note that this
strategy reduces the total amount of memory used as replication is
not performed.

• Node tracking: in order to keep simple its design, PLANET do not
track the current position of instances in the tree as it evolves.
Instead, every instance needs to be evaluated at every step by tra-
versing the tree from the root. Although simpler, and less memory-
consuming, this introduces an unfordable cost in time performance.
MLlib solves this problem by assigning to each instance the node
where it is currently stacked. It is clearly a better solution since CPU
usage is an usual bottleneck for large-scale applications.
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• Enhanced group-wise training: MLlib has improved the tree-level
training scheme by extending the number of nodes to be evaluated
to the memory available in the cluster for statistic aggregation. This
means that several trees can evaluate complete levels of several trees
at the same step, which extremely reduces the number of passes over
the dataset.

• Bin-wise computation: Instead of directly implementing the best split
computation strategy, MLlib proposes to categorize each feature
value into a discrete bin. Bins are then exploited to easily compute
aggregates for bins, and to calculate information gain.

• Partition aggregation: As bin-based categorization is known from the
early stages, it is used by the learning process to reduce the number
of key-value pairs to be sent across the network (less I/O usage).
Each partition provides the aggregates in a single array for all the
bins considered, which drastically simplify the scheme proposed by
the original instance-wise map function.

Beyond tree learning, other scalable classifiers that generates exact
models can be found in MLlib [67]. Non-linear classifiers such as sup-
port vector machines, logistic regression or neural networks rely on
gradient descent optimization because of its great suitability for dis-
tributed computation, and thus these are implemented following a
linear approach in MLlib library. All of them share the same objective
function based on error minimization: ∈ Q wmin ( ),w d which is solved
by the aforementioned optimizer.

Without going into further details, gradient descent [80] aims at
finding a local minimum of a convex function by iteratively moving
towards the steepest descent, which corresponds with the negative of
the derivative (gradient) of the function at a given point.

For those optimization problems whose objective function Q can be
written as a sum of costs, a stochastic gradient descent (SGD) approach
can be used. That is the case of supervised learning, where the loss and
regularization parts can be decomposed in several single contributions
(instance-wise) as shown below:

∑= +
=
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Loss w x y( ): ( ) 1 ( ; , ).
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i i
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where λ represents the trade-off factor between regularization and loss,
x the input vector, and y the output value.

In stochastic gradient descent, the exact result is approximated by
locally computing the gradient at instance-level. In MLlib, SGD im-
plementation computes (sub)gradients by partition (map phase) with
an specific sampling fraction (mini-batches). If no sampling is applied,
we get an exact gradient descent, otherwise, SGD scheme is performed
at different levels. Partial results are then aggregated/sum to obtain the
gradient contribution for each iteration (reduce phase).

In recent versions, the Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) method [82] was introduced as
another alternative for optimization in MLlib. Because of great benefits
in performance, it is gaining increasing popularity in MLlib compared
to mini-batch gradient descent. The L-BFGS primitive locally approx-
imates the objective function as a quadratic by constructing the Hessian
matrix underneath. The Hessian matrix is approximated by previous
gradient evaluations, thus solving the vertical scalability issue present
in gradient descent.

Beyond classification, some clustering algorithms have been
adapted and included in MLlib. For instance, original k-Means is im-
plemented in Spark by replicating and transforming centroids in each
Spark stage. Concretely, each Map process is devoted to compute the
nearest samples (from its input chunk of data) to each of the k centroids
(initially set at random). The output key-value is the centroid “id” and
the attributes of the nearest sample respectively. Then each Reducer
recalculates the new centroids coordinates by averaging the values of
those samples given as “list of values” for each key (centroid). The
whole procedure is then iterated in order to refine the centroids, thus

improving their robustness. It must be observed the importance of the
Reduce step for the global combination of the partial information
computed within each Map. k-Nearest Neighbor (kNN) classifier [69]
has also some points in common with clustering, as it is based on dis-
tances among examples. In this case, the Map stage is devoted to obtain
the k nearest training instances to each query input. To carry out an
exact computation, the whole test set should be given as input to each
Map, allowing to obtain as key-value the index of the test instance and a
list of the k closest distances with their corresponding training class
labels. Then, the Reducer only needs to find, among all M sets of k-
nearest neighbors (with M the number of Maps) the one with lowest
value to finally assign the output class. Compared to k-Means (which
updates centroids), model guidance is more decoupled in k-NN where
the lazy model (case-base) is distributed across workers.

The information-based feature selection framework (IFSF) proposed
in [70] is an example of how submodels (importance score by feature)
can be fused in data preprocessing. This multivariate algorithm mea-
sures redundancy and relevance between the input features and the
output class in order to select a final reduce set of features. As a first
step in IFSF, input data is vertically split to strictly separate computa-
tions between features. Then feature interactions are modeled by re-
plicating the last selected feature and the class across the nodes so that
the minimum amount of communication is performed. The map stage
calculates the feature scores individually, and the reduce stage selects
the best feature from the current set of unselected features. Notice that
in this case, model’s scope is local since input data is in column-format.
This format allows Spark to compute feature scores independently in
each partition. The generalization from the perspective of information
theory is shown in a recent work in [83].

5. Practical study on scalability

In this section we present a brief experimental study on the scal-
ability of different fusion proposals. We start by presenting Higgs da-
taset, the large-scale dataset used as reference in our experiments
(Section 5.1). Then, the random forest version for Mahout-Hadoop will
serve us to illustrate the most elementary fusion process: the approx-
imate strategy based on direct fusion (Section 5.2). Finally, Section 5.3
provides outcomes for exact models, represented by Spark’s k-Means
and Random Forest.

Experiments have been launched in a 12-node cluster and an extra
master node with the following features per node: 6 CPU cores (Intel(R)
Core(TM) i7-4930K CPU at 3.40 GHz), 64GB RAM, 2TB HDD, Gigabit
Ethernet network connection. Hadoop 2.6.0-cdh5.10.0 and Mahout 0.9
were installed in all the nodes. 4GB was set as maximum for memory in
map and reduce processes.

5.1. Higgs boson data

Higgs boson dataset [84] has been elected to measure the perfor-
mance impact of distinct fusion schemes on standard learning methods.
This dataset was uploaded to the UCI repository in 2014 [85] as a result
of Higgs’s discovery in 2012, and the complex experiments performed
at the Large Hadron Collider at CERN.

In this dataset, particle data generated by Monte Carlo simulations
aim at distinguishing between a signal process generated by Higgs
bosons, and a background process with the identical decay products but
distinct kinematic attributes (binary problem). Although experts have
confirmed its decay into two tau particles, the signals are rather small
and buried in background noise.

From the total of 28 numerical features, the first 21 are kinematic
feature measured by the particle sensors in the accelerator. The last
features are high-level functions derived by physicists to improve the
discriminate power of features. Finally, 11 millions of instances were
collected for the entire dataset.
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5.2. Approximate models: random forest on Mahout-Hadoop

In order to test the scalability behavior of Mahout’s Random Forest
(200 trees), we have taken runtime measurements for different map
configurations, from 1 mapper to 200. Fig. 4 depicts how time perfor-
mance varies as resources augment.

The plot depicts an expected downtrend as more CPU power is
available. However, some rare spikes are present around the 100-cores
value. It seems that Mahout’s Random Forest prefers an amount of cores
divisible between the number of trees, in this case, only 100 and 200.
The algorithm shows some rare deficiencies when dealing with values
close to 100 (e.g.: 80 and 120) which occur during the tree construction
in the map phase. This strange behavior may be explained by some
design failures derived from the preliminary design implemented in
Mahout’s Random Forest.

Concerning accuracy, an increment of map partitions is followed by
a drop on this measure as reflected in Fig. 5. This is mainly due to
subtrees usually have a narrower view of input space when more map
partitions are present or, in other words, the learning stage for the trees
suffers from the problem of lack of data [86].

5.3. Approximate and exact fusion: k-Means and random forest on ML-
Spark

As introduced in Section 3.4, Spark is mainly formed by exact im-
plementations. Concretely, k-Means and Random Forest are two great
illustrative examples in MLlib. Scalability experiments on k-Means and
Random Forest have been performed in order to assess their scalability
power. For these experiments, Apache Spark 1.6.2 is used as reference
platform, and the Higgs dataset is previously partitioned into 216
partitions (= number of cores). Default parameter values are set for

both algorithms.
Notice that scalability evaluation implemented here is slightly dif-

ferent than that of used in Hadoop. In contrast to manual partitioning in
Hadoop, Spark allows users to specify the amount of executor cores
available for each program running. This feature is much more inter-
esting since it allows to tune resource allocation without altering the
original partitioning scheme.

Fig. 6 depicts how the k-Means implementation scales-up by aug-
menting CPU power. From 1 to 120, the method shows an expected
downtrend as more resources are provided, being the minimum stuck at
120 (9.18). The remaining values follow a smooth uptrend until 200
cores.

Fig. 7 illustrates the same study for Random Forest. The results
shows a similar trend to that of the case of k-Means, leading to the same
conclusions. The global minimum can also be found in 120 cores. The
only noticeable difference is the lower time cost held by Random Forest
compared with the clustering technique.

In both cases (kNN and Random Forest), we observe a rapid reduce
of time from 1 to 20 cores, and a barely stable behavior after 20 cores. A
possible explanation for this is the trade-off between the penalty asso-
ciated with the distributed computation versus the increment due to the
parallelization itself. This issue is mainly shown in the case of those
datasets with an average size with respect to the computing capacity.
Furthermore, we observe that in these experiments the absolute elapsed
time is low (about ten seconds), implying a threshold for a larger effi-
ciency improvement.

In addition to the former, we observe that no real scale-up happens
from 120 cores. To understand this behavior, we must cite the Spark’s
authors suggestion [67] for partition tuning, which recommends to
prepare 2–4× partitions per core. A partition rate below 2× implies
that some CPU cores may become idle as the processing granularity

Fig. 4. Average time (3 runnings) obtained by Mahout’s Random Forest (200 trees)
varying the number of mappers. Label values are displayed close to the points.

Fig. 5. Average accuracy (5-fold) obtained by Mahout’s Random Forest (200 trees)
varying the number of mappers. Label values are displayed close to the points.

Fig. 6. Average time (3 runnings) obtained by Spark’s k-Means varying the number of
cores. Label values are displayed close to the points. Y-axis in 10-log scale.

Fig. 7. Average time (3 runnings) obtained by Spark’s Random Forest varying the number
of cores. Label values are displayed close to the points. Y-axis in 10-log scale.

S. Ramírez-Gallego et al. Information Fusion 42 (2018) 51–61

59



becomes small. Imagine the 1× case where the most rapid thread must
wait the slowest one. A rate above 4× implies a oversized granularity
where time usage is mainly dominated by startup overheads and short
processes. In our study the closest value to a 2× partition rate (120-
cores) is ranked as the best option.

Finally, we must point out that in this case an study on accuracy is
not necessary for k-Means and Random Forest since both models pro-
vides the same predictive solution regardless of the partition scheme
used. For exact fusion models, this claim is always true because all the
methods implement the same intrinsic strategy, however, approximate
models may vary their output depending on the division scheme fol-
lowed.

6. Discussion and guidelines

The core objective in this paper was to acknowledge different
paradigms and strategies implemented by modern large-scale learning
algorithms. Their behavior was also analyzed into detail. To do so, we
selected the level of discrepancy between the distributed models and
their corresponding single-machine versions. We considered it as the
most remarkable aspect to categorize the existing solutions for large-
scale Machine Learning.

From this perspective, we identified two unlike groups: (1) ap-
proximative fusion of models (one submodel per partition, eventually
fused), and (2) exact fusion for scalable models (compounding model
with the same output as the sequential version). Other relevant aspects
considered in this model categorization were their scope (local vs.
global), iteration nature (1-step vs. multistage), or possible guidance by
a master thread (guided vs. unguided).

Approximate models present some advantages with respect to ap-
proximate fusers such as being usually faster, especially as the number
of partitions is increased. Furthermore, any existing model can be
embedded into such scheme, focusing the efforts of the design into the
Reduce stage. The main drawback of approximate solutions is the loss
of accuracy as the number of partitions increases, since there is a clear
lack of data for training. On the contrary, exact models are expected to
achieve greater accuracy, yet they require more effort in their design (in
order to meet the correctness condition).

Regarding these issues, we may provide some tips or suggestions in
the development of distributed analytics models for Big Data. These can
be considered for researchers in order to go one step further on the
topic.

• The main point is to focus on the development and adoption of
global and exact parallel techniques in MapReduce, Spark and/or
Flink technologies. One clear example is the PLANET methodology,
which allowed decision trees to have a global learning scope. This
way, a robust an scalable approach that is independent on the
number of processes / data partitions can be obtained.

• There is a necessity in developing more theoretical studies to facil-
itate the migration of current Machine Learning models towards Big
Data. This way, a direct connection between a certain learning
methodology and its distributed design can be established.

• Approximate models based on the traditional MapReduce scheme
may still offer many interesting opportunities for research. In par-
ticular, the case of ensemble learning is of extreme importance in
this scenario. The coordination among the different submodels must
be a priority for a thorough learning of the problem space, and
therefore to boost the performance of the final system.

• Finally, a smart use on the distributed operators for Scala is man-
datory in order to implement robust and scalable solutions for the
fusion process from a practical point of view.

7. Concluding remarks

In this paper, we have focused on the context of Big Data analytics

and, in particular, on the design of Machine Learning algorithms fol-
lowing the MR programming model where the processes fusion is the
core in the design. This distributed paradigm is based on parallelizing
the computation among nodes, each of which is devoted to a subset of
the main data. Then, the local learned models must be somehow fused
in order to output a single approach.

We have proposed a taxonomy of Big Data distributed models for
Machine Learning based on both the fusion tactic and the model scope,
distinguishing between two main categories. On the one hand, ap-
proximate methods that carry out a direct fusion of models. On the
other hand, those that provide an exact fusion of models. To obtain well
founded conclusions about these different types of methodologies, we
have carried out an experimental study to contrast the scalability of the
different schemes. Our results have determined the higher quality of
those algorithms based on exact fusion of models. In addition, we have
observed the best option to a 2× partition rate for Spark-based
Machine Learning implementations.

Finally, we have carried out a discussion on the main findings ex-
tracted throughout this research work. Specifically, we have analyzed
with relative detail the strong and weak points for both types of the
fusion models. This have allowed us to provide several guidelines for
future study on the topic, namely to strengthen the development of
process fusion searching for a robust design of exact parallel techniques
for analytics.
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