
MRPR: A MapReduce solution for prototype reduction in big
data classification

Isaac Triguero a,n, Daniel Peralta a, Jaume Bacardit b, Salvador García c, Francisco Herrera a

a Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology),
University of Granada, 18071 Granada, Spain
b School of Computing Science, Newcastle University, NE1 7RU, Newcastle, UK
c Department of Computer Science. University of Jaén, 23071 Jaén, Spain

a r t i c l e i n f o

Article history:
Received 6 December 2013
Received in revised form
3 March 2014
Accepted 22 April 2014
Available online 15 October 2014

Keywords:
Big data
Mahout
Hadoop
Prototype reduction
Prototype generation
Nearest neighbor classification

a b s t r a c t

In the era of big data, analyzing and extracting knowledge from large-scale data sets is a very interesting
and challenging task. The application of standard data mining tools in such data sets is not
straightforward. Hence, a new class of scalable mining method that embraces the huge storage and
processing capacity of cloud platforms is required. In this work, we propose a novel distributed
partitioning methodology for prototype reduction techniques in nearest neighbor classification. These
methods aim at representing original training data sets as a reduced number of instances. Their main
purposes are to speed up the classification process and reduce the storage requirements and sensitivity
to noise of the nearest neighbor rule. However, the standard prototype reduction methods cannot cope
with very large data sets. To overcome this limitation, we develop a MapReduce-based framework to
distribute the functioning of these algorithms through a cluster of computing elements, proposing
several algorithmic strategies to integrate multiple partial solutions (reduced sets of prototypes) into a
single one. The proposed model enables prototype reduction algorithms to be applied over big data
classification problems without significant accuracy loss. We test the speeding up capabilities of our
model with data sets up to 5.7 millions of instances. The results show that this model is a suitable tool to
enhance the performance of the nearest neighbor classifier with big data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The term of big data is increasingly being used to refer to the
challenges and advantages derived from collecting and processing
vast amounts of data [1]. Formally, it is defined as the quantity of
data that exceeds the processing capabilities of a given system [2]
in terms of time and/or memory consumption. It is attracting
much attention in a wide variety of areas such as industry,
medicine or financial businesses because they have progressively
acquired a lot of raw data. Nowadays, with the availability of cloud
platforms [3] they could take some advantages from these massive
data sets by extracting valuable information. However, the analysis
and knowledge extraction process from big data become very
difficult tasks for most of the classical and advanced data mining
and machine learning tools [4,5].

Data mining techniques should be adapted to the emerging
technologies [6,7] to overcome their limitations. In this sense, the
MapReduce framework [8,9] in conjunction with its distributed file
system [10], originally introduced by Google, offers a simple but
robust environment to tackling the processing of large data sets
over a cluster of machines. This scheme is currently taken into
consideration in data mining, rather than other parallelization
schemes such as MPI (Message Passing Interface) [11], because of
its fault-tolerant mechanism, which is crucial for time-consuming
jobs, and because of its simplicity. In the specialized literature,
several recent proposals have focused on the parallelization of
machine learning tools based on the MapReduce approach [12,13].
For example, some classification techniques such as [14–16] have
been implemented within the MapReduce paradigm. They have
shown that the distribution of the data and the processing under a
cloud computing infrastructure is very useful for speeding up the
knowledge extraction process.

Data reduction techniques [17] emerged as preprocessing
algorithms that aim to simplify and clean the raw data, enabling
data mining algorithms to be applied not only in a faster way, but
also in a more accurate way by removing noisy and redundant

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.04.078
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: triguero@decsai.ugr.es (I. Triguero),

dperalta@decsai.ugr.es (D. Peralta), jaume.bacardit@newcastle.ac.uk (J. Bacardit),
sglopez@ujaen.es (S. García), herrera@decsai.ugr.es (F. Herrera).

Neurocomputing 150 (2015) 331–345

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.04.078
http://dx.doi.org/10.1016/j.neucom.2014.04.078
http://dx.doi.org/10.1016/j.neucom.2014.04.078
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.078&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.078&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.078&domain=pdf
mailto:triguero@decsai.ugr.es
mailto:dperalta@decsai.ugr.es
mailto:jaume.bacardit@newcastle.ac.uk
mailto:sglopez@ujaen.es
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.neucom.2014.04.078


data. From the perspective of the attributes space, the most well-
known data reduction processes are feature selection and feature
extraction [18]. Taking into consideration the instance space, we
highlight instance reduction methods. This latter is usually divided
into instance selection [19] and instance generation or abstraction
[20]. Advanced models that tackle simultaneously both problems
are [21–23]. As such, these techniques should ease data mining
algorithms to address with big data problems, however, these
methods are also affected by the increase of the size and complex-
ity of data sets and they are unable to provide a preprocessed data
set in a reasonable time.

This work is focused on Prototype Reduction (PR) techniques
[20], which are instance reduction methods that aim to improve
the classification capabilities of the Nearest Neighbor rule (NN)
[24]. These techniques may select instances from the original data
set, or build new artificial prototypes, to form a resulting set of
prototypes that better adjusts the decision boundaries between
classes in NN classification. PR techniques have proved to be very
competitive at reducing the computational cost and high storage
requirements of the NN algorithm, and also improving its classi-
fication performance [25–27].

Large-scale data cannot be tackled by standard data reduction
techniques because their runtime becomes impractical. Several
solutions have been developed to enable data reduction techni-
ques to deal with this problem. For PR, we can find a data-level
approach that is based on a distributed partitioning model that
maintains the class distribution (also called stratification). This
splits the original training data into several subsets that are
individually addressed. Then, it joins each partial reduced set into
a global solution. This approach has been used for instance
selection [28,29] and generation [30] with promising results.
However, two main problems appear when we increase the data
set size:

� A stratified partitioning process could not be carried out when
the size of the data set is so big that it occupies all the available
RAM memory.

� This scheme does not consider that joining each partial solu-
tion into a global one could generate a reduced set with
redundant or noisy instances that may damage the classifica-
tion performance.

In this work, we propose a new distributed framework for PR,
based on the stratification procedure, which handles the draw-
backs mentioned above. To do so, we rely on the success of the
MapReduce framework, designing carefully the map and reduce
tasks to perform a proper PR process. Concretely, the map phase
corresponds to the splitting procedure and the application of the
PR technique. The reduce stage performs a filtering or fusion of
prototypes to avoid the introduction of harmful prototypes to the
resulting preprocessed data set.

We will denote this framework “MapReduce for Prototype
Reduction” (MRPR). The idea of splitting the data into several
subsets, and processing them separately, fits better with the
MapReduce philosophy, than with other parallelization schemes
because of two reasons: Firstly, each subset is individually pro-
cessed, so that, it does not need data exchange between nodes to
proceed [31]. Secondly, the computational cost of each chunk
could be so high that a fault-tolerant mechanism is mandatory. For
the reduce stage we study three different strategies, of varying
computational effort, for the integration of the partial solutions
generated by the mappers.

Developing a distributed partitioning scheme based on MapRe-
duce for PR motivates the global purpose of this work, which can
be divided into three objectives:

� To enable PR techniques to deal with big data classification
problems.

� To analyze and illustrate the scalability of the proposed scheme
in terms of classification accuracy and runtime.

� To study how PR techniques enhance the NN rule when dealing
with big data.

To test the performance of our model, we will conduct experi-
ments on big data sets focusing on an advanced PR technique,
called SSMA-SFLSDE, which was recently proposed in [27]. More-
over, some additional experiments with other PR techniques will
be also carried out. The experimental study includes an analysis of
training and test accuracy, runtime and reduction capabilities of
PR techniques under the proposed framework. Several variations
of the proposed model will be investigated with different number
of mappers and four data sets of up to 5.7 millions instances.

The rest of the paper is organized as follows. In Section 2, we
provide some background material about PR and MapReduce. In
Section 3, we describe the MapReduce implementation proposed
for PR and discuss which PR methods are candidates to be adapted
to this framework. We present and discuss the empirical results in
Section 4. Finally, Section 5 summarizes the conclusions of the
paper.

2. Background

In this section we provide some background information about
the topics used in this paper. Section 2.1 presents the PR problem
and its weaknesses to deal with big data. Section 2.2 introduces
the MapReduce paradigm and the implementation used in this
work.

2.1. Prototype reduction and big data

This section defines the PR problem, its current trends and the
drawbacks of tackling big data with PR techniques. A formal
notation of the PR problem is the following: let TR be a training
data set and TS a test set, they are formed by a determined number
n and t of samples, respectively. Each sample xp is a tuple
ðxp1; xp2;…; xpD;ωÞ, where, xpf is the value of the f-th feature of
the p-th sample. This sample belongs to a class ω, given by xpω, and
a D-dimensional space. For the TR set the class ω is known, while it
is unknown for TS.

The purpose of PR is to provide a reduced set RS which consists
of rs, rson, prototypes, which are either selected or generated
from the examples of TR. The prototypes of RS should be calculated
to efficiently represent the distributions of the classes and to
discern well when they are used to classify the training objects.
The size of RS should be sufficiently reduced to deal with the
storage and evaluation time problems of the NN classifier.

As we stated above, PR is usually divided into those approaches
that are limited to select instances from TR, known as prototype
selection, and those that may generate artificial examples (proto-
type generation). Both strategies have been deeply studied in the
literature. Most of the recent proposals are based on evolutionary
algorithms to select [32,33] or generate [25,26] an appropriate RS.
Furthermore, there is a hybrid approach between prototype
selection and generation in [27]. Recent reviews about these topics
are [19,20]. More information about PR can be found at the SCI2S
thematic public website on Prototype Reduction in Nearest Neighbor
Classification: Prototype Selection and Prototype Generation.1

1 http://sci2s.ugr.es/pr/

I. Triguero et al. / Neurocomputing 150 (2015) 331–345332

http://sci2s.ugr.es/pr/


Despite the promising results shown by PR techniques with
small and medium data sets, they lack of scalability to address big
TR data sets (from tens of thousands of instances onwards [29]).
The main problems found to deal with large-scale data are the
following:

� Runtime: The complexity of PR models is Oððn � DÞ2Þ or higher,
where n is the number of instances and D the number of
features. Although these techniques are only applied once on a
TR, if this process takes too long, its application could become
inoperable for real applications.

� Memory consumption: Most of PR methods need to store in the
main memory many partial calculations, intermediate solu-
tions, and/or also the entire TR. When TR is too big, it could
easily exceed the available RAM memory.

As we will see in further sections, these weaknesses motivate
the use of distributed partitioning procedures, which divide the TR
into disjoint subsets that can be manage by PR methods [28].

2.2. Mapreduce

MapReduce is a paradigm of parallel programming [8,9]
designed to process or generate large data sets. It allows us to
tackle big data sets over a computer cluster regardless the under-
lying hardware or software. It is characterized by its highly
transparency for programmers, which allows to parallelize appli-
cations in a easy and comfortable way.

Based on functional programming, this model works in two
different steps: the map phase and the reduce phase. Each one has
key-value (〈k; v〉) pairs as input and output. Both phases are
defined by a programmer. The map phase takes each 〈k; v〉 pair
and generates a set of intermediate 〈k; v〉 pairs. Then, MapReduce
merges all the values associated with the same intermediate key
as a list (known as shuffle phase). The reduce phase takes that list
as input for producing the final values. Fig. 1 depicts a flowchart of
the MapReduce framework. In a MapReduce program, all map and
reduce operations run in parallel. First of all, all map functions are
independently run. Meanwhile, reduce operations wait until their
respective maps are finished. Then, they process different keys
concurrently and independently. Note that inputs and outputs of a
MapReduce job are stored in an associated distributed file system
that is accessible from any computer of the used cluster.

An illustrative example about the way of working of MapReduce
could be find the average costs per year from a big list of cost records.
Each record may be composed by a variety of values, but it at least
includes the year and the cost. The map function extracts from each
record the pairs 〈year; cost〉 and transmits them as its output. The
shuffle stage groups the 〈year; cost〉 pairs by its corresponding year,
creating a list of costs per year 〈year; listðcostÞ〉. Finally, the reduce

phase performs the average of all the costs contained in the list of
each year.

Different implementations of the MapReduce framework are
possible [8], depending on the available cluster architecture. Some
implementations of MapReduce are Mars [34], Phoenix [35] and
Apache Hadoop [36,37]. In this paper we will focus on the Hadoop
implementation because of its performance, open source nature,
installation facilities and its distributed file system (Hadoop
Distributed File System, HDFS).

A Hadoop cluster is formed by a master-slave architecture,
where one master node manages an arbitrary number of slave
nodes. The HDFS replicates file data in multiple storage nodes that
can concurrently access to the data. As such cluster, a certain
percentage of these slave nodes may be out of order temporarily.
For this reason, Hadoop provides a fault-tolerant mechanism, so
that, when one node fails, Hadoop restarts automatically the task
on another node.

As we commented above, the MapReduce approach can be
useful for many different tasks. In terms of data mining, it offers a
propitious environment to successfully speed up these kinds of
techniques. In fact, there is a growing open source project, called
Apache Mahout [38], that collects distributed and scalable
machine learning algorithms implemented on top of Hadoop.
Nowadays, it supplies an implementation of several specific
techniques, such as, k-means for clustering, a naive bayes classifier
and a collaborative filtering. We based our implementations on
this library.

3. MRPR: MapReduce for prototype reduction

In this section we present the proposed MapReduce approach
for PR. Firstly, we argue the motivation that justify our proposal
(Section 3.1). Then, we detail the proposed model in depth
(Section 3.2). Finally, we comment which PR methods can be
implemented within the proposed framework depending on their
main characteristics (Section 3.3).

3.1. Motivation

As mentioned before, PR methods decrease their performance
when dealing with large amounts of instances. The distribution
and parallelization of workload in different sub-processes may
ease the problems previously enumerated (runtime and memory
consumption). To tackle this challenge we have to create an
efficient and flexible PR design that takes advantage of paralleliza-
tion schemes and cloud-enable infrastructures. The designed
framework should enable PR techniques to be applied with data
sets of unlimited number of instances without major algorithmic
modifications, just by using more computers. Furthermore, this

Fig. 1. Flowchart of the MapReduce framework.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345 333



model should guarantee that the objectives of PR models are
maintained, so that, it should provide high reduction rates without
significant accuracy loss.

In our previous work [30], a distributed partitioning approach
was proposed to alleviate these issues. This model splits the
training set, called TR, into disjoint d subsets (TR1; TR2;…; TRd)
with equal class distribution and size. Then, a PR model is applied
to each TRj, obtaining a resulting reduced set RSj. Finally, all RSj
(1r jrd) are merged into a final reduced set, called RS, which is
used to classify the instances of TS with the NN rule.

This partitioning process shows to performwell in medium size
domains. However, it has some limitations:

� Maintaining the proportion of examples per class of TR within
each subset TRj cannot be accomplished when the size of the
data set does not fit in the main memory. Hence, this strategy
cannot scale to data sets of arbitrary size.

� Joining all the partial reduced sets RSj into a final RSmay lead to
the introduction of noisy and/or redundant examples. Each
resulting RSj tries to represent, with the minimum number of
instances, a proportion of the entire TR. Thus, when the size of
TR tends to be very high, the instances contained in some TRj
subsets may be located very near in the D-dimensional space.
Therefore, the final RS may enclose unnecessary instances to
represent the training data. The likelihood of this issue
increases with the number of partitions.

Moreover, it is important to note that this distributed model
was not implemented within any parallel environment that
ensures high scalability and fault tolerance. These weaknesses
motivate the design of a parallel PR system based on cloud
technologies.

In [30], we compared some relevant PR methods with the
distributed partitioning model. We concluded that the best per-
forming approach was the SSMA-SFLSDE model [27]. In our
experiments, we will mainly focus on this PR model (although
other models will be investigated).

3.2. Parallelizing PR with MapReduce

This section explains how to parallelize PR techniques follow-
ing a MapReduce procedure. Section 3.2.1 details the map phase
and Section 3.2.2 presents the reduce stage. At the end of the
section, Fig. 3 illustrates a high level scheme of the proposed
parallel system MRPR.

3.2.1. Map phase
Suppose a training set TR, of a determined size, stored in the

HDFS as a single file. The first step of MRPR is devoted to split TR
into a given number of disjoint subsets. Within a Hadoop per-
spective, the TR file is composed by h HDFS blocks that are
accessible from any computer of the cluster independently of its
size. Let m the number of map tasks (a user-defined parameter).
Each map task (Map1;Map2;…;Mapm) will form an associated TRj,
where 1r jrm, with the instances of each chunk in which is
divided the training set file. It is noteworthy that this partitioning
process is performed sequentially, so that, the Mapj corresponds to
the j data chunk of h=m HDFS blocks. So, each map will process
approximately the same number of instances.

Under this scheme, if the partitioning procedure is directly
applied over TR, the class distribution of each subset TRj could be
biased to the original distribution of instances in its corresponding
file. As we stated before, a proper stratified partitioning could not
be carried out if the size of TR does not fit in the main memory.
In order to develop a scheme easily scalable to any number of

instances, we previously randomize the entire file. This operation
is not time-consuming in comparison with the application of the
PR technique and should be applied only once. It does not ensure
that every class is represented proportionally to its number of
instances in TR. However, probabilistically, each chunk should
include approximately a number of instances of class ω according
to the probability of belonging to this class in the original TR.

When each map has formed its corresponding TRj, a PR step is
performed using TRj as the input training data. This step generates
a reduced set RSj. Note that PR techniques may consume different
computational times although they are applied with data sets of
similar characteristics. It mainly depends on the stopping criteria
of each PR model. Nevertheless, MapReduce starts the reduce
phase as the first mapper has finalized. Fig. 2 contains the pseudo-
code of the map function. This function is basically the application
of the PR technique for each training partition.

As each map finishes its processing the results are forwarded to
a single reduce task.

3.2.2. Reduce phase
The reduce phase will consist of the iterative aggregation of all

the RSj as a single one RS. Fig. 2 shows the pseudo-code of the
implemented reduce function. Initially RS¼∅. To do so, we
propose different alternatives:

� Join: This simple option, based on stratification, concatenates
all the RSj sets into a final reduce set RS. Instruction 7 indicates
how the reduce function progressively joins all the RSj as the
mappers finish their processing. This type of reducer imple-
ments the same strategy used in the distributed partitioning
procedure that we previously proposed [30]. As such, this
joining process does not guarantee that the resulting RS does
not contain irrelevant or even harmful instances, but it is
included as a baseline.

� Filtering: This alternative explores the idea of a filtering stage
that removes noisy instances during the formation of RS. This is
based on those prototype selection methods belonging to the
edition family of methods [19].
This kind of methods is commonly based on simple heuristics
that discard points that are noisy or do not agree with their
neighbors. They supply smoother decision boundaries for the
NN classifier. In general, edition schemes enhance general-
ization capabilities by performing a slight reduction of the
original training set.
These characteristics are very appropriates for the current stage
of our framework. At this stage, the map phase has reduced
each partition to a subset of representative instances. To
aggregate them into a single RS set, we do not pursue to reduce
more the RS, we focus on removing noisy instances, if any.
Therefore, the reduce function iteratively applies a filtering
of the current RS. It means that as the mappers end their

Fig. 2. Map and reduce functions.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345334



execution, the reduce function is run and the next RS is
computed as the filtered set obtained with its current content
and the new RSj. It is described in instructions 8–10 of Fig. 2.

� Fusion: In this variant we aim to eliminate redundant proto-
types. To accomplish this objective we rely on the success of
centroid-based methods for prototype generation [20]. These
techniques reduce a prototype set by merging similar examples
[39]. Since in this step we have to fuse all the RSj into a single
one, these methods can be very useful to generate a final set
without redundant or very similar prototypes.
As in the previous scheme, the fusion phase will be progres-
sively applied during the creation of RS. Instructions 11–13 of
Fig. 2 explain how to apply the fusion phase in the MapReduce
framework.

As we have explained, MRPR only uses one single reducer that
is run every time that a mapper is completed. With the adopted
strategy, the use of a single reducer is computationally less
expensive than use more than one. It decreases the Mapreduce
overhead (especially network overhead) [40].

As summary, Fig. 3 outlines the way of working of the MRPR
framework, differentiating between the map and reduce phases. It
puts emphasis on how the single reducer works and it forms the
final RS. The resulting RS will be used as training set for the NN
rule to classify the unseen data of the TS set.

3.3. Which PR methods are more suitable for the MRPR framework?

In this subsection we explain which kind of PR techniques fit with
the proposed MRPR framework in its respective stages. In the map
phase, the main prototype reduction process is carried out by a PR
technique. Then, depending on the selected reduce type we should
select a filtering or a fusion PR technique to combine the resulting
reduced sets. In what follows, we discuss which PR techniques are
more appropriate for these stages and how to combine them.

All PR algorithms utilize a training set (in our case TRj) as input
and then return a reduced set RSj. Therefore, all of them could be
implemented in the map phase of MRPR according to the descrip-
tion performed above. However, depending on their characteristics
(reduction, accuracy and runtime), we should take into considera-
tion the following aspects to select a proper PR algorithm:

� A very accurate PR technique is desirable. However, in many PR
techniques it implies a low reduction rate. A resulting RS with
an excessive number of instances can negatively influence in
the time needed by the reduce phase.

� The runtime consumption of a PR algorithm will determine the
necessary number of mappers in which the TR set of a given
problem should be divided. Depending on the problem tackled,
a very high number of mappers may result in a non-
representative subset TRj from the original TR.

According to [19,20], there are six main PR families: edition [41],
condensation [42], hybrid approaches [43], positioning adjustment
[25], centroids-based [44] and space splitting [45]. Although there
are differences between the methods of each family, most of them
perform in a similar way. With these previous notes in mind, we can
state the following general recommendations:

� Edition-based methods are focused on cleaning the training set
by removing noisy data. Thus, these methods are usually very
fast and accurate but they obtain a very low reduction rate. To
implement these methods in our framework we recommend
the use of a very fast reduce phase. For instance, a simple join
scheme, a filtering reducer with the ENN method [41] or a
fusion reducer based on PNN [39].

� Condensation, hybrid and space splitting approaches com-
monly offer a good trade-off between reduction, accuracy and
runtime. Their reduction rate is normally around 60–80%, so
that, depending on the problem addressed, the reducer should
have a moderate time consumption. For example, we recom-
mend the use of ENN [41] or Depur [46] for filtering reducers
and GMCA [44] for fusion.

� Positioning adjustment techniques may offer a very high
reduction rate or even adjustable as a user-defined parameter.
These techniques can provide very accurate results in a rela-
tively moderate runtime. To implement these techniques we
suggest the inclusion of very accurate reducers, such as ICPL
[47] for fusion, because the high reduction rate will allow them
to be applied in a fast way.

� Centroid-based algorithms are very accurate, with a moderate
reduction power but (in general) very time-consuming.
Although its implementation is feasible and could be useful

Fig. 3. MRPR scheme.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345 335



in some problems, we assume that their use should be limited
to the later stage (reduce phase).

As general suggestions to combine PR techniques in the map
and reduce phases, we can establish the following rules:

� High reduction rates in the map phase permit very accurate
reducers.

� Low reduction rates in the map phase need fast reducers (join,
filtering or a fast fusion).

As commented in the previous section, we propose the use of
edition-based methods for the filtering reduce type and centroid-
based algorithms to fuse prototypes. In our experiments, we will
focus on a simple but effective edition technique: the edited
nearest neighbor (ENN) [41]. This algorithm removes an instance
from a set of prototypes if it does not agree with the majority of its
k nearest neighbors. As algorithms to fuse prototype, we will use
the ICLP2 method presented in [47] as a more accurate option and
the GMCA model for a faster reduce phase [44]. The ICPL2 model
integrates several prototypes by identifying borders and merging
those instances that are not located in these borders. It highlights
as the best performing model of the centroid-based family in [20].
The GMCA approach merges prototype based on a hierarchical
clustering. This method provides a good trade-off between accu-
racy and runtime needed.

4. Experimental study

In this section we present all the questions raised with the
experimental study and the results obtained. Section 4.1 describes
the performance measures used to evaluate the MRPR model.
Section 4.2 defines and details the hardware and software support
used in our experiments. Section 4.3 shows the parameters of the
involved algorithms and the data sets chosen. Section 4.4 presents
and discusses the results achieved. Finally, Section 4.5 includes
additional experiments using different PR techniques within the
MRPR model.

4.1. Performance measures

In this work we study the performance of a parallel PR system
to improve the NN classifier. Hence, we need several types of
measures to characterize the abilities of the proposed approach
and its variants. In the following, we briefly describe the con-
sidered measures:

� Accuracy: It counts the number of correct classifications
regarding the total number of instances classified [4,48]. In
our experiments we will compute training and test classifi-
cation accuracy.

� Reduction rate: It measures the reduction of storage require-
ments achieved by a PR algorithm:

ReductionRate¼ 1�sizeðRSÞ=sizeðTRÞ ð1Þ
Reducing the stored instances in the TR set will yield a time
reduction to classify a new input sample.

� Runtime: We will quantify the total time spent by MRPR to
generate the RS, including all the computations performed
by the MapReduce framework.

� Test classification time: It refers to the time needed to classify
all the instances of TS regarding a given TR. For PR, it is
directly related to the reduction rate.

� Speed up: It usually checks the efficiency achieved by a
parallel system in comparison with the sequential version of

the algorithm. Thus, it measures the relation between the
runtime of sequential and parallel versions. If the calculation
is executed in c processing cores and it is considered fully
parallelizable, the maximum theoretical speed up would be
equal to the number of used cores, according to the
Amdahl's Law [49]. With a MapReduce parallelization
scheme, each map will correspond to a single core, so that,
the number of used mappers determines the maximum
attainable speed up. However, due to the magnitude of the
data sets used, we cannot run the sequential version of the
selected PR technique (SSMA-SFLSDE) because its execution
is extremely slow. For this reason, we will take the runtime
with the minimum number of mappers as reference time to
calculate the speed up. Therefore, the speed up will be
computed as

Speedup¼ parallel_time
parallel_time_with_minimum_number_of _mappers

:

ð2Þ

4.2. Hardware and software used

The experiments have been carried out on twelve nodes in a
cluster: The master node and eleven compute nodes. Each one of
these compute nodes has the following features:

� Processors: 2 x Intel Xeon CPU E5-2620
� Cores: 6 per processor (12 threads)
� Clock speed: 2.00 GHz
� Cache: 15 MB
� Network: Gigabit Ethernet (1 Gbps)
� Hard drive: 2 TB
� RAM: 64 GB

The master node works as the user interface and hosts both
Hadoop master processes: the NameNode and the JobTracker. The
NameNode handles the HDFS, coordinating the slave machines by
the means of their respective DataNode processes, keeping track of
the files and the replications of each HDFS block. The JobTracker is
the MapReduce framework master process that manages the
TaskTrackers of each compute node. Its responsibilities are main-
taining the load-balance and the fault-tolerance in the system,
ensuring that all nodes get their part of the input data chunk and
reassigning the parts that could not be executed.

The specific details of the software used are the following:

� MapReduce implementation: Hadoop 2.0.0-cdh4.4.0. MapReduce 1
runtime (Classic). Cloudera's open-source Apache Hadoop distri-
bution [50].

� Maximum maps tasks: 128.
� Maximum reducer tasks: 1.
� Machine learning library: Mahout 0.8.
� Operating system: Cent OS 6.4.

Note that the total number of cores of the cluster is 132.
However, the maximum number of map tasks are limited to 128
and one for the reducers.

4.3. Data sets and methods

In this experimental study we will use four big classification
data sets taken from the UCI repository [51]. Table 1 summarizes
the main characteristics of these data sets. For each data set, we
show the number of examples (# Examples), number of attributes
(# Dimension), and the number of classes (# ω).

I. Triguero et al. / Neurocomputing 150 (2015) 331–345336



These data sets have been partitioned using a 5 fold cross-
validation (5-fcv) scheme. It means that the data set is split into
5 folds, each one containing 20% of the examples of the data set.
For each fold, a PR algorithm is run over the examples presented in
the remaining folds (that is, in the training partition, TR). Then, the
resulting RS is tested with the current fold using the NN rule. Test
partitions are kept aside during the PR phase in order to analyze
the generalization capabilities provided by the generated RS.
Because of the randomness of some operations that these algo-
rithms perform, they have been run three times per partition.

Aiming to investigate the effect of the number of instances in
our MRPR scheme, we will create three different versions of the
KDD Cup data set by selecting (randomly) 10%, 50% and 100% of
the instances of the original data set. We will denote these
versions as Kddcup (10%), Kddcup (50%) and Kddcup (100%). The
number of instances of a data set and the number of mappers used
in our scheme have a straight relation. Table 2 shows the
approximate number of instances per chunk, that is, the size of
each TRj for MRPR, attending to the number of mappers estab-
lished. When the number of instances per chunk exceeds twenty
thousand, the execution of the PR is not feasible in time. Therefore,
we are unable to carry out these experiments.

As we stated before, we will focus on the hybrid SSMA-SFLSDE
algorithm [27] to test the MRPR model. However, in Section 4.5,
we will conduct some additional experiments with other PR
techniques. Concretely, we will use LVQ3 [52] and RSP3 [45] as
pure prototype generation algorithms as well as DROP3 [43] and
FCNN [53] as prototype selection algorithms.

Furthermore, we will use the ENN algorithm [41] as edition
method for the filtering-based reducer. For the fusion-based
reducer, we will apply a very accurate centroid-based technique
called ICLP2 [47] when SSMA-SFLSDE and LVQ3 are run in the map
phase. It is motivated by the high reduction ratio of these
positioning adjustment methods. For RSP3, DROP3 and FCNN we
will based on a faster fusion method known as GMCA [44].

In addition, the NN classifier has been included as baseline
limit of performance. Table 3 presents all the parameters involved
in our experimental study. These parameters have been fixed
according to the recommendation of the corresponding authors
of each algorithm. Note that our research is not devoted to
optimize the accuracy obtained with a PR method over a specific
problem. We focus our experiments on the analysis of the
behavior of the proposed parallel system. To do so, we will study

Table 1
Summary description of the used big data classification.

Data set # Examples # Dimension #ω

PokerHand 1,025,010 10 10
KddCup 1999 (DOS vs. normal classes) 4,856,151 41 2
Susy 5,000,000 18 2
RLCP 5,749,132 4 2

Table 2
Approximate number of instances in each TRj subset according to the number of
mappers used.

Data set Number of mappers

64 128 256 512 1024

PokerHand 12,813 6406 3203 1602 801
Kddcup (10%) 6070 3035 1518 759 379
Kddcup (50%) 30,351 15,175 7588 3794 1897
Kddcup (100%) 60,702 30,351 15,175 7588 3794
Susy 62,469 31,234 15,617 7809 3904
RLCP 71,862 35,931 17,965 8983 4491

Table 3
Parameter specification for all the methods involved in the experimentation.

Algorithm Parameters

MRPR Number of mappers¼64/128/256/512/1024.
Number of reducers¼1
Type of Reduce¼ Join/Filtering/Fusion

SSMA-SFLSDE PopulationSFLSDE¼40, IterationsSFLSDE¼500,
iterSFGSS¼8, iterSFHC¼20, Fl¼0.1, Fu¼0.9

ICLP2 (fusion) Filtering method¼RT2
ENN (filtering) Number of neighbors¼3, Euclidean distance

NN Number of neighbors¼1, Euclidean distance

LVQ3 Iterations¼100, alpha¼0.1, WindowWidth¼0.2,
epsilon¼0.1

RSP3 Subset Choice¼Diameter
DROP3 Number of neighbors¼3, Euclidean distance
FCNN Number of neighbors¼3, Euclidean distance
GMCA (fusion) Number of neighbors¼1, Euclidean distance

Table 4
Results obtained for the PokerHand problem.

Reduce type # Mappers Training Test Runtime Reduction rate Classification time (TS)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Join 64 0.5158 0.0007 0.5102 0.0008 13,236.6012 147.8684 97.5585 0.0496 1065.1558
Filtering 64 0.5212 0.0008 0.5171 0.0014 13,292.8996 222.3406 98.0714 0.0386 848.0034
Fusion 64 0.5201 0.0011 0.5181 0.0015 14,419.3926 209.9481 99.1413 0.0217 374.8814
Join 128 0.5111 0.0005 0.5084 0.0011 3943.3628 161.4213 97.2044 0.0234 1183.6378
Filtering 128 0.5165 0.0007 0.5140 0.0007 3949.2838 135.4213 97.7955 0.0254 920.8190
Fusion 128 0.5157 0.0012 0.5139 0.0006 4301.2796 180.5472 99.0250 0.0119 419.6914
Join 256 0.5012 0.0010 0.4989 0.0010 2081.0662 23.6610 96.5655 0.0283 1451.1200
Filtering 256 0.5045 0.0010 0.5024 0.0006 2074.0048 25.4510 97.2681 0.0155 1135.2452
Fusion 256 0.5161 0.0004 0.5151 0.0007 2231.4050 14.3391 98.8963 0.0045 478.8326
Join 512 0.5066 0.0007 0.5035 0.0009 1101.8868 16.6405 96.2849 0.0487 1545.4300
Filtering 512 0.5114 0.0010 0.5091 0.0005 1101.2614 13.0263 97.1122 0.0370 1472.6066
Fusion 512 0.5088 0.0008 0.5081 0.0009 1144.8080 18.3065 98.7355 0.0158 925.1834
Join 1024 0.4685 0.0008 0.4672 0.0008 598.2918 11.6175 95.2033 0.0202 2132.7362
Filtering 1024 0.4649 0.0009 0.4641 0.0010 585.4320 8.4529 96.2073 0.0113 1662.5460
Fusion 1024 0.5052 0.0003 0.5050 0.0009 601.0838 7.4914 98.6249 0.0157 1345.6998

NN – 0.5003 0.0007 0.5001 0.0011 – – – – 48,760.8242

I. Triguero et al. / Neurocomputing 150 (2015) 331–345 337



the influence of the number mappers and type of reduce regarding
to the accuracy achieved and the runtime needed. In some of the
experiments we will use a higher number of mappers than the
available map tasks (128). In these cases, the Hadoop system
queues the remaining tasks and they are dispatched as soon as any
map task has finished its processing.

A brief description of the used PR methods is as follows:

� SSMA-SFLSDE: This algorithm is a hybridization of prototype
selection and generation. First, a prototype selection step
is performed based on the memetic algorithm SSMA [32].
This approach makes use of a local search specifically devel-
oped for prototype selection. This initial step allows us to find a
promising selection of prototypes per class. Then, its resulting
RS is inserted as one of the individuals of the population of an

adaptive differential evolution algorithm [54,55], acting as a
prototype generation model to adjust the positioning of the
selected prototypes.

� LVQ3: This method combines strategies to “punish” or “reward”
the positioning of a prototype in order to adjust the positioning
of a set of initial prototypes (adjustable). Therefore, it is
included in the positioning adjustment family.

� RSP3: This technique tries to avoid drastic changes in the form
of decision boundaries associated with TR by splitting it in
different subsets according to the highest overlapping degree
[45]. As such, it belongs to the family of space-splitting PR
techniques.

� DROP3: This model combines a noise-filtering stage and a
decremental approach to remove instances from the original
TR set that are considered as harmful within the nearest

Table 5
Results obtained for the Kddcup (100%) problem.

Reduce type # Mappers Training Test Runtime Reduction rate Classification time (TS)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Join 256 0.9991 0.0003 0.9993 0.0003 8536.4206 153.7057 99.9208 0.0007 1630.8426
Filtering 256 0.9991 0.0003 0.9991 0.0003 8655.6950 148.6363 99.9249 0.0009 1308.1294
Fusion 256 0.9994 0.0000 0.9994 0.0000 8655.6950 148.6363 99.9279 0.0008 1110.4478
Join 512 0.9991 0.0001 0.9992 0.0001 4614.9390 336.0808 99.8645 0.0010 5569.8084
Filtering 512 0.9989 0.0001 0.9989 0.0001 4941.7682 44.8844 99.8708 0.0013 5430.4020
Fusion 512 0.9992 0.0001 0.9993 0.0001 5018.0266 62.0603 99.8660 0.0006 2278.2806
Join 1024 0.9990 0.0002 0.9991 0.0002 2620.5402 186.5208 99.7490 0.0010 5724.4108
Filtering 1024 0.9989 0.0000 0.9989 0.0001 3103.3776 15.4037 99.7606 0.0011 4036.5422
Fusion 1024 0.9991 0.0002 0.9991 0.0002 3191.2468 75.9777 99.7492 0.0010 4247.8348

NN 0 0.9994 0.0001 0.9993 0.0001 – – – – 2,354,279.8650

Table 6
Results obtained for the Susy problem.

Reduce type # Mappers Training Test Runtime Reduction rate Classification time (TS)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Join 256 0.6953 0.0005 0.7234 0.0004 69,153.3210 4568.5774 97.4192 0.0604 30,347.0420
Filtering 256 0.6941 0.0001 0.7282 0.0003 66,370.7020 4352.1144 97.7690 0.0046 24,686.3550
Fusion 256 0.6870 0.0002 0.7240 0.0002 69,796.7260 4103.9986 98.9068 0.0040 11,421.6820
Join 512 0.6896 0.0012 0.7217 0.0003 26,011.2780 486.6898 97.2050 0.0052 35,067.5140
Filtering 512 0.6898 0.0002 0.7241 0.0003 28,508.2390 484.5556 97.5609 0.0036 24,867.5478
Fusion 512 0.6810 0.0002 0.7230 0.0002 30,344.2770 489.8877 98.8337 0.0302 12,169.2180
Join 1024 0.6939 0.0198 0.7188 0.0417 13,524.5692 1941.2683 97.1541 0.5367 45,387.6154
Filtering 1024 0.6826 0.0005 0.7226 0.0006 14,510.9125 431.5152 97.3203 0.0111 32,568.3810
Fusion 1024 0.6757 0.0004 0.7208 0.0008 15,562.1193 327.8043 98.7049 0.0044 12,135.8233

NN 0 0.6899 0.0001 0.7157 0.0001 – – – – 1,167,200.3250

Table 7
Results obtained for the RLCP problem.

Reduce type # Mappers Training Test Runtime Reduction rate Classification time (TS)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Join 256 0.9963 0.0000 0.9963 0.0000 29,549.0944 62.4140 98.0091 0.0113 10,534.0450
Filtering 256 0.9963 0.0000 0.9963 0.0000 29,557.2276 62.7051 98.0091 0.0113 10,750.9012
Fusion 256 0.9963 0.0000 0.9963 0.0000 26,814.9270 1574.4760 98.6291 0.0029 10,271.0902
Join 512 0.9962 0.0001 0.9962 0.0000 10,093.9022 61.6980 97.9911 0.0019 11,767.8596
Filtering 512 0.9962 0.0001 0.9962 0.0000 10,916.6962 951.5328 97.9919 0.0016 11,689.1144
Fusion 512 0.9962 0.0001 0.9963 0.0000 11,326.7812 85.6898 98.3012 0.0036 10,856.8888
Join 1024 0.9960 0.0001 0.9960 0.0001 5348.4346 20.6944 97.9781 0.0010 10,930.7026
Filtering 1024 0.9960 0.0001 0.9960 0.0001 5328.0388 14.8981 97.9781 0.0010 11,609.2740
Fusion 1024 0.9960 0.0001 0.9960 0.0001 5569.2214 16.5025 98.2485 0.0015 10,653.3659

NN 0 0.9946 0.0001 0.9946 0.0001 – – – – 769,706.2186

I. Triguero et al. / Neurocomputing 150 (2015) 331–345338



neighbors. It is included in the family of hybrid edition and
condensation PR techniques.

� FCNN: With an incremental methodology, this algorithm starts
by introducing to the resulting RS the centroids of each class.
Then, a prototype contained in TR will be added according to
the nearest neighbor of each centroid. It belongs to the
condensation-based family.

4.4. Exhaustive evaluation of the MRPR framework for the
SSMA-SFLSDE method

This section presents and analyzes the results collected in the
experimental study with the SSMA-SFLSDE method from two
different points of view:

� Firstly, we study the accuracy and reduction results obtained
with the three implemented reducers of the MRPR model. We
will check the performance achieved in comparison with the
NN rule (Section 4.4.1).

� Secondly, we analyze the scalability of the proposed approach
in terms of runtime and speed up (Section 4.4.2).

Tables 4–7 summarize all the results obtained on the consid-
ered data sets. They show training/test accuracy, runtime and
reduction rate obtained by the SSMA-SFLSDE algorithm, in

our MRPR framework, depending on the number of mappers
(# Mappers) and reduce type. For each one of these measures,
average (Avg.) and standard deviation (Std.) results are presented
(from the 5-fcv experiment). Moreover, the average classification
time in the TS is computed as the time needed to classify all the
instances of TS with the corresponding RS generated by MRPR.
Furthermore, we compare these results with the accuracy and the
test classification time achieved by the NN classifier. It uses the
whole TR set to classify all the instances of TS. In these tables,
average accuracies higher or equal than the obtained with the NN
algorithm have been highlighted in bold. The best ones in overall,
on training and test phases, are stressed in italic.

4.4.1. Analysis of accuracy and reduction capabilities
This section is focused on comparing the resulting accuracy and

reduction rates of the different versions of MRPR. Fig. 4 depicts the
test accuracy achieved according to the number of mappers in the
data sets considered. It represents the average accuracy depending
on the reduce type utilized. The average accuracy result of the NN
rule is presented as a line y¼AverageAccuracy, to show the
accuracy differences between using the whole TR or a generated
RS as training data set. In addition, Fig. 5 plots the reduction rates
attained by each type of reduce for both problems. In each sub-
figure the average reduction rate with 256 mappers has been
drawn.

0.48

0.50

0.52

1024512 25612864

Number of mappers

A
cc

ur
ac

y 
Te

st

ReduceType
Join
Filtering
Fusion

PokerHand

0.9989

0.9990

0.9991

0.9992

0.9993

0.9994

A
cc

ur
ac

y 
Te

st

ReduceType
Join
Filtering
Fusion

Kddcup (100%)

0.720

0.725

A
cc

ur
ac

y 
Te

st

ReduceType
Join
Filtering
Fusion

Susy

0.9950

0.9955

0.9960

1024512256
Number of mappers

1024512256

Number of mappers

1024512256

Number of mappers

A
cc

ur
ac

y 
Te

st

ReduceType
Join
Filtering
Fusion

RLCP

Fig. 4. Test accuracy results. (a) PokerHand: test accuracy, (b) Kddcup (100%): test accuracy, (c) Susy: test accuracy and RLCP: test accuracy.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345 339



According to these graphics and tables we can make several
observations from these results:

� Since that within the MRPR framework a PR algorithm does not
dispose of the full information about the whole addressed

problem, it is expected that the accuracy obtained decreases
according as the number of available instances in the used
training set is reduced. This statement and the way in which
the accuracy is reduced depends crucially on the specific
problem tackled and its complexity. However, it could be
generalizable and extensible to most of the problems because
there will be a minimum number of instances in which the
performance decrease drastically. Observing previous tables
and graphics, we can see that in the case of the PokerHand
problem its performance is markedly deteriorated when the
problem is divided into 1024 subsets (mappers) in both train-
ing and test phases. In Susy data set, the accuracy is gradually
deteriorated as the number of mapper is incremented. For the
Kddcup (100%) and RCLP problems, their performance is very
slightly reduced when the number of mappers is increased (the
order of three or four ten-thousandths).

� Nevertheless, it is important to highlight that although the
accuracy of the PR algorithm may be gradually decreased it is
not very far from the achieved with the NN rule. In fact, it could
be even higher as happens in the cases of PokerHand, Susy and
RLCP problems. This situation occurs because PR techniques
remove noisy instances from the TR set that damage the
classification performance of the NN rule. Moreover, PR models
typically smooth the decision boundaries between classes that
usually rebounds in an improvement of the generalization
capabilities (test accuracy).

0

5000

10000

15000

102451225612864

Number of mappers

A
ve

ra
ge

 ru
nt

im
e 

(s
)

Reduce Type
Join
Filtering
Fusion

PokerHand

4000

6000

8000

1024512256

Number of mappers

1024512256
Number of mappers

1024512256
Number of mappers

A
ve

ra
ge

 ru
nt

im
e 

(s
)

Reduce Type
Join
Filtering
Fusion

Kddcup (100%)

20000

40000

60000

A
ve

ra
ge

 ru
nt

im
e 

(s
)

Reduce Type
Join
Filtering
Fusion

Susy

10000

20000

30000

A
ve

ra
ge

 ru
nt

im
e 

(s
)

Reduce Type
Join
Filtering
Fusion

RLCP

Fig. 6. Average runtime obtained by MRPR. (a) PokerHand: runtime, (b) Kddcup (100%): runtime, (c) Susy: runtime and (d) RLCP: runtime.

97

98

99

100

PokerHand Kddcup (100%) RLCP Susy

Dataset

A
ve

ra
ge

 re
du

ct
io

n 
(%

)

ReduceType
Join
Filtering
Fusion

Fig. 5. Reduction rate achieved with 256 mappers.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345340



� When tackling large-scale problems, the reduction rate of a PR
technique becomes much more important, maintaining the
premise that the accuracy is not very deteriorated. A high
reduction rate implies a significant decrement in the computa-
tional time spent to classify new instances. As we commented
before, the accuracy obtained by our model is not dramatically
decreased when the number of mappers is augmented. The
same behavior is found in terms of reduction capabilities. This
number also influences in the reduction rate achieved because
the lack of information about the whole problem may produce
a degradation of the reduction capabilities of PR techniques.
However, in general, the reduction rates presented are very
high, representing the original problem with less than a 5% of
the total number of instances. It allows us to classify the TS in a
very fast time.

� Independently to the number of mappers and type of reduce,
there are no differences between the results of training a test
phases. The partitioning process slightly reduces accuracy and
reduction rate because of the lack of the whole information. By
contrast, this mechanism assists not to fall into the overfitting
problem, that is, the overlearning of the training set.

� Comparing the different reduce types, we can check that in
general the fusion approach outperforms to the rest kinds of
reducers in most of the data sets. The fusion scheme results in a
better training and test accuracy. It is noteworthy that in the
case of PokerHand data set, when the other types of reducers
decrease their performance, the fusion reducer is able to
preserve its accuracy with 1024 mappers. We can also observe
that the filtering reducer also provides higher accuracy results
than the join approach in PokerHand and Susy problems, while
its results are very similar for the Kddcup (100%) and RLCP sets.

� Taking a quick glance at Fig. 5, it reveals that the fusion scheme
always reports the higher reduction rate, followed by the
filtering scheme. Besides the fusion reducer promotes a higher
reduction rate it has shown the best accuracy. Therefore, it
shows that merging the resultant RSj sets with a fusion or a
filtering process provides a better accuracy and reduction rates
than a joining phase.

� Considering the results provided by the NN rule and the whole
TR, Fig. 4 shows that in terms of accuracy, the MRPR model with
the fusion scheme overcomes to the NN rule in PokerHand,
Susy and RCLP problems. A very similar behavior is reached for
the Kddcup (100%) data set. Nevertheless, the reduction rate
attained by the MRPR model implies a lower test classification
time. For example, we can see in Table 4 that we can perform
the classification of PokerHand data set up to 130 times faster
than the NN classifier when the fusion method and 64 mappers
are used. A similar improvement is achieved in Susy and RLCP
problems. However, for the Kddcup (100%) data set this
improvement is much more accentuated and classifying the
test set can be approximately 2120 times faster (using the
fusion reducer and 256 mappers). These results demonstrate
and exemplify the necessity of applying PR techniques to large-
scale problems.

4.4.2. Analysis of the scalability
In this part of the experimental study we concentrate on the

analysis of runtime and speed up of the MRPR model. As defined
in Section 4.3, we divided the Kddcup problem into three sets with
different number of instances. We aim to study the influence of
the number of instances in the same problem. Fig. 6 draws the
average runtime (obtained in the 5-fcv experiment) according
to the number of mappers used in the problem considered.

Moreover, Fig. 7 depicts the speed up achieved by MRPR and the
fusion reducer.

Note that, as we clarified in Section 4.1, the speed up has been
computed using the runtime with the minimum number of
mappers (minMaps) as the reference time. Therefore, it implies
that the speed up does not represent the gain obtained regarding
the number of cores. In this chart, the speed up of MRPR with
minMaps in each data set is set as 1. Since the complexity of SSMA-
SFLSDE is Oððn � DÞ2Þ, we cannot expect a quadratic speed up
because the proposed scheme is focused on the number of
instances. Furthermore, it is very important to remember that, in
the used cluster, the maximum available mappers at the same
time is 128 and the rest of tasks are queued.

Fig. 8 presents an average runtime comparison between the
results obtained in the three versions of the Kddcup problem. It
shows for each set its average runtime with 256, 512 and 1024
mappers of the MRPR approach using the reducer based on fusion.

Given these figures and previous tables, we want to outline the
following comments:

� Despite the performance showed by the filtering and fusion
reducers in comparison with the joining scheme, all the reduce
alternatives spend very similar runtimes to generate a final RS.
It means that although the fusion and filtering reducers require
extra computations regarding to the join approach, we take

0

5

10

15

20

25

102451225664 128
Number of mappers

R
un

tim
e 

sp
ee

du
p Dataset

PokerHand
Kddcup (10%)
Kddcup (50%)
Kddcup (100%)
RLCP
Susy

Runtime speedup

Fig. 7. Speed up achieved by MRPR with the fusion reducer.

0

2500

5000

7500

1024512256
Number of mappers

A
ve

ra
ge

 ru
nt

im
e 

(s
)

Dataset
Kddcup (10%)
Kddcup (50%)
Kddcup (100%)

Runtime comparison for Kddcup problem

Fig. 8. Runtime comparison on the three versions of the Kddcup problem, using
MRPR with the fusion reducer.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345 341



advantage from the way of working of MapReduce, so that the
reduce stage is being executed while the mappers are still
finishing. In this way, most of the extra calculations needed by
filtering and fusion approaches are performed before all the
mappers have finished.

� In Fig. 7, we can observe different tendencies depending on the
used data set. It is due to the fact that these problems have a
different number of features that also determine the complex-
ity of the PR technique. For this reason, it easier to obtain a
higher speed up with PokerHand, rather than, for instance, in
the Kddcup problem, because it has a lesser number of
characteristics. The same behavior is shown in Susy and RLCP
problems, with a similar number of instances, a slightly better
speed up is achieved with RLCP. In addition, according to this
figure, we can mention that with the same resources (128
mappers) MRPR is able to accelerate the processing of PR
techniques by dividing the TR set in a higher number of subsets.
As we checked in the previous section, these speed ups do not
fall into a significant accuracy loss. Fig. 8

� llustrates the increment of average runtime when the size of
the same problem is increased. In problems with quadratic
complexity, we could expect that with the same number of
mappers this increment should be also quadratic. In this figure,

we can see that the increment of runtime is much lesser than a
quadratic increment. For example, for 512 mappers, MRPR
spends 2571.0068 s in Kddcup (50%) and 8655.6950 s for the
full problem. As we can see in Table 2, the approximate number
of instances in each TRj subset is the double for Kddcup 100%
than Kddcup 50% with 512 mappers. Therefore, its computa-
tional cost is not incremented quadratically.

4.5. Experiments on different PR techniques

In this section we perform some additional experiments using four
different PR techniques in the proposed MRPR framework. In these
experiments, the number of mappers has been fixed to 64 and we
focus on the PokerHand problem. Table 8 shows the results obtained.

Fig. 9 presents a comparison across the four techniques within
MRPR. Fig. 9(a) depicts the accuracy test obtained by the four
techniques using the three reduce types. Fig. 9(b) shows the time
needed to classify the test set. In both plots, the results of the NN
rule have been presented as baseline. As before, those results that
are better than the NN rule have been stressed in bold and the best
ones in overall are highlighted in italic.

Observing these results, we can see that the MRPR model
works appropriately with these techniques. Nevertheless, we can

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Method

A
cc

ur
ac

y 
te

st ReduceType
Join
Filtering
Fusion

PokerHand

0

10000

20000

30000

40000

50000

DROP3 FCNN LVQ3 RSP3 DROP3 FCNN LVQ3 RSP3
Method

C
la

ss
ifi

ca
tio

n 
tim

e 
(s

)

ReduceType
Join
Filtering
Fusion

PokerHand

Fig. 9. Results obtained by MRPR in different PR techniques. (a) PokerHand: accuracy test and (b) PokerHand: classification time.

Table 8
Results obtained for the PokerHand problem with 64 Mappers.

PR technique Reduce type Training Test Runtime Reduction rate Classification time (TS)

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

LVQ3 Join 0.4686 0.0005 0.4635 0.0014 15.3526 0.8460 97.9733 0.0001 841.5352
Filtering 0.4892 0.0007 0.4861 0.0013 17.7602 0.1760 98.6244 0.0101 487.0822
Fusion 0.4932 0.0010 0.4918 0.0012 83.7830 4.8944 99.3811 0.0067 273.4192

FCNN Join 0.4883 0.0008 0.4889 0.0010 39.8196 2.1829 17.7428 0.0241 28,232.4110
Filtering 0.5185 0.0006 0.5169 0.0005 5593.4358 23.1895 47.3255 0.0310 19,533.5424
Fusion 0.6098 0.0002 0.4862 0.0006 3207.8540 37.2208 72.5604 0.0080 9854.8956

DROP3 Join 0.5073 0.0004 0.5044 0.0014 69.5268 2.5605 77.0352 0.0141 8529.0618
Filtering 0.5157 0.0005 0.5124 0.0013 442.9670 2.6939 81.2203 0.0169 8139.5878
Fusion 0.5390 0.0004 0.5011 0.0005 198.1450 5.2750 92.3467 0.0043 1811.0866

RSP3 Join 0.6671 0.0003 0.5145 0.0007 219.2912 2.8126 53.0566 0.0554 17,668.5268
Filtering 0.6491 0.0003 0.5173 0.0008 1898.5854 10.8303 58.8459 0.0280 17,181.5448
Fusion 0.5786 0.0004 0.5107 0.0010 1448.4272 60.5462 84.3655 0.0189 5741.6588

NN – 0.5003 0.0007 0.5001 0.0011 – – – – 48,760.8242

I. Triguero et al. / Neurocomputing 150 (2015) 331–345342



point out several differences in comparison with the results
obtained with SSMA-SFLSDE:

� Since LVQ3 is a positioning adjustment method with a high
reduction rate, we observe a similar behavior between this
technique and SSMA-SFLSDE within the MRPR model. Note that
this algorithm has been also run with ICLP2 as fusion method.
We can highlight that the filtering and fusion reduce schemes
greatly improve the performance of LVQ3 in accuracy and
reduction rates.

� In the previous section we observed that the filtering and
fusion stages provide a greater reduction rate than the join
scheme. In this section, we can see that for FCNN, DROP3 and
RSP3, their effect is even more accentuated due to the fact that
these techniques have a lesser reduction power than SSMA-
SFLSDE and LVQ3. Therefore, the filtering and fusion algorithms
become more important with these techniques in order to
achieve a high reduction ratio.

� The runtime needed by filtering and fusion schemes crucially
depends on the reduction rate of the use technique. For
example, the FCNN method initially provides a very reduced
reduction rate (around 18%), so that the runtime of filtering and
fusion reducers is greater than the time needed by the join
reducer. However, as commented before, the application of
these reduces increases the reduction rate, resulting in a faster
classification time.

� As commented previously, we have used a fusion reducer based
on GMCA when FCNN, DROP3 and RSP3 are applied. It is
noteworthy that this fusion approach has resulted in a faster
runtime in comparison with the filtering scheme. Nevertheless,
as we expected, the performance reached with this fusion
reducer, in terms of accuracy, is lower than the obtained with
ICLP2 in combination with SSMA-SFLSDE.

� Comparing the results obtained with these techniques and
SSMA-SFLSDE, we can observe that the best accuracy test
results is obtained with RSP3 and the filtering scheme (0.5173)
with a medium reduction ratio (58.8459%). However, the
SSMA-SFLSDE algorithm was able to achieve a higher accuracy
test (0.5181) using the fusion reducer with a very high reduc-
tion rate (99.1413%).

5. Concluding remarks

In this paper we have developed a MapReduce solution for
prototype reduction, denominated as MRPR. The proposed scheme
enables to these kinds of techniques to be applied over big
classification data sets with promising results. Otherwise, these
techniques would be limited to tackle small or medium problems
that does not contain more than several thousand of examples,
due to memory and runtime restrictions. The MapReduce para-
digm has offered a simple, transparent and efficient environment
to parallelize the prototype reduction computation. Three different
reduce types have been investigated: Join, Filtering and Fusion,
aiming to provide more accurate preprocessed sets. We have
found that a reducer based on fusion of prototypes permits to
obtain reduced sets with higher reduction rates and accuracy
performance.

The experimental study carried out has shown that MRPR
obtains very competitive results. We have tested its behavior with
different kinds of PR techniques, analyzing the accuracy, the
reduction rate and the computational cost obtained. In particular,
we have studied two prototype selection methods (FCNN and
DROP3), two prototype generation (LVQ3 and RSP3) techniques
and the hybrid SSMA-SFLSDE algorithm.

The main achievements of MRPR are the following:

� It has allowed us to apply PR techniques in large-scale
problems.

� No significant accuracy and reduction losses with very good
speed up.

� Its application has resulted in a very big reduction of storage
requirements and classification time for the NN rule, when
dealing with big data sets.

As future work, we consider the study of new frameworks that
enable PR techniques to deal with both large-scale and high
dimensional data sets.

Acknowledgment

Supported by the Research Projects TIN2011-28488, P10-TIC-
6858 and P11-TIC-7765. D. Peralta holds an FPU scholarship from
the Spanish Ministry of Education and Science (FPU12/04902).

References

[1] V. Marx, The big challenges of big data, Nature 498 (7453) (2013) 255–260.
[2] M. Minelli, M. Chambers, A. Dhiraj, Big Data, Big Analytics: Emerging Business

Intelligence and Analytic Trends for Today's Businesses (Wiley CIO), 1st
edition, Wiley Publishing, 2013.

[3] D. Plummer, T. Bittman, T. Austin, D. Cearley, D.S. Cloud, Defining and Describing an
Emerging Phenomenon, Technical Report, Gartner, 2008.

[4] E. Alpaydin, Introduction to Machine Learning, 2nd edition, MIT Press, Cambridge,
MA, 2010.

[5] M. Woniak, M. Graña, E. Corchado, A survey of multiple classifier systems as
hybrid systems, Inf. Fusion 16 (2014) 3–17.

[6] S. Sakr, A. Liu, D. Batista, M. Alomari, A survey of large scale data management
approaches in cloud environments, IEEE Commun. Surv. Tutor. 13 (3) (2011)
311–336.

[7] J. Bacardit, X. Llorà, Large-scale data mining using genetics-based machine
learning, Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov. 3 (1) (2013) 37–61.

[8] J. Dean, S. Ghemawat, Map reduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[9] J. Dean, S. Ghemawat, Map reduce: a flexible data processing tool, Commun.
ACM 53 (1) (2010) 72–77.

[10] S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system, in: Proceedings of
the nineteenth ACM symposium on Operating systems principles, SOSP'03,
2003, pp. 29–43.

[11] M. Snir, S. Otto, MPI-The Complete Reference: The MPI Core, MIT Press,
Cambridge, Massachusetts, 1998.

[12] W. Zhao, H. Ma, Q. He, Parallel k-means clustering based on mapreduce, in:
M. Jaatun, G. Zhao, C. Rong (Eds.), Cloud Computing Lecture Notes in Computer
Science, vol. 5931, Springer, Berlin, Heidelberg, 2009, pp. 674–679.

[13] A. Srinivasan, T. Faruquie, S. Joshi, Data and task parallelism in ILP using
mapreduce, Mach. Learn. 86 (1) (2012) 141–168.

[14] Q. He, C. Du, Q. Wang, F. Zhuang, Z. Shi, A parallel incremental extreme svm
classifier, Neurocomputing 74 (16) (2011) 2532–2540.

[15] I. Palit, C. Reddy, Scalable and parallel boosting with mapreduce, IEEE Trans.
Knowl. Data Eng. 24 (10) (2012) 1904–1916.

[16] G. Caruana, M. Li, Y. Liu, An ontology enhanced parallel SVM for scalable spam
filter training, Neurocomputing 108 (2013) 45–57.

[17] D. Pyle, Data Preparation for Data Mining, The Morgan Kaufmann Series in
Data Management Systems, Morgan Kaufmann, San Francisco, USA, 1999.

[18] H. Liu, H. Motoda (Eds.), Computational Methods of Feature Selection, Chap-
man & Hall/Crc Data Mining and Knowledge Discovery Series Chapman & Hall/
Crc, Boca Raton, FL, USA, 2007.

[19] S. García, J. Derrac, J. Cano, F. Herrera, Prototype selection for nearest neighbor
classification: taxonomy and empirical study, IEEE Trans. Pattern Anal. Mach.
Intell. 34 (3) (2012) 417–435.

[20] I. Triguero, J. Derrac, S. García, F. Herrera, A taxonomy and experimental study
on prototype generation for nearest neighbor classification, IEEE Trans. Syst.,
Man, Cybern. Part C. Appl. Rev. 42 (1) (2012) 86–100.

[21] J. Derrac, S. García, F. Herrera, IFS-CoCo: instance and feature selection based
on cooperative coevolution with nearest neighbor rule, Pattern Recognit.
43 (6) (2010) 2082–2105.

[22] J. Derrac, C. Cornelis, S. García, F. Herrera, Enhancing evolutionary instance selection
algorithms by means of fuzzy rough set based feature selection, Inf. Sci. 186 (1)
(2012) 73–92.

[23] N. García-Pedrajas, A. de Haro-García, J. Pérez-Rodríguez, A scalable approach
to simultaneous evolutionary instance and feature selection, Inf. Sci. 228
(2013) 150–174.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345 343

http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref1
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref2
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref2
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref2
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref4
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref4
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref5
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref5
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref6
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref6
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref6
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref7
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref7
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref8
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref8
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref9
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref9
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref11
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref11
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref12
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref12
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref12
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref13
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref13
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref14
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref14
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref15
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref15
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref16
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref16
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref17
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref17
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref18
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref18
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref18
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref18
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref18
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref19
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref19
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref19
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref20
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref20
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref20
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref21
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref21
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref21
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref22
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref22
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref22
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref23
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref23
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref23


[24] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf.
Theory 13 (1) (1967) 21–27.

[25] L. Nanni, A. Lumini, Particle swarm optimization for prototype reduction,
Neurocomputing 72 (4–6) (2008) 1092–1097.

[26] I. Triguero, S. García, F. Herrera, IPADE: iterative prototype adjustment for nearest
neighbor classification, IEEE Trans. Neural Netw. 21 (12) (2010) 1984–1990.

[27] I. Triguero, S. García, F. Herrera, Differential evolution for optimizing the positioning
of prototypes in nearest neighbor classification, Pattern Recognit. 44 (4) (2011)
901–916.

[28] J.R. Cano, F. Herrera, M. Lozano, Stratification for scaling up evolutionary
prototype selection, Pattern Recognit. Lett. 26 (7) (2005) 953–963.

[29] J. Derrac, S. García, F. Herrera, Stratified prototype selection based on a steady-
state memetic algorithm: a study of scalability, Memet. Comput. 2 (3) (2010)
183–199.

[30] I. Triguero, J. Derrac, S. García, F. Herrera, A study of the scaling up capabilities
of stratified prototype generation, in: Proceedings of the third World Congress
on Nature and Biologically Inspired Computing (NABIC'11), 2011, pp. 304–309.

[31] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, E. Chang, Parallel spectral clustering in
distributed systems, IEEE Trans. Pattern Anal. Mach. Intell. 33 (3) (2011)
568–586.

[32] S. García, J.R. Cano, F. Herrera, A memetic algorithm for evolutionary prototype
selection: a scaling up approach, Pattern Recognit. 41 (8) (2008) 2693–2709.

[33] N. García-Pedrajas, J. Pérez-Rodríguez, Multi-selection of instances: a straight-
forward way to improve evolutionary instance selection, Appl. Soft Comput.
12 (11) (2012) 3590–3602.

[34] B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, Mars: a mapreduce framework
on graphics processors, in: Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, PACT'08, ACM, New York, NY,
USA, 2008, pp. 260–269.

[35] J. Talbot, R.M. Yoo, C. Kozyrakis, Phoenixþþ: modular mapreduce for shared-
memory systems, in: Proceedings of the Second International Workshop on
MapReduce and Its Applications, ACM, New York, NY, USA, 2011, pp. 9–16, doi:
http://dx.doi.org/10.1145/1996092.1996095.

[36] T. White, Hadoop: The Definitive Guide, 3rd edition, O'Reilly Media, Inc.,
Sebastopol, CA, USA, 2012.

[37] A.H. Project, Apache hadoop, 2013, 〈http://hadoop.apache.org/〉.
[38] A.M. Project, Apache mahout, 2013, 〈http://mahout.apache.org/〉.
[39] C.-L. Chang, Finding prototypes for nearest neighbor classifiers, IEEE Trans.

Comput. 23 (11) (1974) 1179–1184.
[40] C.-T. Chu, S. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Ng, K. Olukotun, Map-reduce for

machine learning on multicore, in: Advances in Neural Information Processing
Systems, 2007, pp. 281–288.

[41] D.L. Wilson, Asymptotic properties of nearest neighbor rules using edited data,
IEEE Trans. Syst., Man Cybern. 2 (3) (1972) 408–421.

[42] P.E. Hart, The condensed nearest neighbor rule, IEEE Trans. Inf. Theory 18
(1968) 515–516.

[43] D.R. Wilson, T.R. Martinez, Reduction techniques for instance-based learning
algorithms, Mach. Learn. 38 (3) (2000) 257–286.

[44] R. Mollineda, F. Ferri, E. Vidal, A merge-based condensing strategy for multiple
prototype classifiers, IEEE Trans. Syst., Man Cybern. B 32 (5) (2002) 662–668.

[45] J.S. Sánchez, High training set size reduction by space partitioning and
prototype abstraction, Pattern Recognit. 37 (7) (2004) 1561–1564.

[46] J.S. Sánchez, R. Barandela, A.I. Marqués, R. Alejo, J. Badenas, Analysis of new
techniques to obtain quality training sets, Pattern Recognit. Lett. 24 (7) (2003)
1015–1022.

[47] W. Lam, C.K. Keung, D. Liu, Discovering useful concept prototypes for classification
based on filtering and abstraction, IEEE Trans. Pattern Anal. Mach. Intell. 14 (8)
(2002) 1075–1090.

[48] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, 2nd edition, Morgan Kaufmann, San Francisco, 2005.

[49] G.M. Amdahl, Validity of the single processor approach to achieving large
scale computing capabilities, in: Proceedings of the Spring Joint Computing
Conference, ACM, New York, NY, USA, 1967, pp. 483–485.

[50] Cloudera, Cloudera Distribution Including apache hadoop, 2013, 〈http://www.
cloudera.com〉.

[51] A. Frank, A. Asuncion, UCI Machine Learning Repository, 2010, 〈http://archive.
ics.uci.edu/mlhttp://archive.ics.uci.edu/ml〉.

[52] T. Kohonen, The self organizing map, Proc. IEEE 78 (9) (1990) 1464–1480.
[53] F. Angiulli, Fast nearest neighbor condensation for large data sets classifica-

tion, IEEE Trans. Knowl. Data Eng. 19 (11) (2007) 1450–1464.
[54] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution A Practical

Approach to Global Optimization, Natural Computing Series, 2005, ISBN
978-3-540-31306-9.

[55] F. Neri, V. Tirronen, Scale factor local search in differential evolution, Memet.
Comput. 1 (2) (2009) 153–171.

Isaac Triguero received the M.Sc. degree in Computer
Science from the University of Granada, Granada, Spain,
in 2009. He is currently a Ph.D. student in the Depart-
ment of Computer Science and Artificial Intelligence,
University of Granada, Granada, Spain. His research
interests include data mining, data reduction, evolu-
tionary algorithms and semi-supervised learning.

Daniel Peralta received the M.Sc. degree in Computer
Science in 2011 from the University of Granada, Gran-
ada, Spain. He is currently a Ph.D. student in the
Department of computer Science and Artificial Intelli-
gence, University of Granada. His research interests
include data mining, biometrics and parallel and dis-
tributed computing.

Jaume Bacardit received a B.Eng. and M.Eng. in Com-
puter Engineering and a Ph.D. in Computer Science
from the Ramon Llull University in Barcelona, Spain in
1998, 2000 and 2004, respectively. His Ph.D. thesis
involved the adaptation and application of evolutionary
rule learning to Data Mining tasks in terms of scal-
ability, knowledge representations and generalisation
capacity. In 2008 he was appointed as a Lecturer in
Bioinformatics at the University of Nottingham. In 2014
he was appointed as Senior Lecturer at the School of
Computing, Newcastle University. His research inter-
ests include the application of evolutionary Learning to
data mine large-scale challenging datasets and, in a

general sense, the use of data mining and knowledge discovery for biological
domains. He has more than 40 refereed international publications between journal
papers, conference papers and book chapters, has given 8 invited talks and
coedited two books. From 2007 to 2010 he was the co-organizer of the Interna-
tional Workshop on Learning Classifier Systems and in 2009 and 2013 he was the
chair the Genetics-Based Machine Learning track of the GECCO conference. His
work won the bronze medal prize at the 2007 HUMIES Awards for Human-
Competitive Results produced by Genetic and Evolutionary Computation and the
best-paper award of the Genetics-Based Machine Learning track of GECCO in 2010
and 2011.

Salvador García received the M.Sc. and Ph.D. degrees in
Computer Science from the University of Granada, Gran-
ada, Spain, in 2004 and 2008, respectively. He is currently
an Associate Professor in the Department of Computer
Science, University of Jaén, Jaén, Spain. He has published
more than 40 papers in international journals. As edited
activities, he has co-edited two special issues in interna-
tional journals on different Data Mining topics and is
member of the editorial board of the Information Fusion
journal. His research interests include data mining, data
reduction, data complexity, imbalanced learning, semi-
supervised learning, statistical inference and evolutionary
algorithms.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345344

http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref24
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref24
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref25
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref25
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref26
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref26
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref27
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref27
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref27
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref28
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref28
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref29
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref29
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref29
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref31
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref31
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref31
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref32
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref32
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref33
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref33
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref33
dx.doi.org/10.1145/1996092.1996095
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref36
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref36
http://hadoop.apache.org/
http://mahout.apache.org/
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref39
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref39
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref41
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref41
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref42
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref42
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref43
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref43
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref44
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref44
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref45
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref45
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref46
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref46
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref46
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref47
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref47
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref47
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref48
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref48
http://www.cloudera.com
http://www.cloudera.com
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref52
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref53
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref53
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref894
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref894
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref894
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref55
http://refhub.elsevier.com/S0925-2312(14)01300-9/sbref55


Francisco Herrera received his M.Sc. in Mathematics in
1988 and Ph.D. in Mathematics in 1991, both from the
University of Granada, Spain.

He is currently a Professor in the Department of
Computer Science and Artificial Intelligence at the
University of Granada. He has been the supervisor of
30 Ph.D. students. He has published more than 260
papers in international journals. He is coauthor of the
book “Genetic Fuzzy Systems: Evolutionary Tuning and
Learning of Fuzzy Knowledge Bases” (World Scienti-
fic, 2001).

He currently acts as Editor in Chief of the interna-
tional journals “Information Fusion”’ (Elsevier) and

“Progress in Artificial Intelligence” (Springer). He acts as an area editor of the
International Journal of Computational Intelligence Systems and associated editor
of the journals: IEEE Transactions on Fuzzy Systems, Information Sciences, Knowl-
edge and Information Systems, Advances in Fuzzy Systems, and International
Journal of Applied Metaheuristics Computing; and he serves as a member of

several journal editorial boards, among others: Fuzzy Sets and Systems, Applied
Intelligence, Information Fusion, Evolutionary Intelligence, International Journal of
Hybrid Intelligent Systems, Memetic Computation, and Swarm and Evolutionary
Computation.

He received the following honors and awards: ECCAI Fellow 2009, IFSA Fellow
2013, 2010 Spanish National Award on Computer Science ARITMEL to the “Spanish
Engineer on Computer Science”, International Cajastur “Mamdani” Prize for Soft
Computing (Fourth Edition, 2010), IEEE Transactions on Fuzzy System Outstanding
2008 Paper Award (bestowed in 2011), and 2011 Lotfi A. Zadeh Prize Best paper
Award of the International Fuzzy Systems Association, and 2013 AEPIA Award to a
scientific career in Artificial Intelligence (September 2013).

His current research interests include computing with words and decision
making, bibliometrics, data mining, data preparation, instance selection and
generation, imperfect data, fuzzy rule based systems, genetic fuzzy systems,
imbalanced classification, knowledge extraction based on evolutionary algorithms,
memetic algorithms and genetic algorithms, biometrics, cloud computing and
big data.

I. Triguero et al. / Neurocomputing 150 (2015) 331–345 345


	MRPR: A MapReduce solution for prototype reduction in big data classification
	Introduction
	Background
	Prototype reduction and big data
	Mapreduce

	MRPR: MapReduce for prototype reduction
	Motivation
	Parallelizing PR with MapReduce
	Map phase
	Reduce phase

	Which PR methods are more suitable for the MRPR framework?

	Experimental study
	Performance measures
	Hardware and software used
	Data sets and methods
	Exhaustive evaluation of the MRPR framework for the SSMA-SFLSDE method
	Analysis of accuracy and reduction capabilities
	Analysis of the scalability

	Experiments on different PR techniques

	Concluding remarks
	Acknowledgment
	References




