@ Available online at www.sciencedirect.com

ok ScienceDirect Fuzzy

sets and systems

ELSEVIER Fuzzy Sets and Systems 258 (2015) 5-38

www.elsevier.com/locate/fss

Cost-sensitive linguistic fuzzy rule based classification systems
under the MapReduce framework for imbalanced big data

Victoria Lopez *, Sara del Rio, José Manuel Benitez, Francisco Herrera

Dept. of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology),
University of Granada, Granada, Spain

Available online 24 February 2014

Abstract

Classification with big data has become one of the latest trends when talking about learning from the available information.
The data growth in the last years has rocketed the interest in effectively acquiring knowledge to analyze and predict trends. The
variety and veracity that are related to big data introduce a degree of uncertainty that has to be handled in addition to the vol-
ume and velocity requirements. This data usually also presents what is known as the problem of classification with imbalanced
datasets, a class distribution where the most important concepts to be learned are presented by a negligible number of examples in
relation to the number of examples from the other classes. In order to adequately deal with imbalanced big data we propose the
Chi-FRBCS-BigDataCS algorithm, a fuzzy rule based classification system that is able to deal with the uncertainly that is intro-
duced in large volumes of data without disregarding the learning in the underrepresented class. The method uses the MapReduce
framework to distribute the computational operations of the fuzzy model while it includes cost-sensitive learning techniques in its
design to address the imbalance that is present in the data. The good performance of this approach is supported by the experimental
analysis that is carried out over twenty-four imbalanced big data cases of study. The results obtained show that the proposal is able
to handle these problems obtaining competitive results both in the classification performance of the model and the time needed for
the computation.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Fuzzy rule based classification systems; Big data; MapReduce; Hadoop; Imbalanced datasets; Cost-sensitive learning

1. Introduction

The development and maturity of the information technologies has enabled an exponential growth on the data
that is produced, processed, stored, shared, analyzed and visualized. According to IBM [1], in 2012, every day 1.5
quintillion bytes of data are created, which means that the 90% of the data created in the world has been produced
in the last two years. Big data [2] encompass a collection of datasets whose size and complexity challenges the
standard database management systems and defies the application of knowledge extraction techniques. This data

* Corresponding author. Tel.: +34 958 240598; fax: +34 958 243317.
E-mail addresses: vlopez@decsai.ugr.es (V. Lépez), srio@decsai.ugr.es (S. del Rio), J.M.Benitez@decsai.ugr.es (J.M. Benitez),
herrera@decsai.ugr.es (F. Herrera).

http://dx.doi.org/10.1016/j.fss.2014.01.015
0165-0114/© 2014 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.fss.2014.01.015
http://www.elsevier.com/locate/fss
mailto:vlopez@decsai.ugr.es
mailto:srio@decsai.ugr.es
mailto:J.M.Benitez@decsai.ugr.es
mailto:herrera@decsai.ugr.es
http://dx.doi.org/10.1016/j.fss.2014.01.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fss.2014.01.015&domain=pdf

6 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

comes from a wide range of sources such as sensors, digital pictures and videos, purchase transactions, social media
posts, everywhere [3].

This generation and collection of large datasets has further encouraged the analysis and knowledge extraction
process with the belief that with more data available, the information that could be derived from it will be more
precise. However, the standard algorithms that are used in data mining are not usually able to deal with these huge
datasets [4]. In this manner, classification algorithms must be redesigned and adapted considering the solutions that
are being used in big data so that they are able to be used under these premises maintaining its predictive capacity.

One of the complications that make difficult the extraction of useful information from datasets is the problem of
classification with imbalanced data [5,6]. This problem occurs when the number of instances of one class (positive
or minority class) is substantially smaller than the number of instances that belong to the other classes (negative or
majority classes). The importance of this problem resides on its prevalence in numerous real-world applications such
as telecommunications, finances, medical diagnosis and so on. In this situation, the interest of the learning is focused
towards the minority class as it is the class that needs to be correctly identified in these problems [7]. Big data is also
affected by this uneven class distribution.

Standard classification algorithms do not usually work appropriately when dealing with imbalanced datasets. The
usage of global performance measures for the construction of the model and the search for the maximum general-
ization capacity induce in algorithms a mechanism that tends to neglect the rules associated with instances of the
minority class.

Fuzzy Rule Based Classification Systems (FRBCSs) [8] are effective and accepted tools for pattern recognition
and classification. They are able to obtain a good precision while supplying an interpretable model for the end user
through the usage of linguistic labels. Furthermore, the FRBCSs can manage uncertainty, ambiguity or vagueness
in a very effective way. This trait is especially interesting when dealing with big data, as uncertainty is inherent to
this situation. However, when dealing with big data, the information at disposal usually contains a high number of
instances and/or features. In this scenario the inductive learning capacity of FRBCSs is affected by the exponential
growth of the search space. This growth complicates the learning process and it can lead to scalability problems or
complexity problems generating a rule set that is not interpretable [9].

To overcome this situation there have been several approaches that aim to build parallel fuzzy systems [10]. These
approaches can distribute the creation of the rule base [11] or the post-processing of the built model, using a par-
allelization to perform a rule selection [12] or a lateral tuning of the fuzzy labels [13]. Moreover, a fuzzy learning
model can be completely redesigned to obtain a parallel approach that decreases the computation time needed [14].
However, these models aim to reduce the wait for a final classification without damaging the performance and are not
designed to handle huge volumes of data. In this manner, it is necessary to redesign the FRBCSs accordingly to be
able to provide an accurate classification in a small lapse of time from big data.

Numerous solutions have been proposed to deal with imbalanced datasets [7,15]. These solutions are typically
organized in two groups: data-level solutions [16,17], which modify the original training set to obtain a more or
less balanced class distribution that can be used with any classifier, and algorithm-level solutions, which alter the
operations of an algorithm so that the minority class instances have more relevance and are correctly classified. Cost-
sensitive solutions [18,19] integrate both approaches as they are focused in reducing the misclassification costs, higher
for the instances of the minority class.

The approaches used to tackle big data usually involve some kind of parallelization to efficiently process and
analyze all the available data. One of the most popular frameworks for big data, MapReduce [20], organizes the
processing in two key operations: a map process that is responsible for dividing the original dataset and processing
each chunk of information, and a reduce process that collects the results provided in the previous step and combines
those results accordingly including new treatment if necessary. This approach that divides the original dataset in parts
can have a strong pernicious effect when dealing with imbalanced datasets as the data intrinsic characteristics impact
is amplified. Specifically, the small sample size [21] is induced when the original dataset is shared out and the dataset
shift problem [22] may also be encouraged in the process. The addition of these problems reinforce the necessity of
properly dealing with imbalanced datasets, not only for the original imbalance that is present in the data but also for
the occasioned problems that arise when the partitions are created.

In this paper, we present a FRBCS that is capable of classifying imbalanced big data which has been denoted as
Chi-FRBCS-BigDataCS. The method is based on the Chi et al.’s approach [23], a classical FRBCS learning method,
which has been modified to deal with imbalanced datasets and big data at the same time. The usage of a FRBCS

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 7

enables the treatment of the uncertainty that is inherent to real-world problems and especially, in big data problems,
as the variety and veracity of the collected information pose a serious source of uncertainty and vagueness in the data.
Fuzzy rules have demonstrated to adequately manage the uncertainty in a reasonable manner and therefore, FRBCSs
seem to be a sensible choice to overcome this situation. Furthermore, FRBCSs [24,25], and specifically the Chi et
al.’s method [26,27], have also been successfully applied to imbalanced domains where they do not only combat the
problem of an uneven class distribution but they also face up to the challenge of the uncertainty in the class frontiers
which comes up because of the borderline samples [28], the noise in the data [29] and the small disjuncts [30] among
others.

Furthermore, using the Chi et al.’s method helps the classification in big data as it is a model that shows some
characteristics that make it especially suitable to build a parallel approach instead of using a more state-of-the-art
FRBCS method. The Chi et al.’s method is a simple approach that does not have complex operations and strong
interactions between parts of the algorithm. This behavior allows a division of the processing operations without
deeply degrading the performance of the algorithm. Moreover, all the rules generated by the Chi et al.’s method
have the same structure: rules with as many antecedents as attributes in the dataset that only use one fuzzy label.
Maintaining a common structure for the rules enormously benefits the combination and aggregation of rules that were
created in different parallel operations and it greatly reduces the processing time. Other state-of-the-art methods may
create more accurate rule bases, however, the associated rules do not have a common design and then, grouping them
together substantially complicates the learning.

To deal with imbalanced big data, the proposed Chi-FRBCS-BigDataCS algorithm modifies the basic FRBCS
approach combining two approaches:

e To deal with big data, the FRBCS method has been adapted following the MapReduce principles that direct a
distribution of the work on several processing units.

e To address the imbalance that is present in the data, some modifications induced by cost-sensitive learning have
been applied to the model. The use of a cost-sensitive approach is appropriate in this case as it does not introduce
intensive computation operations and not adding thus extra runtime to the final model. For this, we propose a
new rule weight computation, the Penalized Cost-Sensitive Certainty Factor (PCF-CS), an approach based on the
original Penalized Certainty Factor that takes into consideration the misclassification costs.

In order to assess the performance of the suggested approach, we have used twenty-four imbalanced big data cases
of study that provide information about how the proposal works, its strengths and its limitations. The experimental
study is organized to analyze the performance related to two types of measures: an evaluation on the classification
performance, which is measured by a well-known metric in imbalanced classification, the Area Under the ROC Curve
[31], and an examination on the runtime of the approaches tested.

This paper is arranged as follows. In Section 2 some background information about classification with big data and
imbalanced datasets is given. Next, Section 3 introduces some basic concepts about FRBCSs, describes the Chi et al.’s
algorithm, and presents a scalability study to show the unfeasibility of this algorithm for big data. Section 4 shows how
the basic Chi et al.’s algorithm is modified to address imbalanced datasets including the information about the new rule
weight computation, and replays the scalability study to demonstrate that big data needs to be specifically addressed.
Then, Section 5 characterizes the Chi-FRBCS-BigDataCS approach to deal with big data. Section 6 indicates the
configuration of the experimental study, the results obtained and a discussion about them. Finally, the conclusions
achieved in this work are shown in Section 7.

2. Classification with big data and imbalanced datasets

In this section we present some background information about the specific related data problems that we are trying
to clarify. In Section 2.1 we provide information about big data, its characteristics and some solutions that have been
proposed to overcome this challenge. Then, in Section 2.2, an overview about classification with imbalanced datasets
is supplied featuring a description of its traits, given solutions, which are the main threats to properly solve this
problem and how the performance of algorithms is measured in this scenario.

8 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

Variety

Big
Data

Velocity Volume

Veracity

Fig. 1. The 4Vs of big data.

2.1. The difficulties of classification with big data

With the development of information technologies, organizations have had to face new challenges to analyze vast
amounts of information. For this reason, the concept of “Big Data” is formulated, which is applied to all the informa-
tion that cannot be processed or analyzed using traditional techniques or tools [32]. According to the definition given
by the Gartner analyst Doug Laney in a 2001 MetaGroup research publication [33], we may describe big data as a
3Vs model (Volume, Velocity and Variety) [34,35]:

e Volume: It refers to the huge amount of data that needs to be processed, stored and analyzed.

e Velocity: It is an indication of how quickly the data needs to be analyzed so that it can provide an informed
response.

e Variety: It is related to the different types of structured and unstructured data that organizations can accumulate
such as tabular data (databases), hierarchical data, documents and e-mail, among others.

More recently, an additional V has been proposed by some organizations to describe the big data model [1] (Fig. 1):
Veracity, which is an indication of data integrity and the trust on this information to make decisions. In this work
we focus on effectively addressing the volume challenge, while trying to achieve reasonable results concerning the
velocity model and also attempting to manage the uncertainty introduced by the variety and veracity.

These data volumes that we call big data are coming from different sources. For example, Facebook hosts approx-
imately 10 billion photos, taking up one Petabyte of storage. The New York Stock Exchange generates about one
Terabyte of new trade data per day, or the Internet Archive stores around 2 Petabytes of data, and is growing at a rate
of 20 Terabytes per month [32].

Among the proposed solutions to the problem, one of the most popular approaches was proposed by Dean and
Ghemawat, who worked at Google. They presented a parallel programming model, MapReduce, which is a frame-
work for processing large volumes of data over a cluster of machines [20,36,37]. Generally, a MapReduce program
contains two main phases: a map-function and a reduce-function. In the first phase, the input data is processed by the
map-function, generating some intermediate results as the input of the reduce function in the second phase, which
process the generated intermediate results to produce a final output.

Specifically, the MapReduce model is based on basic data structure which is the key-value pair, and all data pro-
cessed in MapReduce is used in those key-value pair terms. In this manner, the map and reduce functions work as
follows:

e Map-function: the master node performs a segmentation of the input dataset into independent blocks and dis-
tributes them to the worker nodes. Next, the worker node processes the smaller problem, and passes the answer
back to its master node. In terms of key-value pairs, the map-function receives a key-value pair as input and emits
a set of intermediate key-value pairs as output. Before the execution of a reduce function, the MapReduce library

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 9

[input [input [input | input |

(k,j (kyv) (ky,v) v)

map| | map | map map

(k’iv’) (k’lv’) (k‘lv‘) (k‘iv‘)
Shuffling: group values by keys

K, Ii%t(v‘) K, Ii%t(v‘) K’, list(v’)

| reduce | { reduce J reduce]

map (k, v) — list (K, V')
reduce (K, list(v')) — v”

v v v
[output | output | output |

Fig. 2. The MapReduce programming model.

groups all intermediate values associated with the same intermediate key and transforms them to speed up the
computation in the reduce function.

e Reduce-function: the master node collects the answers to all the sub-problems and combines them in some way to
form the final output. Considering the key-value pairs, the reduce-function accepts the intermediate key provided
by the MapReduce library and generates as final results the corresponding pair of key and value.

Fig. 2 depicts a typical MapReduce program with its map step and its reduce step. The terms k and v refer to the
key and value pair respectively; k” and v’ to the intermediate model and v” to the output generated.

Apache Hadoop is the most popular implementation of the MapReduce programming model [32,38]. It is an open-
source framework written in Java that supports the processing of large datasets in a distributed computing environment.
Hadoop has a distributed file system, HDFS, that facilitates rapid data transfer rates among nodes and allows the sys-
tem to continue operating uninterrupted in case of a node failure. The Apache Mahout project [39] is one of the most
relevant tools that integrate machine learning algorithms in a Hadoop system.

However, following a MapReduce design is not always the best solution when dealing with big data [40]. Specifi-
cally, iterative algorithms are not able to obtain a good performance as they need to launch a MapReduce job for each
iteration notably increasing the computation time due to the overhead. Therefore, there are some other open-source
projects that are emerging to address big data as alternatives to MapReduce and Hadoop:

e Spark [41]: It is a cluster computing system that was developed in the UC Berkeley AMPLab and it is used to
run large-scale applications such as spam filtering and traffic prediction. Spark provides primitives for in-memory
cluster computing and APIs in Scala, Java and Python.

e Apache Drill [42]: It is a framework that supports data-intensive distributed applications for interactive analysis
of large-scale datasets. Drill is a version of Google’s Dremel system, which is a scalable, interactive ad-hoc query
system for analysis of read-only nested data. Furthermore, its goal is to be able to scale to 10,000 servers or more
and to be able to process Petabytes of data and trillions of records in seconds.

Some other incipient software projects are Twister [43], Ricardo [44], D3.js [45], HCatalog [46], Storm [47] or
Impala [48], among others.

2.2. Classtfication with imbalanced datasets

Real-world classification problems typically present a class distribution where one or more classes have an insignif-
icant number of examples in contrast with the number of examples from the other classes. This circumstance is known
as the problem of classification with imbalanced datasets [5,6] and has been recognized as a challenge from the data
mining community [49]. The main concern in this problem resides in the importance of the correct identification of
the minority classes as they are the major focus of interest and their incorrect identification may entail high costs [18].
Imbalanced classification problems are found in diverse domains such as software defect prediction [50,51], finances
[52], bioinformatics [53—-55] and medical applications [56,57], just to mention some of them.

10 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

Table 1
Confusion matrix for a two-class problem.

Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Standard classification algorithms are usually unable to correctly deal with imbalanced datasets because they are
built under the premise of obtaining the maximum generalization ability. In this manner, these algorithms try to obtain
general rules that cover as many examples as possible, benefiting the majority class, while more specific rules that
cover the minority class are discarded because of its small presence in the whole dataset. In this way, the minority
class examples are treated like noise and therefore, these samples are finally neglected in the classification.

The imbalance ratio (IR) [58], which is the ratio of the number of instances in the majority class to the number
of examples in the minority class IR = %, is usually a clue to determine how difficult an imbalanced
problem is. However, classification with imbalanced datasets is not only complicated by the dissimilar class distri-
bution but also by some data intrinsic characteristics that interact with this issue aggravating the problem to a major
extent than those difficulties in isolation [7]. Some of these data intrinsic characteristics include the presence of small
disjuncts in the data [30], the small sample size for imbalanced classes [21], the overlapping between the classes [59],
the presence of noisy [60] and borderline [61] examples and the dataset shift [22], which unites all the differences in
the data distribution for the training and testing sets.

Big data techniques usually work in a parallel way dividing the original training set in subsets and distributing them
along the processing units. This way of working is especially pernicious if the big data available is also imbalanced
as it induces some of the aforementioned data problems: the small sample size problem and the dataset shift problem.
In the first case, it is needed to establish a processing scheme that does not dramatically decrease the size of the new
processed subsets. In the second case, a new subdivision of the dataset must be carefully done so that the subsets
that are created for the training in each processing unit are as close as possible to the original training set. In this
manner, we should avoid the prior probability shift [62], not changing the class distribution in the subsets, as well as
the covariate shift [63], not changing the input attribute values distribution when the data portions are created.

Various approaches have been proposed to deal with imbalanced datasets [5—7,15]. These approaches are usu-
ally organized in two groups: data-level approaches and algorithm-level approaches. The data-level approaches [16,
17] modify the original training set to obtain a more or less balanced distribution that is properly addressed by
standard classification algorithms. This balancing process can be done adding examples to the minority class extend-
ing the dataset (over-sampling) or deleting examples from the majority class reducing the dataset (under-sampling).
Algorithm-level approaches [25,64] adapt classification algorithms to guide the learning process towards the minority
class. This adaptation can modify the inner way of working of an algorithm in favor of the minority class or it can
even evidence the creation of new algorithms with this goal.

Additionally, cost-sensitive learning solutions include strategies at the data-level and the algorithm-level by consid-
ering variable misclassification costs for each class [19,65]. When dealing with imbalanced datasets it is more relevant
to correctly classify minority instances than majority ones, and therefore, the cost associated to the misclassification of
a minority instance should be higher than the cost associated to the contrary case: Cost(min, maj) > Cost(maj, min). In
this manner, cost-sensitive learning is either used as a direct approach that modifies how the algorithm works or is used
as a meta-learning technique that modifies how the input or output information is processed [65,66]. Finally, another
family of algorithms that has demonstrated a good behavior for imbalanced datasets is the ensembles of classifiers
[67].

Selecting an appropriate performance measure is a vital decision when dealing with imbalanced datasets, not only
to guide the construction of the model, but also to evaluate its achievement in comparison with other algorithms. The
most used performance measure in classification, the overall classification accuracy, is not recommended when there
is an uneven class distribution as it is biased towards the majority class: a classifier over a dataset with an IR of 9
that obtains a 90% of accuracy may not be a proper classifier as it may classify all the instances as belonging to the
majority class, completely neglecting the minority class which is our interest in the problem.

In the imbalanced scenario, the evaluation of the classifiers performance should be computed considering specific
metrics that observe the current class distribution. The confusion matrix (Table 1), which reports the results of correctly

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 11

or incorrectly classifying the examples of each class, leads to the obtaining of four metrics that describe both classes
independently:

e True positive rate 7P, = TJ_% is the percentage of positive instances correctly classified.

e True negative rate TN, = F;L—NTN is the percentage of negative instances correctly classified.
o False positive rate FP, ;. = FFZ—PTN is the percentage of negative instances misclassified.
o False negative rate FN, ;. = TPi—NﬂV is the percentage of positive instances misclassified.

However, these measures are not satisfactory by themselves as we are seeking a good classification accuracy in
both classes, and therefore, an approach to combine these measures is needed.

A graphical method that could be used to measure the performance of classification with imbalanced datasets is
the Receiver Operating Characteristic (ROC) curve [68]. The ROC curve depicts the variation of the TP,,, against
the FP,4, taking into account different decision threshold values. The Area Under the ROC Curve (AUC) metric [31]
is able to provide a numerical performance measure that can be used to analyze the behavior of different learning
algorithms. The AUC measure is computed obtaining the area of the ROC graphic. Specifically, we approximate this
area following the next formula:

1 + TPmte _FPV(ll(f

AUC = > (1)

3. Classification with fuzzy rule based classification systems: The Chi et al.’s algorithm and the scalability
problem

This section purpose is to provide the information needed to explain the necessity of modifying traditional methods
when building FRBCSs in imbalanced big data. As a basis for the approach, we will recall some elementary definitions
about FRBCSs in Section 3.1. Then, we will present the FRBCS that has been used to construct our approach, the
Chi et al.’s algorithm in Section 3.2. Finally, we will show a scalability study in Section 3.3 that demonstrates the
requirement of effectively addressing big data.

3.1. Fuzzy rule based classification systems

Among the diverse techniques that are used to deal with classification problems in data mining, FRBCSs are widely
used because they produce an interpretable model with a reasonable prediction rate.

A FRBCS is formed of two main components: the knowledge base (KB) and the inference system. In a linguistic
FRBCS, the KB is built from the rule base (RB) and the data base (DB). The RB contains all the rules that compose
the model and the DB encodes the membership functions associated to the fuzzy data partitions that are related to
the input attribute values. The inference system directs the way in which new examples are classified considering the
information stored in the KB. The most advantageous situation arises when expert information is available, however,
this is very unusual and automatic learning methods to build the KB are needed.

Let m be the number of training patterns X, = (xp1, ..., Xp,) from C classes that form a classification problem,
being x; is the ith attribute value (i =1, 2, ..., n) of the p-th training pattern.

In this work, we use fuzzy rules of the following form to build our classifier:

Rule R; : If xy is A} and ... and x, is A7 then Class = C; with RW; 2)

where R; is the label of the jth rule, x = (x1, ..., x,) is an n-dimensional pattern vector, Aj. is an antecedent fuzzy
set, C; is a class label, and RW ; is the rule weight [69]. We use triangular membership functions as linguistic labels.

Numerous heuristics have been proposed to compute the rule weight [69]. A good choice for the computation of
the rule weight is the Penalized Certainty Factor (PCF) [70], showed in Eq. (3):

ZX,;EClasst Ha; (xp) B pr¢classcj HA; (xp)
> i Ha; (xp)

RW; = PCF; = 3)

12 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

where p4;(x)p) is the matching degree of the pattern x;, with the antecedent part of the fuzzy rule Rj. We use the
fuzzy reasoning method (FRM) of the wining rule [71], a classical approach, for the classification of new patterns

by the RB. When a new pattern X, = (xp1, ..., Xp,) needs to be classified, the winner rule R, is decided as the rule
verifying:
pw (xp) - RWy =max{p;(x,)-RW;; j=1...L} 4)

The pattern x,, is classified as class C,, which is the class indicated in the consequent of the winner rule R,,. In the
case where several rules obtain the same maximum value in Eq. (4) for the example x,, but with different classes on
the consequent, the classification of the pattern x, is rejected and therefore, no class is assigned to it. Similarly, if the
example x,, does not match any rule in the RB, the classification is also rejected and no class is given to the example.

3.2. The Chi et al’s algorithm for classification

As a base for our FRBCS for imbalanced big data, we have used a simple learning procedure to generate the
KB. Specifically, we have considered the method described in [23], that we have called the Chi et al.’s rule genera-
tion method or Chi-FRBCS, which is an extension for classification problems of the well-known Wang and Mendel
algorithm [72].

To build the KB, this FRBCS method tries to find the relationship between the variables of the problem and
constitute an association between the domain of features and the domain of classes following the next steps:

1. Establishment of the linguistic partitions: Using the range of values for each attribute A;, the linguistic fuzzy par-
titions that form the DB are computed with the same number of linguistic terms for all input variables, composed
of symmetrical triangular-shaped and uniformly distributed membership functions.

2. Generation of a fuzzy rule for each example X, = (Xp1, ..., Xpu, Cp): From each example present in the training
set, a new fuzzy rule is created following the subsequent steps:

(a) To compute the matching degree u(x,) of the example with the different linguistic fuzzy labels for each
attribute using a conjunction operator (represented with a T-norm operator).

(b) To assign the example x, to the different linguistic fuzzy labels that obtain the largest membership degree.

(c) To generate a rule for the example x,. This rule will have as antecedent the linguistic fuzzy labels computed
in the previous step and as consequent the class associated to the example C),.

(d) To compute the rule weight.

This procedure can generate several rules with the same antecedent. If the consequent of those rules belongs to the
same class then, the replicated rules are deleted. However, if the consequent of those rules belongs to different classes
then, only the rule with the highest weight is maintained in the RB.

3.3. Testing the scalability of the Chi-FRBCS algorithm

At this point, we want to test how the Chi-FRBCS algorithm is able to deal with huge amounts of data running
a scalability test over the KDD Cup 1999 dataset from the UCI dataset repository [73]. The KDD Cup 1999 dataset
features multiple classes while in our imbalanced scenario we are interested in problems with two classes. To test
the Chi-FRBCS algorithm we have created several two-class big data cases of study derived from the KDD Cup
1999 dataset: specifically, the generated versions of the dataset use the normal and DOS connections as majority
classes and the rest of attacks have been considered as minority classes. From these two-class datasets, we have
created several imbalanced big data cases of study derived from it that differ in their size. From all the KDD Cup
1999 combinations we have selected three imbalanced big data cases of study that will be compared selecting only a
percentage of samples from the original set maintaining the a priori probability between the classes. The percentage
of the instances considered are the 10%, 25%, 40%, 50%, 60% and 75% and the experiments were run following a
5-fold stratified cross validation partitioning scheme. Further information about how the two-class sets are built can
be found in Section 6.1.

Table 2 shows the information about the cases of study considered together with the average results in training and
test for them. This table is divided by columns in four parts: the first three columns correspond to, for each case of

Table 2

Average results for the Chi-FRBCS algorithm for the imbalanced big data cases of study using the AUC measure, number of rules and time elapsed.

Datasets #ALts. #EX. #Class(maj; min) Chi-FRBCS
AUC,, AUCyg; numRules Runtime (s) Runtime (hh:mm:ss.SSS)

kddcup_10_normal_versus_R2L 41 97390 (97278; 112) 0.5000 0.5000 131.6 1578.991 00:26:18.991
kddcup_25_normal_versus_R2L 41 243476 (243 195; 281) 0.5036 0.5000 178.4 10327.567 02:52:07.567
kddcup_40_normal_versus_R2L 41 389562 (389 112; 450) 0.5047 0.5000 200.2 28329.681 07:52:09.681
kddcup_50_normal_versus_R2L 41 486953 (486 390; 563) 0.5062 0.5044 213.4 40170.131 11:09:30.131
kddcup_60_normal_versus_R2L 41 584343 (583 668; 675) 0.5046 0.5007 226.4 57060.828 15:51:00.828
kddcup_75_normal_versus_R2L 41 730429 (729 585; 844) 0.5067 0.5047 240.0 85336.009 23:42:16.009
kddcup_full_normal_versus_R2L 41 973907 (972781; 1126) 0.5083 0.5030 219.2 174285.276 48:24:45.276
kddcup_10_DOS_versus_R2L 41 388449 (388337; 112) 1.0000 0.9897 70.0 25498.727 07:04:58.727
kddcup_25_DOS_versus_R2L 41 971123 (970 842; 281) 0.9697 0.9645 79.0 141280.704 39:14:40.704
kddcup_40_DOS_versus_R2L 41 1553798 (1553348, 450) ND ND ND ND ND
kddcup_50_DOS_versus_R2L 41 1942248 (1941 685; 563) ND ND ND ND ND
kddcup_60_DOS_versus_R2L 41 2330697 (2330022; 675) ND ND ND ND ND
kddcup_75_DOS_versus_R2L 41 2913371 (2912527, 844) ND ND ND ND ND
kddcup_full_DOS_versus_R2L 41 3884496 (3883370; 1126) ND ND ND ND ND
kddcup_10_DOS_versus_normal 41 485615 (388337, 97278) 0.9973 0.9972 162.2 32892.936 09:08:12.936
kddcup_25_DOS_versus_normal 41 1214037 (970 842; 243 195) 0.9973 0.9973 218.8 267496.363 74:18:16.363
kddcup_40_DOS_versus_normal 41 1942460 (1553348;389112) ND ND ND ND ND
kddcup_50_DOS_versus_normal 41 2428075 (1941 685; 486 390) ND ND ND ND ND
kddcup_60_DOS_versus_normal 41 2913690 (2330022; 583 668) ND ND ND ND ND
kddcup_75_DOS_versus_normal 41 3642112 (2912527, 729 585) ND ND ND ND ND
kddcup_full_DOS_versus_normal 41 4856151 (3883370; 972781) ND ND ND ND ND

9E=C (S107) 85T sSwaiskg puv s1a8 £22n. /v 12 22doT A

€l

14 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

study, the number of attributes (#Atts.), number of examples (#Ex.) and number of instances for each class (minority
and majority). The fourth column is devoted to the results of the Chi-FRBCS algorithm. The results for that algorithm
are organized in the following way: the first two columns correspond to the AUC average results in training and test,
the third column shows the average number of rules created by the FRBCS and the fourth and fifth columns present
the average response times in seconds and in the hh:mm:ss.SSS format. Please note, that the hh:mm:ss.SSS format
stands for the hours, minutes, seconds and milliseconds spent in the computation. For each dataset we consider the
average results of the partitions.

Analyzing the results we can observe the ND (Not Determinable) symbol, which indicates that the algorithm was
not able to complete the experiment. The implementation tested has not been especially prepared for huge datasets
and the appearance of the ND symbol means that the current algorithm cannot be scaled for big data, as it is not able
to deal with datasets this size.

For example, for the dataset kddcup_normal_versus_R2L, the smallest one considered in this test, we can see that
the algorithm was able to provide results for all the versions of the problem. The results in training and test do not
provide huge differences between the different reduced versions while we are able to observe an increment in the
number of rules and in the processing time as more data is available.

For the larger datasets, kddcup_DOS_versus_R2L and kddcup_DOS_versus_normal, we can observe that the re-
duced versions of the datasets which were not able to finish have considerably increased from the previous case as
their size is more than four times the size of the kddcup_normal_versus_R2L dataset. Specifically, the Chi-FRBCS
algorithm was not able to complete the experiment starting from the 40% reduced version of the kddcup_DOS_ver-
sus_R2L and the kddcup_DOS_versus_normal cases of study, and for the 25% versions, the elapsed time is huge in
relation with the elapsed time for the 10% versions.

Furthermore, we could be tempted to address big data just reducing the size of the original training set so that the
current model is able to provide a result; moreover, when the results obtained by the 10% reduced version provide a
reasonable performance. However, the reduction in the dataset is not only performed in the training set but also in the
test set which alters the conclusions we can extract. In [74], we can observe a set of experiments that are related to
the training of a FRBCS with different versions of the same dataset reducing its size. Their findings showed that the
performance in test (which was maintained) was truly affected by the usage of different training sets.

In this manner, we can conclude that the basic Chi-FRBCS is not an appropriate approach to address imbalanced
big data and it is necessary to specifically address those problems to provide a FRBCS that is able to provide proper
classification results in a sensible time.

4. The Chi et al.’s algorithm for classification with imbalanced datasets and the scalability problem

In this section we provide some knowledge about how the basic Chi-FRBCS model can be modified to be able
to address imbalanced problems. First, in Section 4.1, we will present a proposal to improve the classification in
this arduous scenario presenting an approach that uses a new rule weight computation based on the PCF. Then, in
Section 4.2, we perform again a scalability study to show that the modifications introduced are adequate to deal with
imbalanced data but they are not enough to effectively address imbalanced big data.

4.1. The Chi et al’s algorithm for classification with imbalanced datasets: using the penalized cost-sensitive
certainty factor

As stated in the previous section, we have selected as basis for our FRBCS for imbalanced big data the Chi-FRBCS
method [23]. This procedure creates a KB that is able to perform reasonably well in a more or less balanced situation;
however, the Chi-FRBCS does not perform properly when classifying imbalanced datasets [26]. To accurately deal
with imbalanced datasets we need to modify the previous proposal using cost-sensitive learning so that it consid-
ers during the building of the model the different misclassification costs associated to the various examples. In this
manner, the learning will be biased to better identify the instances of the minority class. This proposal will be called
Chi-FRBCS-CS.

Chi-FRBCS-CS follows the same set of steps as Chi-FRBCS changing how the rule weights are computed. Specifi-
cally, using the PCF heuristic, we have included the misclassification costs in the rule weight developing the Penalized
Cost-Sensitive Certainty Factor (PCF-CS). In this way, the PCF-CS is computed as:

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 15

Zx,,EClasst HA; (xp) ' CS(CP) - prgéClastj HA; (xl’) ' CS(CP)
> i a;(xp) - Cs(Cp)

where Cs(C)) is the misclassification cost associated to class C, the class of the example x,,.

The misclassification costs associated to any class should be given by the experts if knowledgeable information
about the problem is available. Unfortunately, this situation is very rare and therefore, we need to establish a procedure
to estimate these costs. In our approach we have selected the costs in the following way: Cs(min, maj) = IR and
Cs(maj, min) = 1. As requested in imbalanced datasets, the misclassification cost for the minority class is much
higher than the misclassification cost associated to the majority class. Additionally, as the cost is dependent on the
proportion between the majority and minority instances, this estimation is valid for datasets that range from a low
imbalance level to extremely imbalanced datasets.

RW; = PCF-CS; =

®)

4.2. Testing the scalability of the Chi-FRBCS-CS algorithm

At this point, we want to reproduce the scalability test performed for the Chi-FRBCS-CS algorithm in order to
test how the proposal works in imbalanced big data problems considering their size. In this manner, we use the same
cases of study as in Section 3.3, the two-class variants of the KDD Cup 1999 dataset that were sampled at the 10%,
25%, 40%, 50%, 60% and 75% of its size. Table 3 shows the average results in training and test for the three selected
imbalanced datasets for the Chi-FRBCS and Chi-FRBCS-CS algorithms. We include both algorithms to check the
differences in behavior between them.

When comparing both approaches we can see that there are not many differences between both Chi-FRBCS ver-
sions and that the conclusions extracted for Chi-FRBCS can also be applied to Chi-FRBCS-CS. Specifically, we can
recognize the presence of the ND symbol also for the Chi-FRBCS-CS algorithm and that it appears for the same cases
of study where Chi-FRBCS has it. For instance, the kddcup_normal_versus_R2L dataset is processed in all cases
while the larger datasets, kddcup_DOS_versus_R2L and kddcup_DOS_versus_normal, are only able to produce re-
sults when the smallest versions of the datasets are considered. In this manner, it can be inferred that the new approach
for imbalanced datasets does not improve its behavior with respect to the dataset size.

When considering the AUC results in training and test, it can be detected a much better performance for the
Chi-FRBCS-CS algorithm. This better results can be examined in the kddcup_normal_versus_R2L dataset where
the AUC values experiment a greater improvement, going from a situation where the minority class is not properly
identified to a situation where this minority instances are generally considered. This behavior can be seen in the
different cases of study considered and does not depend on the data size. In the case of the kddcup_DOS_versus_R2L
and kddcup_DOS_versus_normal datasets, the improvement is not as noticeable, however, the tendency to slightly
improve the results is clear.

Viewing the number of rules generated by both approaches, the Chi-FRBCS-CS is the one that creates a model
with the lesser number of rules. Regarding the time elapsed to complete the experiments, we can see that there is not
a clear tendency between the two Chi-FRBCS versions. Even when they are able to provide results in the same cases,
the time needed to finish the computation does not always benefit one algorithm over the other, which means that the
calculation of the PCF-CS does not clearly increase the computation time needed while benefiting the classification
performance.

Finally, we can conclude that the Chi-FRBCS-CS method is a step forward to deal with imbalanced datasets
however, it is necessary to specifically address big data using techniques that have been designed to manage huge
datasets, as standard learning algorithms have not been adapted to learn in this arduous situation.

5. The Chi-FRBCS algorithm for imbalanced big data: A MapReduce design

In this section, we will describe our proposal of a FRBCS for imbalanced big data, denoted as Chi-FRBCS-
BigDataCS. This proposal is introduced in the following way: Section 5.1 presents a general overview of how the
Chi-FRBCS algorithm is adapted for big data. Next, in Section 5.2, the building of the model is detailed. Later, Sec-
tion 5.3 describes how the instances of a big dataset are classified considering the learned model. Finally, Section 5.4
presents a case of study over one of the imbalanced big data problems considered.

Table 3
Average results for the sequential Chi-FRBCS and Chi-FRBCS-CS versions for the imbalanced big data cases of study using the AUC measure, number of rules and time elapsed.
Datasets #Atts. #EX. #Class(maj; min) Chi-FRBCS Chi-FRBCS-CS

AUC;, AUCg; numRules Runtime Runtime AUC; AUCg; numRules Runtime Runtime

(s) (hh:mm:ss.SSS) (s) (hh:mm:ss.SSS)

kddcup_10_normal_versus_R2L 41 97390 (97278;112) 0.5000 0.5000 131.6 1578.991 00:26:18.991 0.9729 0.9499 119.0 1599.831 00:26:39.831
kddcup_25_normal_versus_R2L. 41 243476 (243 195; 281) 0.5036 0.5000 178.4 10327.567 02:52:07.567 0.9629 0.9563 160.4 8426.257 02:20:26.257
kddcup_40_normal_versus_R2L 41 389562 (389 112;450) 0.5047 0.5000 200.2 28329.681 07:52:09.681 0.9637 0.9587 180.4 21274452 05:54:34.452
kddcup_50_normal_versus_R2L. 41 486953 (486390; 563) 0.5062 0.5044 2134 40170.131 11:09:30.131 0.9649 0.9625 195.0 40877.748 11:21:17.748
kddcup_60_normal_versus_R2L 41 584343 (583 668; 675) 0.5046 0.5007 226.4 57060.828 15:51:00.828 0.9634 0.9597 205.6 58008.036 16:06:48.036
kddcup_75_normal_versus_R2L. 41 730429 (729585, 844) 0.5067 0.5047 240.0 85336.009 23:42:16.009 0.9657 0.9638 218.8 84191.977 23:23:11.977
kddcup_full_normal_versus_R2L 41 973907 (972781, 1126) 0.5083 0.5030 219.2 174 285.276 48:24:45.276 0.9653 0.9620 199.4 176795.885 49:06:35.885
kddcup_10_DOS_versus_R2L 41 388449 (388337;112) 1.0000 0.9897 70.0 25498.727 07:04:58.727 0.9999 0.9897 64.6 25448.700 07:04:08.700
kddcup_25_DOS_versus_R2L 41 971123 (970842; 281) 0.9697 0.9645 79.0 141280.704 39:14:40.704 0.9981 0.9928 73.8 136 368.526 37:52:48.526
kddcup_40_DOS_versus_R2L 41 1553798 (1553348;450) ND ND ND ND ND ND ND ND ND ND
kddcup_50_DOS_versus_R2L 41 1942248 (1941685;563) ND ND ND ND ND ND ND ND ND ND
kddcup_60_DOS_versus_R2L 41 2330697 (2330022; 675) ND ND ND ND ND ND ND ND ND ND
kddcup_75_DOS_versus_R2L 41 2913371 (2912527, 844) ND ND ND ND ND ND ND ND ND ND
kddcup_full_DOS_versus_R2L 41 3884496 (3883370;1126) ND ND ND ND ND ND ND ND ND ND
kddcup_10_DOS_versus_normal 41 485615 (388337;97278) 0.9973 0.9972 162.2 32892.936 09:08:12.936 0.9975 0.9974 160.8 33670.214 09:21:10.214
kddcup_25_DOS_versus_normal 41 1214037 (970842;243195) 0.9973 0.9973 218.8 267 496.363 74:18:16.363 0.9979 0.9978 216.6 273740.590 76:02:20.590
kddcup_40_DOS_versus_normal 41 1942460 (1553348;389112) ND ND ND ND ND ND ND ND ND ND
kddcup_50_DOS_versus_normal 41 2428075 (1941 685;486390) ND ND ND ND ND ND ND ND ND ND
kddcup_60_DOS_versus_normal 41 2913690 (2330022;583668) ND ND ND ND ND ND ND ND ND ND
kddcup_75_DOS_versus_normal 41 3642112 (2912527, 729 585) ND ND ND ND ND ND ND ND ND ND
kddcup_full_DOS_versus_normal 41 4856151 (3883370;972781) ND ND ND ND ND ND ND ND ND ND

91

96 (S107) 85T swaiskg puv s1a8 £22n, /v 12 22doT A

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 17

5.1. General overview of the Chi-FRBCS algorithm for big data

The Chi-FRBCS-BigDataCS algorithm is an approach that can be used to classify imbalanced big data. It is a
MapReduce design where each map process is responsible for building a RB using only the data included in its
portion and where the reduce process is responsible for collecting and combining the RB generated by each mapper
to form the final RB.

We will divide the description of the proposal in two parts: the first part is devoted to the description of the creation
of the model, shown in Section 5.2, and the second part is dedicated to the explanation on how new instances are
classified using the previous learned model, in Section 5.3. Both parts follow the MapReduce structure distributing all
the computations needed along several processing units that manage different chunks of information, aggregating the
results obtained in an appropriate manner.

In this description, we do not make a distinction between the steps that need to be followed to create a “normal”
model that is able to process big data based on the Chi-FRBCS algorithm, Chi-FRBCS-BigData, and the steps needed
to transform this model into our proposal, Chi-FRBCS-BigDataCS, based on the Chi-FRBCS-CS model. The differ-
ences in the computation of both models are related to the computation of the rule weight, as stated in Section 4.1,
sharing most of the algorithm structure. In this manner, the transition to a big data model follows similar steps and
only the variances associated to the cost-sensitive model will be stated when applicable.

The model presented is a FRBCS built on MapReduce using cost-sensitive learning for the following reasons:

e A FRBCS is able to deal with the uncertainty and imprecise information that emanates from big data, as those
huge information sources become available from diverse sources that include a high variety while trying to cope
with the veracity and trust on the data.

e The MapReduce framework is one of the most currently known alternatives to handle big data and has demon-
strated that is capable to perform reasonably well in data mining problems producing even libraries like Mahout
that include machine learning and data mining algorithms.

e In cost-sensitive learning, the addition of costs into the algorithm way of working does not heavily increase the
time complexity while properly managing the imbalanced problem.

Finally, we have preferred the use of cost-sensitive learning instead of data preprocessing techniques to avoid an
extra step in the building of the model following a MapReduce design. Over-sampling techniques would increase
the size of the data to process, therefore increasing the computational needs, while under-sampling may disregard
potentially useful examples which could be underestimated because of the subdivision induced by the MapReduce
structure.

5.2. Building the knowledge base for the Chi-FRBCS-BigDataCS using a MapReduce design

In this section, we will describe how the KB is built from the original training set provided following a MapReduce
procedure. This process is illustrated in Fig. 3 and consists of the following steps:

e [nitial: In the CS version, the first step needs to estimate the costs for each class giving the minority class a
greater cost than the majority class. This cost is estimated in the same way as described in Section 4.1, giving
a misclassification cost of 1 for instances belonging to the majority class and a misclassification cost of /R for
instances of the minority class.
Next, in both versions of the algorithm, the domain of variation of each feature in the dataset is determined. Then,
the different fuzzy membership labels that compose the DB are computed using these domains according to the
number of labels considered.
Finally, in order to comply with Hadoop way of working, the algorithm performs a segmentation of the training
dataset into independent HDFS blocks. These blocks are then automatically replicated and transferred between
the different cluster nodes thanks to the Hadoop environment that implements the MapReduce structure.

e Map: In this step each map task builds a RB with the data blocks of its data portion and generates a file containing
the RB (called RB;, see Fig. 3). More specifically, for each instance belonging to the mapper, a fuzzy rule is
created in a similar way as described in Section 3.2: we first search for the linguistic fuzzy labels that match

18 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

Initial Map Reduce Final

» ﬁ -
Y Class Cost
Estimation
D N RB, RBg
» | DB generation |
° °
Original train

°
°
dataset
During the building

Mappers of the Rule Base the

train set misclassification
costs are

considered

> Final KB

Fig. 3. A flowchart of how the building of the KB is organized in Chi-FRBCS-BigDataCS.

the attribute values of the current example, we select the among the matching fuzzy labels the ones that obtain
the largest matching degree for each attribute, we build the rule using as antecedent the fuzzy labels previously
selected and as consequent the class associated to the example and finally we compute the rule weight.

Please note that for computing the rule weight we use the PCF or PCF-CS for the Chi-FRBCS-BigData or Chi-
FRBCS-BigDataCS methods, and that the set of examples used for the rule weight is the set of examples that
belong to the current map process. In this manner, rules with the same antecedents and consequent can be gener-
ated by different mappers but they can have different rule weight values. Moreover, when a new rule is created in
a mapper we check, as in the original Chi-FRBCS algorithm, if there is a rule with the same antecedents already
in the mapper RB. In that case, if the consequent of the rule is also the same as the rule in the mapper RB, this
rule is discarded while if the consequent of the new rule is different from the consequent of the previously created
rule, then only the rule with the maximum weight is preserved.

In this manner, the Map step applies the original Chi-FRBCS classifier or the Chi-FRBCS-CS approach described
in Section 4.1 to the data available in the data partition.

e Reduce: In this next step, the reduce process combines the RBs generated by each mapper (RB;) to form the

final RB (called RBp, see Fig. 3). Specifically, the final RB is built from the RBs built from each mapper
RB1,RB>,...,RB, in a similar way as in the creation of new rules in each mapper (Fig. 3): we browse the
rules that belong to the RB generated by each mapper, RB;; if there is a rule in the final RB, RBg, with the same
antecedent as the rule we are trying to add we only maintain in the final RB, RBg, the rule with the highest rule
weight. In this case it is not necessary to check if the consequent is the same or not as we are maintaining the most
powerful rules. Equivalent rules (rules with the same antecedent and consequent) can present different weights as
they are computed in different mappers over different training sets.
Please note that it is not needed to recompute the rules weights as we are selecting the most confident rules
provided by each mapper. An alternative that would involve a new weight computation would have been the case
where equivalent rules are combined to produce a new rule, for instance, computing an average weight between
them. However, the direct selection of rules was preferred because of its simplicity which enables to speed up the
algorithm in its reduce step.

e Final: In this last step, the RB that is generated in the reduce process (RBg) and the DB that was calculated in the
initial phase conform the KB that is provided as the output of the computation process. This output will be the
entry data for the mechanism that classifies new examples.

Algorithms 1 and 2 show the pseudo-code of the Map function of the MapReduce job for the creation of the model
phase. Algorithm 1 is devoted to obtaining all instances in a mapper’s partition and the Hadoop framework calls it for
each <key/value> pair in this partition. When the previous process is finished, Algorithm 2 is called for each mapper
to build a RB with the data blocks of its data portion. Furthermore, Algorithm 3 gives the pseudo-code of the Reduce

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 19

function and is called when all mappers have finished, to combine the RBs generated by each mapper to form the final
RB.

Algorithm 1 Map phase for the Chi-FRBCS-BigDataCS algorithm for the building of the model phase MAP(key,
value):
Input: <key,value> pair, where key is the offset in bytes and value is the content of an instance.
Output: <key’,value’ > pair, where key’ is any Long value and value’ contains a RB.
1: instance <— INSTANCE_REPRESENTATION (value) {instances will contain all instances in this mapper’s split}
2: instances < instances.add(instance)

Algorithm 2 Map phase for the Chi-FRBCS-BigDataCS algorithm for the building of the model phase CLEANUP():
1: fuzzy_ChiBuilder.build(instances, posClass, posclassCost, negClassCost)
2: ruleBase < fuzzy_ChiBuilder.getRuleBase()
3: EMIT (key, ruleBase)

Algorithm 3 Reduce phase for the Chi-FRBCS-BigDataCS algorithm REDUCE(key, values):

Input: <key,values> pair, where key is any Long value and values are the RBs generated by each mapper.
Output: <key’,value’ > pair, where key’ is a null value and value’ is the final RB.

1: while values.hasNext() do
2: ruleBase <— values.getValue()
3: for i =0 to ruleBase.size() — 1 do
4: if finalRuleBase.size() == 0 then
5: finalRuleBase < finalRuleBase.add(ruleBase.get(i));
6: else
7. if |finalRuleBase.duplicated(ruleBase.get(i)) then
8: finalRuleBase < finalRuleBase.add(ruleBase.get(i));
9: else
10: if The consequent of those rules belongs to different classes then
11: rule < finalRuleBase.getRuleWithHighestRuleWeight(ruleBase.get(i))
12: finalRuleBase < finalRuleBase.add(rule);
13: end if
14: end if
15: end if
16: end for

17: end while
18: EMIT (null, finalRuleBase)

5.3. Classtfication of new patterns

In this section, we will describe how new instances belonging to a dataset are classified considering the KB built
previously. When the MapReduce process devoted to the building of the KB has finished, a new MapReduce process
is initiated to estimate the class associated to a dataset. Specifically, this phase is also based on a MapReduce design
where each map process is responsible for estimating the class for the examples included in its data segment using the
final KB previously generated. The process follows the next steps:

e [nitial: In the same way as in the first step of the building of the model, this step performs a segmentation of
the input dataset into independent HDFS blocks; replicates and transfers them to other machines to be finally
processed independently by each map task at the same time. This step is automatically performed by the Hadoop
system, the MapReduce implementation we are using.

e Map: In this next step, each map task estimates the class for the examples included in the data block available
for the mapper using the FRM of the winner rule. In particular, for each example, we compute for all the rules
in the RB the product of the rule weight with the compatibility degree between the linguistic fuzzy labels that

20 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

compose the antecedent of the rule and the example attribute values. The rule that obtains the highest value in this
computation determines the new class for the example which is the class consequent of that rule.

e Final: In this last step, the predictions generated by each mapper are aggregated to conform the final predictions
file. This step is just a concatenation of the results provided by each mapper without any extra computation.

It is important to note that the classification routine does not include a reduce step as it does not need to perform
any kind of calculation to combine the results obtained by each mapper. Algorithm 4 gives the pseudo-code of the
Map function of the MapReduce job for the classification phase. In this algorithm, Line (2) estimates the class for an
instance and Line (5) saves the previously generated predictions.

Algorithm 4 Map phase for the Chi-FRBCS-BigDataCS algorithm for classifying phase MAP(key, value):

Input: <key,value> pair, where key is the offset in bytes and value is the content of an instance.

Output: <key’,value’ > pair, where key’ indicates the class of an instance and value’ contains its prediction.
. instance < INSTANCE_REPRESENTATION (value)

. prediction <— CLASSIFY (finalRuleBase, instance)

. lkey < lkey.set(instance.getClass())

. Ivalue < Ivalue.set(prediction)

: EMIT (lkey, lvalue)

[O R

5.4. Sample procedure of the Chi-FRBCS-BigDataCS algorithm for Imbalanced Big Data: A Case of Study

In order to illustrate how the Chi-FRBCS-BigDataCS algorithm works we have selected an imbalanced big data
problem, the kddcup_full_DOS_versus_UZ2R dataset, to describe how the proposal behaves over it. This dataset is an
imbalanced big data example with 41 input attributes and 3 883 422 instances. For this specific run, we have chosen
the Sth partition of the 5-fcv used in the experimental study developed in this paper. This partition uses 3 105 769
instances for training (38 from the minority class, 3 105 731 from the majority class) and 777 653 for test (10 from the
minority class, 777 643 from the majority class). We use 8 mappers in the Hadoop environment. Further information
about this dataset is available in Section 6.1.

First, a MapReduce process is initiated in the building of the KB of the Chi-FRBCS-BigDataCS algorithm. The
process follows the next steps:

e [nitial: The first step is to estimate the costs for each class according to the procedure described in Section 4.1:
the misclassification cost for instances in the majority class is 1 and the misclassification cost for examples that
are associated to the minority class is the IR, that is, 81 729.76. The range of the different features of the dataset
and the DB are also computed in this stage. Then, a segmentation of the training dataset into independent HDFS
blocks is automatically performed; these blocks are replicated and transferred to other machines in the cluster and
are processed by the map tasks in parallel. Each of these data blocks contains approximately 4.75 minority class
samples and 388 216.38 majority class samples. Table 4 shows the actual number of instances from both classes
available for each map task. This table shows that the distribution of samples is not completely stratified, as it is
performed automatically by the Hadoop environment which does not consider the classes distribution.

e Map: Next, each map task builds a RB with the data available in its partition and generates a file containing the
RB.

e Reduce: Later, the final RB is built from the RBs provided by each mapper, selecting from rules that share the
same antecedent the rules with the greatest weight. In this manner, the reduce phase is able to decrement the
number of final rules and easing the complexity of the model. Table 5 shows the number of rules by map task
created in our case of study and the number of final rules. We have created 8 RBs, the number of map process
that was made available in the Hadoop environment. We can observe that the number of rules has dramatically
decreased from the 446 rules that were created by all the mappers to the 70 rules that finally compose the rule
base.

e Final: Finally, the RB generated in the previous step and the DB calculated in the initial phase form the final KB
that is provided as the output of the computation process.

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 21

Table 4
Number of instances available for each map task for the Chi-FRBCS-BigDataCS version
with 8 mappers.

kddcup_full_DOS_versus_U2R

Mapper ID Total instances Minority class instances Majority class instances

1 388226 7 388219
2 388223 5 388218
3 388220 2 388218
4 388201 4 388197
5 388233 6 388227
6 388220 4 388216
7 388222 5 388217
8 388224 5 388219
Table 5

Number of rules generated by map task and number of final rules for
the Chi-FRBCS-BigDataCS version with 8 mappers.

kddcup_full_DOS_versus_U2R
NumRules by mapper Final numRules

RB size: 60 RBp, size: 70
RB; size: 60
RBj size: 55
RBy size: 52
RBj5 size: 49
RBg size: 60
RB7 size: 52
RBg size: 58

Once we have finished the MapReduce process devoted to the building of the model, we generate a new MapReduce
process to estimate the class for the examples of the training and test dataset:

e [nitial: At the beginning, in the same way as in the building of the model, the algorithm performs a segmentation
of the input dataset into independent HDFS blocks; replicates and transfers them to other machines to be finally
processed independently by each map task concurrently.

e Map: Next, each map task estimates the classes of a subset of the dataset for every instance stored in it considering
the final KB built previously, using the winning rule as FRM.

e Final: Finally, an aggregation of the predictions generated by each mapper compose the final predictions file.

6. Experimental study

In this section we show the experimental study carried out on the behavior of Chi-FRBCS-BigDataCS for imbal-
anced big data. First, in Section 6.1 we provide details of the classification problems chosen for the experimentation.
Some of them have been used in previous sections for specific cases of study. Then, Section 6.2 introduces the algo-
rithms selected for the comparison with the proposed approach and their configuration parameters. This section also
details the infrastructure on which the experiments have been executed. Finally, Section 6.3 provides the performance
results for the approaches using the AUC measure and shows the time elapsed for the datasets considered in the study.

6.1. Datasets used in the study

In order to analyze the quality of our approach, Chi-FRBCS-BigDataCS, we have run our experiments around
three datasets from the UCI dataset repository [73]: the KDD Cup 1999 dataset, the Record Linkage Comparison
Patterns (RLCP) dataset and the Poker Hand dataset. The KDD Cup 1999 dataset was used in the Third International
Knowledge Discovery and Data Mining Tools Competition. It is a problem that represents a network intrusion detector,

22 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

and it aims to differentiate between good normal connections and bad connections that represent the different types
of attacks. On the other hand, the underlying records in the Record Linkage Comparison Patterns Dataset stem from
the epidemiological cancer registry of the German state of North Rhine-Westphalia. The Poker Hand dataset purpose
is to predict poker hands.

Since the KDD Cup 1999 dataset and the Poker Hand dataset contain multiple classes, we have created several
big data cases of study derived from them. More specifically, for the KDD Cup 1999 dataset we have generated new
versions of the KDD Cup data using the normal and DOS connections as majority classes and the rest of attacks have
been considered as minority classes. For the Poker Hand dataset we have obtained new versions using the 0 and 1
classes (“Nothing in hand” and “One pair” respectively) as majority classes and the rest of classes as minority classes.
Moreover, we have also generated smaller versions of the original dataset selecting the 10% of the instances. For these
reduced versions we have excluded the cases of study that contain less than 200 samples in their full versions, to make
sure that in each mapper there is at least one sample of each class to learn the model.

Table 6 summarizes the data employed in this study and shows, for each dataset, the number of examples (#Ex.),
number of attributes (#Atts.), class name of each class (minority and majority), number of instances for each class,
class attribute distribution and IR.

In order to develop our study we use a 5-fold stratified cross validation partitioning scheme, that is, five random
partitions of data with a 20% of the samples where the combination of 4 of them (80%) is considered as training set
and the remaining one is treated as test set. For each dataset we consider the average results of the five partitions.

6.2. Algorithms and parameter settings

To verify the performance of the proposed model, we compare the results obtained by Chi-FRBCS-BigDataCS
with the basic versions of the algorithm that solve the big data and imbalanced problems separately. Specifically, the
algorithms considered in the study have been:

e Chi-FRBCS [23]: The classical fuzzy rule based classifier which was described in Section 3.2.

e Chi-FRBCS-CS: This is the proposed Chi-FRBCS version that introduces cost-sensitive learning modifying
some of the Chi-FRBCS operations. This algorithm has been described in Section 4.1.

e Chi-FRBCS-BigData: This is the basic Chi-FRBCS version adapted to deal with big data. It is an algorithm
that follows a MapReduce design which has been implemented under the Hadoop framework and is described in
Section 5.

e Chi-FRBCS-BigDataCS: This is our final proposal, the modified version of the Chi-FRBCS-CS that has been
prepared to take on imbalanced big data using a MapReduce scheme which has been implemented using Hadoop
combined with cost-sensitive learning. This algorithm has also been described in Section 5.

The experiments associated to the sequential versions of the Chi-FRBCS algorithm have been run using the KEEL
Software Tool [75,76].

Considering the parameters used in the experimentation, these algorithms use three fuzzy labels for each attribute,
the product T-norm as conjunction operator in order to compute the matching degree of the antecedent of the rule with
the example, PCF or PCF-CS (depending on the use of a CS version) to compute the rule weight and the FRM of the
winning rule. Finally, only the approaches adapted for big data use a parameter related to the MapReduce procedure,
which is the number of subsets of the original data that are created and provided for the map tasks. We have selected
two different set of values for this parameter, as it has a direct impact on the AUC performance obtained and the
runtime spent by the algorithms. Specifically, for the experiments on the reduced versions (10%) of the cases of study
we have used 2, 4, 6, 8 and 16 mappers to have a better insight in the comparison with the sequential versions. For
the full versions of the cases of study, we use 8, 16, 32 and 64 mappers to better address the big data cases under
consideration. In this manner, the number of RBs created in the intermediate step of the algorithm depends on the
number of map tasks.

With respect to the infrastructure used to perform the experiments, for the MapReduce designs, we have used the
Atlas research group’s cluster with 12 nodes, connected with a 1 Gb/s ethernet. Each node is composed by two Intel
E5-2620 microprocessors (at 2 GHz, 15MB cache) and 64GB of main memory running under Linux CentOS 6.3.
Furthermore, the cluster works with Hadoop 2.0.0 (Cloudera CDH4.3.0), where one node is configured as namenode

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 23
Table 6
Summary of imbalanced datasets.
Datasets #EX. #Atts. Class (maj; min) #Class(maj; min) %Class(maj; min) IR
kddcup_10_DOS_versus_normal 485615 41 (DOS; normal) (388337, 97278) (79.968; 20.032) 3.99
kddcup_10_DOS_versus_PRB 392447 41 (DOS; PRB) (388337, 4110) (98.953; 1.047) 94.49
kddcup_10_DOS_versus_R2L 388449 41 (DOS; R2L) (388337, 112) (99.971; 0.029) 3467.29
kddcup_10_normal_versus_PRB 101388 41 (normal; PRB) (97278; 4110) (95.946; 4.054) 23.67
kddcup_10_normal_versus_R2L 97390 41 (normal; R2L) (97278; 112) (99.885; 0.115) 868.55
poker_10_0_vs_2 56252 10 0;2) (51370, 4882) (91.321; 8.679) 10.52
poker_10_0_vs_3 53533 10 0; 3) (51370; 2163) (95.96; 4.04) 23.75
poker_10_0_vs_4 51767 10 0;4) (51370; 397) (99.233; 0.767) 129.40
poker_10_0_vs_5 51575 10 0;5) (513705 205) (99.603; 0.397) 250.59
poker_10_0_vs_6 51516 10 (0; 6) (51370; 146) (99.717; 0.283) 351.85
poker_10_0_vs_7 51393 10 ©0;7) (513705 23) (99.955; 0.045) 2233.48
poker_10_1_vs_2 48191 10 (1;2) (43 309; 4882) (89.869; 10.131) 8.87
poker_10_1_vs_3 45472 10 (1;3) (43309; 2163) (95.243; 4.757) 20.02
poker_10_1_vs_4 43706 10 1;4) (43 309; 397) (99.092; 0.908) 109.09
poker_10_1_vs_5 43514 10 (1;5) (43 309; 205) (99.529; 0.471) 211.26
poker_10_1_vs_6 43455 10 (1; 6) (43 309; 146) (99.664; 0.336) 296.64
poker_10_1_vs_7 43332 10 ;7 (43 309; 23) (99.947; 0.053) 1883.00
RLCP_10 574913 2 (FALSE; TRUE) (572 820; 2093) (99.636; 0.364) 273.68
kddcup_DOS_versus_normal 4856151 41 (DOS; normal) (3883370;972781) (79.968; 20.032) 3.99
kddcup_DOS_versus_PRB 3924472 41 (DOS; PRB) (3883370; 41 102) (98.953; 1.047) 94.48
kddcup_DOS_versus_R2L 3884496 41 (DOS; R2L) (3883370; 1126) (99.971; 0.029) 3448.82
kddcup_DOS_versus_U2R 3883422 41 (DOS; U2R) (3883370; 52) (99.999; 0.001) 74680.19
kddcup_normal_versus_PRB 1013883 41 (normal; PRB) (972781; 41 102) (95.946; 4.054) 23.67
kddcup_normal_versus_R2L 973907 41 (normal; R2L) (972781, 1126) (99.884; 0.116) 863.93
kddcup_normal_versus_U2R 972833 41 (normal; U2R) (972781, 52) (99.995; 0.005) 18707.33
poker_0_vs_2 562530 10 0;2) (513702; 48 828) (91.32; 8.68) 10.52
poker_0_vs_3 535336 10 0; 3) (513702; 21 634) (95.959; 4.041) 23.75
poker_0_vs_4 517680 10 0; 4) (513702; 3978) (99.232; 0.768) 129.14
poker_0_vs_5 515752 10 0;5) (513702; 2050) (99.603; 0.397) 250.59
poker_0_vs_6 515162 10 (0; 6) (513702; 1460) (99.717; 0.283) 351.85
poker_0_vs_7 513938 10 ©;7) (513702; 236) (99.954; 0.046) 2176.70
poker_0_vs_8 513719 10 (0; 8) (513702; 17) (99.997; 0.003) 30217.76
poker_0_vs_9 513710 10 0;9) (513702; 8) (99.998; 0.002) 64212.75
poker_1_vs_2 481925 10 (1;2) (433097, 48 828) (89.868; 10.132) 8.87
poker_1_vs_3 454731 10 (1;3) (433097; 21 634) (95.242; 4.758) 20.02
poker_1_vs_4 437075 10 (1;4) (433097, 3978) (99.09; 0.91) 108.87
poker_1_vs_5 435147 10 1;5) (433097, 2050) (99.529; 0.471) 211.27
poker_1_vs_6 434557 10 (1; 6) (433097, 1460) (99.664; 0.336) 296.64
poker_1_vs_7 433333 10 ;7 (433097, 236) (99.946; 0.054) 1835.16
poker_1_vs_8 433114 10 (1; 8) (433097; 17) (99.996; 0.004) 25476.29
poker_1_vs_9 433105 10 1,9 (433097, 8) (99.998; 0.002) 54137.13
RLCP 5749132 2 (FALSE; TRUE) (5728201, 20931) (99.636; 0.364) 273.67

and jobtracker, and the rest are datanodes and task-trackers. For the sequential experiments we have used a cluster
with Intel Core 17 930 microprocessors (at 2.8 GHz, 15MB cache) and 24GB of main memory connected with a 1 Gb/s
ethernet. We acknowledge that the runtime comparisons between the sequential versions and the MapReduce designs
are not performed in identical machines, however, the time advantage is obtained for the sequential versions which
are, even in this case, notably slower than the Hadoop implementations.

6.3. Analysis of the Chi-FRBCS-BigDataCS behavior

In this part of the study, we want to analyze the behavior of the Chi-FRBCS-BigDataCS proposal in the scenario of
imbalanced big data in contrast with the other learning proposals. This section is divided into two parts: the first part

24 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

(Section 6.3.1) is devoted to the presentation of the precision of our approach in terms of classification performance
using the AUC measure; the second part (Section 6.3.2) is devoted to the analysis on the runtime of the model.

6.3.1. Analysis on the precision of the model

In this section, we present a set of experiments to illustrate and demonstrate the behavior of Chi-FRBCS-
BigDataCS. These experiments are organized in two phases: the first one compares the behavior of the different
alternatives using the cases of study that contain the 10% of the instances of the original datasets while the second
one compares the behavior of the approaches over the full datasets considered in the study. The experiments where
organized in this way to be able to contrast the results of the big data versions in relation with the serial versions of the
algorithm for the smaller datasets. Additionally, this organization also permits to check how the results change when
instead of using a reduced version of the dataset the whole dataset is utilized.

In Tables 7 and 8 we present the average results in training and test for the reduced versions (10%) of the imbalanced
big data cases of study for the Chi-FRBCS and Chi-FRBCS-CS versions respectively. These tables are divided by
columns in two parts: the first part corresponds to the results of the sequential variant while the second part is related
to the big data variants of the Chi-FRBCS and Chi-FRBCS-CS algorithms respectively. Furthermore, the results for
the big data alternatives are divided by columns in five parts, which correspond to the number of mappers used: 2, 4,
6, 8 and 16 mappers for each case.

Looking at the results we can observe that the performance obtained, both in training and test, is higher in most
of the cases of study for the Chi-FRBCS-CS alternatives, the sequential approach and the big data adaptation for any
number of mappers configuration. This situation demonstrates the positive influence of the usage of cost-sensitive
learning when dealing with imbalanced data as the classifier is able to provide appropriate solutions in an arduous
environment. Additionally, we can observe that the model does not present a strong overfitting on the training set in
relation with the test set, as we cannot find huge differences between the results provided for both sets. For instance,
for the kddcup_10_normal_versus_PRB dataset using the Chi-FRBCS-BigDataCS with 8 mappers, an AUC of 0.9728
in training is obtained which is closely followed by an AUC in test of 0.9723. There are even cases where the test set
obtains a better performance than the training set such as kddcup_10_normal_versus_R2L for Chi-FRBCS-BigDataCS
using 8 mappers with an AUC in training of 0.8747 and an AUC in test of 0.8784. This situation is caused by the
usage of the PCF or PCF-CS to compute the rule weight as these measures try to make rules as general as possible
considering the current dataset.

Next, we compare the results considering the cases of study derived from all original training sets in relation
with the number of mappers considered. For the KDD Cup 1999 cases of study we find that the behavior of the
Chi-FRBCS and Chi-FRBCS-CS approaches is not steady in relation to the number of mappers considered in the
experiments. For instance, for the Chi-FRBCS sequential version, the test results achieved are worse than the results
for the Chi-FRBCS-BigData approach. In this case, increasing the number of mappers may also increase the AUC
metric, however, when the number of mappers is too high this performance is decreased. The Chi-FRBCS-CS se-
quential variant, is able to provide better test results than the Chi-FRBCS-BigDataCS proposal. However, there is
not a clear optimal configuration for the number of mappers used, as the results are not stable when increasing that
number of mappers. Furthermore, the worse results are obtained for the highest number of mappers considered in the
experiment. In contrast, the training results provide more sensible results, decreasing the performance in a reasonable
manner when the number of mappers is enlarged.

In the case of the Poker Hand cases of study we first discover that the results obtained for this set of data are
a bit poor, as the AUC measure is usually ranging from 0.5 to 0.6. Similarly to the KDD Cup 1999 dataset, the
Chi-FRBCS approaches are presenting erratic results where the sequential version provides worse AUC values than
the Chi-FRBCS-BigData alternative, which is also improving when larger values for the number of mappers are used.
In the case of the Chi-FRBCS-CS variants, the performance obtained is clearly related both in training and test with
the number of mappers considered: the best performance is achieved by the sequential Chi-FRBCS-CS algorithm
while the performance drops when bigger number of mappers are used.

The RLCP dataset is not able to properly identify instances from both classes in the Chi-FRBCS approaches,
as the results obtained for all the variants and the number of mappers considered is 0.5. When the Chi-FRBCS-CS
alternatives are tested, the RLCP provides reasonable AUC results with almost no variance when the sequential version
is contrasted with smaller values for the number of mappers. Larger values for the number of mappers need to be
compared to find a slight drop in accuracy.

Table 7

Average results for the Chi-FRBCS versions for the imbalanced big data cases of study using the AUC measure.

Datasets Chi-FRBCS Chi-FRBCS-BigData
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers

AUCy, AUCyg¢ AUCy, AUCyg¢ AUCy, AUCygs AUCy, AUCyg¢ AUCy, AUCyg¢ AUCy, AUCyg¢
kddcup_10_DOS_versus_normal 0.9973 0.9972 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9992 0.9993
kddcup_10_DOS_versus_PRB 0.8440 0.8430 0.9055 0.9055 0.9052 0.9059 09112 0.9116 0.9029 0.9009 0.9088 0.9105
kddcup_10_DOS_versus_R2L 1.0000 0.9897 0.9951 0.9954 0.9988 0.9954 0.9987 1.0000 0.9988 1.0000 0.9013 0.8651
kddcup_10_normal_versus_PRB 0.8608 0.8589 0.9364 0.9376 0.9286 0.9284 0.9304 0.9311 0.9337 0.9332 0.9376 0.9381
kddcup_10_normal_versus_R2L 0.5000 0.5000 0.5000 0.5000 0.5120 0.5032 0.5560 0.5234 0.5419 0.5359 0.5195 0.5111
Average (kddcup) 0.8404 0.8377 0.8673 0.8676 0.8688 0.8664 0.8791 0.8731 0.8753 0.8739 0.8533 0.8448
poker_10_0_vs_2 0.5753 0.5052 0.5917 0.5108 0.6143 0.5146 0.6343 0.5182 0.6493 0.5195 0.6791 0.5244
poker_10_0_vs_3 0.5955 0.5082 0.6204 0.5180 0.6443 0.5222 0.6600 0.5291 0.6725 0.5310 0.7018 0.5381
poker_10_0_vs_4 0.5114 0.4956 0.5185 0.4999 0.5336 0.4998 0.5575 0.4998 0.5704 0.4997 0.6112 0.5020
poker_10_0_vs_5 0.7662 0.7039 0.8053 0.7857 0.8110 0.7992 0.8138 0.8002 0.8143 0.8002 0.8258 0.8001
poker_10_0_vs_6 0.5928 0.4963 0.6128 0.4999 0.6321 0.5044 0.6454 0.5044 0.6659 0.5044 0.6972 0.5043
poker_10_0_vs_7 0.5748 0.4960 0.5902 0.5000 0.5891 0.5000 0.6044 0.5000 0.6044 0.5000 0.6595 0.5000
poker_10_1_vs_2 0.5558 0.4933 0.5749 0.5045 0.6027 0.5066 0.6183 0.5086 0.6330 0.5087 0.6667 0.5111
poker_10_1_vs_3 0.5503 0.4924 0.5756 0.5028 0.5991 0.5048 0.6134 0.5047 0.6288 0.5065 0.6502 0.5082
poker_10_1_vs_4 0.5022 0.4901 0.5205 0.4999 0.5398 0.4997 0.5419 0.4996 0.5550 0.4994 0.5862 0.4990
poker_10_1_vs_5 0.7040 0.6222 0.7171 0.6816 0.7331 0.7049 0.7365 0.6977 0.7332 0.7047 0.7434 0.7045
poker_10_1_vs_6 0.5545 0.4891 0.5750 0.4999 0.5986 0.4997 0.6037 0.4997 0.6107 0.4997 0.6388 0.4994
poker_10_1_vs_7 0.5831 0.4891 0.5831 0.5000 0.5792 0.5000 0.5992 0.5000 0.5750 0.5000 0.5950 0.5000
Average (poker) 0.5888 0.5235 0.6071 0.5419 0.6231 0.5463 0.6357 0.5468 0.6427 0.5478 0.6712 0.5493
RLCP_10 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Total average 0.6538 0.6095 0.6734 0.6300 0.6845 0.6327 0.6958 0.6349 0.6994 0.6357 0.7123 0.6286

9E=C (S107) 85T sSwaiskg puv s1a8 £22n. /v 12 22doT A

54

Table 8

Average results for the Chi-FRBCS cost-sensitive versions for the imbalanced big data cases of study using the AUC measure.

Datasets Chi-FRBCS-CS Chi-FRBCS-BigDataCS
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers

AUC;, AUCtg; AUC;, AUCyg¢ AUC;, AUCg; AUCy, AUCtg; AUC, AUCg¢ AUC;, AUCg;
kddcup_10_DOS_versus_normal 0.9975 0.9974 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9994 0.9993
kddcup_10_DOS_versus_PRB 0.9849 0.9831 0.9588 0.9578 0.9588 0.9575 0.9584 0.9573 0.9582 0.9569 0.9571 0.9569
kddcup_10_DOS_versus_R2L 0.9999 0.9897 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9524 0.9318
kddcup_10_normal_versus_PRB 0.9707 0.9697 0.9733 0.9730 0.9728 0.9729 0.9733 0.9729 0.9728 0.9723 0.9687 0.9688
kddcup_10_normal_versus_R2L 0.9729 0.9499 0.9638 0.9161 0.9640 0.9216 0.8983 0.8909 0.8747 0.8784 0.7443 0.7428
Average (kddcup) 0.9852 0.9780 0.9790 0.9693 0.9790 0.9703 0.9659 0.9641 0.9610 0.9614 0.9244 0.9199
poker_10_0_vs_2 0.9075 0.5905 0.8847 0.5911 0.8476 0.5737 0.8315 0.5689 0.8164 0.5623 0.7865 0.5500
poker_10_0_vs_3 0.9536 0.6173 0.9119 0.6213 0.8652 0.5960 0.8358 0.5824 0.8148 0.5727 0.7845 0.5587
poker_10_0_vs_4 0.9899 0.5787 0.9523 0.5633 0.8504 0.5324 0.7800 0.5287 0.7642 0.5185 0.7224 0.5190
poker_10_0_vs_5 0.9921 0.8756 0.9793 0.8706 0.9238 0.8399 0.8685 0.8120 0.8554 0.8097 0.8311 0.7997
poker_10_0_vs_6 0.9977 0.5082 0.9309 0.5148 0.8344 0.5116 0.8165 0.5117 0.8128 0.5115 0.7955 0.5115
poker_10_0_vs_7 0.9990 0.4947 0.8666 0.4999 0.8506 0.4999 0.8245 0.4999 0.8084 0.4999 0.7936 0.5000
poker_10_1_vs_2 0.8818 0.5306 0.8580 0.5481 0.8198 0.5380 0.8016 0.5394 0.7848 0.5313 0.7563 0.5261
poker_10_1_vs_3 0.9338 0.5368 0.8874 0.5423 0.8206 0.5337 0.7885 0.5279 0.7664 0.5203 0.7218 0.5104
poker_10_1_vs_4 0.9800 0.5359 0.9135 0.5402 0.7787 0.5193 0.7219 0.5086 0.6848 0.5101 0.6459 0.5073
poker_10_1_vs_5 0.9918 0.8782 0.9649 0.8250 0.9101 0.7881 0.8394 0.7369 0.8144 0.7299 0.7608 0.7105
poker_10_1_vs_6 0.9939 0.4923 0.8518 0.4974 0.7488 0.4986 0.6951 0.4989 0.6940 0.4989 0.6819 0.4991
poker_10_1_vs_7 0.9981 0.4868 0.8867 0.4996 0.7085 0.4999 0.6880 0.4999 0.6111 0.4999 0.6111 0.4999
Average (poker) 0.9683 0.5938 0.9073 0.5928 0.8299 0.5776 0.7909 0.5679 0.7690 0.5638 0.7410 0.5577
RLCP_10 0.9135 0.9135 0.9135 0.9135 0.9135 0.9135 0.9135 0.9135 0.9110 0.9104 0.9070 0.9069
Total average 0.9699 0.7183 0.9276 0.7152 0.8759 0.7053 0.8463 0.6972 0.8302 0.6935 0.8011 0.6777

9C

96 (S107) 85T swaiskg puv s1a8 £22n, /v 12 22doT A

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 27

In all these cases of study we can say that there is not a strong degradation in the performance when using the
MapReduce versions. Specifically, the Chi-FRBCS-BigDataCS is more affected by the increasing number of mappers
than Chi-FRBCS-BigData, however, this behavior is expected because increasing the number of portions induces the
dataset shift problem and the small sample size, situations that have a pernicious effect when dealing with imbalanced
datasets. To test the influence of the small sample size problem when different number of mappers are considered, we
show in Table 9 the diverse number of minority and majority class instances by mapper for the Chi-FRBCS-BigData
versions. Please note that the number of instances per mapper for Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS
is the same, because the initial stage in both algorithms is identical: the framework automatically divides the data in
different information portions that are then copied and distributed to all the mapper processes considered.

As it is expected, the number of instances per mapper from each class is drastically reduced when higher values
for the number of mappers are obtained. This decrement on the available number of instances is observed in both
classes, however, it has a greater impact on the minority class. The minimum average number of samples per mapper
in the most adverse situation for the majority class is 2164.75 for all the reduced versions considered, which is
a reasonable number of samples to learn the associated fuzzy rules. However, when the number of minority class
samples is observed for the maximum number of mappers considered, we find several cases of study that do not have
at least 7 minority class samples per mapper. In these cases we encounter the small sample size problem which is
responsible for the poor results achieved. The small sample size problem also influences the increasing drop in the
performance of the algorithms when larger values for the number of mappers are utilized. For instance, the cases of
study with the lesser number of minority class instances, like poker_10_0_vs_7 and poker_10_1_vs_7, obtain very
poor results being unable to properly identify instances from both classes. In the kddcup_10_normal_versus_R2L case
of study we can also observe the dramatical drop in the performance, going from an AUC value of 0.9693 when 2
mappers are used to 0.7428 for 16 mappers, as we range from 45.60 minority class instances by mapper to 5.70.

Table 10 shows the average results in training and test for the full imbalanced big data cases of study. This table
is divided by columns in two parts: the first column is related to the Chi-FRBCS-BigData algorithm while the second
column is related with the cost-sensitive alternative, the Chi-FRBCS-BigDataCS algorithm. As in the preceding case,
these algorithms organize their results by columns in four parts according to the number of mappers: 8, 16, 32 and 64
respectively. Please note that the sequential versions were not included in this table since these approaches were not
able to complete an experiment with data this size as it was shown in the scalability studies (Sections 3.3 and 4.2).

On the first hand, we can observe a similar behavior between the reduced datasets in relation with the full datasets.
Specifically, Chi-FRBCS-BigDataCS is able to provide a much better performance than Chi-FRBCS-BigData for all
the diverse number of mappers tested. The differences between the training and test results are observed only for the
Poker Hand cases of study which means that overfitting appears when the size of the training set is smaller.

On the other hand, the results related to the number of mappers used also resemble the results obtained for the
sequential versions. For instance, when examining the number of mappers used for the big data developments, we can
see that as the number of mappers increases and therefore the data available for each mapper is reduced, our proposal
Chi-FRBCS-BigDataCS maintains a slight decrease in performance whereas the Chi-FRBCS-BigData alternative is
not able to show a clear tendency.

When we take a closer look grouping together the cases of study that are derived from the same datasets we can ob-
serve that the general conclusions extracted can also be applied to these groups. Specifically, the KDD Cup 1999 cases
of study follow this different behavior for Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS. Chi-FRBCS-BigData
does not show a clear trend for diverse values of the number of mappers, while the Chi-FRBCS-BigDataCS method
decrements its performance when larger number of mappers are utilized.

The Poker Hand cases of study also closely follow this disposition, not having a shift according to the number of
mappers for the Chi-FRBCS-BigData method but degrading the performance of the Chi-FRBCS-BigDataCS method
for high values of the number of mappers considered. In addition, we also observe that the values obtained for the
AUC measure are still poor for these cases of study, however, they are better than the results obtained for the reduced
10% cases of study previously analyzed.

The RLCP dataset shows a similar behavior to the one previously analyzed. The Chi-FRBCS-BigData approach
does not show a correct classification of the samples considered as it obtains an AUC value of 0.5. For the Chi-FRBCS-
BigDataCS, the results achieved, while being better, do not vary much with respect to the number of mappers. For the
smaller values of the number of mappers the AUC results are the same, while they are slightly diminished when larger
values are considered.

Table 9

Average number of minority and majority class instances by mapper for the Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS versions.

Datasets Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers
#min class #maj class #min class #maj class #min class #maj class #min class #maj class #min class #maj class

kddcup_10_DOS_versus_normal 39014.40 155231.60 19507.20 77615.80 13004.80 51743.87 9753.60 38807.90 4876.80 19403.95
kddcup_10_DOS_versus_PRB 1612.00 155366.80 806.00 77683.40 537.33 51788.93 403.00 38841.70 201.50 19420.85
kddcup_10_DOS_versus_R2L 40.80 155338.80 20.40 77669.40 13.60 51779.60 10.20 38834.70 5.10 19417.35
kddcup_10_normal_versus_PRB 1639.20 38916.00 819.60 19458.00 546.40 12972.00 409.80 9729.00 204.90 4864.50
kddcup_10_normal_versus_R2L 45.60 38910.40 22.80 19455.20 15.20 12970.13 11.40 9727.60 5.70 4863.80
poker_10_0_vs_2 1952.00 20548.80 976.00 10274.40 650.67 6849.60 488.00 5137.20 244.00 2568.60
poker_10_0_vs_3 906.40 20506.80 453.20 10253.40 302.13 6835.60 226.60 5126.70 113.30 2563.35
poker_10_0_vs_4 162.00 20544.80 81.00 10272.40 54.00 6848.26 40.50 5136.20 20.25 2568.10
poker_10_0_vs_5 88.00 20542.00 44.00 10271.00 29.33 6847.33 22.00 5135.50 11.00 2567.75
poker_10_0_vs_6 52.40 20554.00 26.20 10277.00 17.46 6851.33 13.10 5138.50 6.55 2569.25
poker_10_0_vs_7 6.80 20550.40 3.40 10275.20 2.26 6850.13 1.70 5137.60 0.85 2568.80
poker_10_1_vs_2 1927.60 17348.80 963.80 8674.40 642.53 5782.93 481.90 4337.20 240.95 2168.60
poker_10_1 vs 3 856.80 17332.00 428.40 8666.00 285.60 5777.33 214.20 4333.00 107.10 2166.50
poker_10_1_vs_4 156.00 17326.40 78.00 8663.20 52.00 5775.46 39.00 4331.60 19.50 2165.80
poker_10_1_vs_5 87.60 17318.00 43.80 8659.00 29.20 5772.66 21.90 4329.50 10.95 2164.75
poker_10_1_vs_6 56.80 17325.20 28.40 8662.60 18.93 5775.06 14.20 4331.30 7.10 2165.65
poker_10_1_vs_7 8.80 17324.00 4.40 8662.00 2.93 5774.66 2.20 4331.00 1.10 2165.50
RLCP_10 827.60 229137.60 413.80 114 568.80 275.87 76379.20 206.90 57284.40 103.45 28642.20

8¢C

96 (S107) 85T swaiskg puv s1a8 £22n, /v 12 22doT A

Table 10

Average results for the big data Chi-FRBCS versions for the full imbalanced big data cases of study using the AUC measure.

Datasets Chi-FRBCS-BigData Chi-FRBCS-BigDataCS

8 mappers 16 mappers 32 mappers 64 mappers 8 mappers 16 mappers 32 mappers 64 mappers

AUC;, AUCyy AUC, AUCy AUCy AUCyy AUC, AUCy AUC,, AUChy AUC, AUCy AUC, AUC; AUC;, AUCy
kddcup_DOS_versus_normal 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9992 0.9992 0.9993 0.9993 0.9993 0.9993 09993 0.9993 0.9993 0.9993
kddcup_DOS_versus_PRB 0.8639 0.8636 0.8636 0.8633 0.8639 0.8639 0.8634 0.8633 0.9558 0.9557 0.9556 0.9556 0.9553 0.9553 0.9546 0.9545
kddcup_DOS_versus_R2L 09941 09913 09881 0.9886 09779 09769 0.9942 0.9918 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
kddcup_DOS_versus_U2R 0.8544 0.8464 0.8544 0.8464 0.8544 0.8464 0.8544 0.8464 0.9387 0.9366 0.8960 0.8880 0.8960 0.8880 0.8960 0.8880
kddcup_normal_versus_PRB 0.8936 0.8932 0.8701 0.8693 0.8784 0.8788 0.8693 0.8690 0.9681 0.9681 0.9670 0.9671 09683 0.9679 0.9663 0.9659
kddcup_normal_versus_R2L ~ 0.5086 0.5050 0.5089 0.5055 0.5197 0.5178 0.5246 0.5223 0.9626 0.9616 0.9460 0.9446 09101 09119 0.8298 0.8229
kddcup_normal_versus_U2R 0.5397 0.5000 0.5454 0.5000 0.5454 0.5000 0.5454 0.5000 0.5518 0.5000 0.5575 0.5000 0.5575 0.5000 0.5575 0.5000
Average (kddcup) 0.8076 0.7998 0.8042 0.7960 0.8056 0.7976 0.8072 0.7989 0.9109 0.9030 0.9030 0.8935 0.8981 0.8889 0.8862 0.8758
poker_0_vs_2 0.5240 0.5146 0.5310 0.5188 0.5400 0.5237 0.5480 0.5271 0.7371 0.6689 0.7048 0.6420 0.6597 0.6054 0.6126 0.5700
poker_0_vs_3 0.5338 0.5189 0.5477 05271 0.5626 0.5367 0.5751 0.5432 0.7950 0.7132 0.7422 0.6686 0.6744 0.6163 0.6250 0.5769
poker_0_vs_4 0.5005 0.5000 0.5012 0.5000 0.5065 0.5005 0.5140 0.5009 0.8262 0.6755 0.6752 0.5961 0.5884 0.5345 0.5526 0.5132
poker_0_vs_5 0.7341 0.7298 0.7483 0.7479 0.7488 0.7486 0.7489 0.7486 0.9686 0.9588 0.8977 0.8859 0.7707 0.7673 0.7490 0.7485
poker_0_vs_6 0.5445 0.5194 0.5553 0.5218 0.5645 0.5264 0.5719 0.5280 0.6559 0.5611 0.6131 0.5410 0.5969 0.5371 0.5943 0.5355
poker_0_vs_7 0.5935 0.5115 0.6220 0.5139 0.6562 0.5228 0.6704 0.5299 0.6935 0.5294 0.6776 0.5318 0.6825 0.5318 0.6825 0.5318
poker_0_vs_8 0.5000 0.5000 0.6262 0.5000 0.7422 0.5000 0.8333 0.6750 0.8396 0.7750 0.8396 0.7750 0.8396 0.7750 0.8396 0.7750
poker_0_vs_9 0.7500 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000 0.7708 0.5000
poker_1_vs_2 0.5032 0.5004 0.5071 0.5015 0.5125 0.5027 0.5185 0.5045 0.6681 0.5761 0.6354 0.5589 0.5942 0.5363 0.5575 0.5208
poker_1_vs_3 0.5021 0.5002 0.5056 0.5010 0.5114 0.5032 0.5180 0.5054 0.7004 0.6088 0.6383 0.5649 0.5760 0.5326 0.5393 0.5139
poker_1_vs_4 0.5010 0.5000 0.5016 0.5000 0.5035 0.5000 0.5057 0.4999 0.7511 0.6191 0.6054 0.5593 0.5283 0.5062 0.5154 0.5005
poker_1_vs_5 0.7483 0.7481 0.7484 0.7483 0.7486 0.7483 0.7498 0.7490 09745 0.9617 09017 0.8911 0.7814 0.7769 0.7488 0.7486
poker_1_vs_6 0.5047 0.5000 0.5146 0.5010 0.5244 0.5023 0.5313 0.5034 0.5826 0.5163 0.5457 0.5053 0.5387 0.5043 0.5388 0.5044
poker_1_vs_7 0.5077 0.5016 0.5089 0.5000 0.5180 0.5000 0.5278 0.5000 0.5517 0.5000 0.5492 0.5000 0.5457 0.5000 0.5438 0.5000
poker_1_vs_8 0.5125 0.5000 0.6583 0.5000 0.7140 0.5000 0.7693 0.5000 0.7745 0.5000 0.7745 0.5000 0.7745 0.5000 0.7745 0.5000
poker_1_vs_9 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000 0.8383 0.6000
Average (poker) 0.5811 0.5403 0.6053 0.5426 0.6226 0.5447 0.6369 0.5572 0.7580 0.6415 0.7131 0.6137 0.6725 0.5827 0.6552 0.5712
RLCP 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.9134 0.9134 09134 09134 09134 0.9134 09093 0.9092
Total average 0.6438 0.6143 0.6590 0.6147 0.6709 0.6166 0.6809 0.6253 0.8091 0.7291 0.7768 0.7078 0.7483 0.6858 0.7331 0.6741

9E=C (S107) 85T sSwaiskg puv s1a8 £22n. /v 12 22doT A

6T

30 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

The general tendency that incurs in a drop in the performance for good performing algorithms appears usually when
a more parallel solution is compared with a less parallel solution or sequential solution, as only partial information is
available for the computation in contrast with larger portions of information that can even cover the whole information
available. However, this undesirable effect is not only related to the less quantity of data available but also to the
induction of the small sample size problem that further hinders the classification performance in imbalanced situations,
which is noticeable in Chi-FRBCS-BigDataCS. To measure the effect of this problem, we present in Table 11 the
number of minority and majority class instances by mapper for the Chi-FRBCS-BigData versions. We would like to
remind the reader that the number of instances per mapper for Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS is
the same, because the initial stage in both algorithms is identical.

This table displays the enormous reduction in the number of samples from each class when larger values for the
number of mappers are utilized. In this case, as in the reduced versions, the decrement of the available samples from
each class is noticeable, but the influence of the minority class is greater than the influence of the majority class. For
the full datasets, in the most difficult scenario, the average number of majority class instances per mapper is 5413.60,
which is clearly a fair amount of instances to build a model. However, when we turn to the minority class instances,
in the worst case scenario we can find several cases of study that are not even able to provide 1 minority class per
mapper, which are usually cases that are not able to properly identify both classes in the test set. Furthermore, when
we look at not so dramatic cases of study, we can also find problems with 15 to 20 minority class samples. In these
cases, even when there are more instances, the quantity of them is risible with respect to the number of majority
class samples, which means that these cases also suffer from the small sample size problem. Furthermore, the small
sample size problem aggravates the decrement in the performance for the larger values of the number of mappers. For
instance, the kddcup_normal_versus_R2L dataset shows an AUC metric of 0.9616 when 8 mappers are used, while
this value lowers to 0.8229 when the number of mappers is set to 64.

We acknowledge that this decrement in precision is inevitable when a division of the input data is needed to speed
up the classification process; however, these results show that it is of the utmost importance to select an appropriate
threshold to perform the data division for the processing, especially in the presence of imbalanced datasets. When a
good threshold is established, the downfall in precision is admissible but when that threshold does not fit the problem
considered, we can see a lethal reduction in the performance invalidating all the learning process followed due to the
small sample size problem.

6.3.2. Analysis on the runtime of the model

Tables 12 and 13 show the time elapsed in seconds and in the hh:mm:ss.SSS format (hours, minutes, seconds,
milliseconds) for the reduced versions (10%) of the imbalanced big data cases of study for the Chi-FRBCS and
the Chi-FRBCS-BigData alternatives, and for the Chi-FRBCS-CS and Chi-FRBCS-BigDataCS methods respectively.
These tables are divided by columns in two parts: the first part corresponds to the results of the sequential variant
while the second part is related to the big data variants of the Chi-FRBCS and Chi-FRBCS-CS algorithms respectively.
Moreover, the results for the big data versions are divided by columns in five parts which correspond to the number of
mappers used: 2, 4, 6, 8 and 16 mappers for each case.

Looking at these tables we can see that, in general, the runtimes obtained by the Chi-FRBCS approaches are
slightly lower than the ones obtained by the Chi-FRBCS-CS methods. This behavior is expected as the Chi-FRBCS-CS
methods need to perform additional operations with respect to Chi-FRBCS as they include the misclassification costs
in their inner way of running. Moreover, the results obtained show that the sequential versions are notably slower than
the big data alternatives, even when they are compared with the performance of the big data versions on 2 mappers,
as the speed gain is not linearly related to the number of mappers considered. Furthermore, this trend can also be seen
among the different number of mappers considered, as the decrement in the running time is reduced meaningfully
when the number of mappers is increased. This reduction in the processing time is again not lineal, as this decrement
in time is more tangible at the beginning with a lower number of mappers than with a larger number of mappers.

When analyzing the behavior of the groups of cases of study derived from the original datasets we can find different
groups of behavior for the cases under consideration. A first group corresponds to the bigger cases of study, the ones
derived from the KDD Cup 1999 dataset and the RLCP dataset. In this case, we can see that the general trend perfectly
applies to this data: the sequential versions provide runtimes that greatly exceed the results obtained by the MapReduce
designs. Furthermore, the usage of higher number of mappers is able to improve the execution times, however, that

Table 11

Average number of minority and majority class instances by mapper for the Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS versions.

Datasets Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS
8 mappers 16 mappers 32 mappers 64 mappers
#min class #maj class #min class #maj class #min class #maj class #min class #maj class

kddcup_DOS_versus_normal 97254.60 388360.50 48627.30 194 180.25 24313.65 97090.13 12156.83 48545.06
kddcup_DOS_versus_PRB 4120.40 388326.80 2060.20 194163.40 1030.10 97081.70 515.05 48540.85
kddcup_DOS_versus_R2L 112.20 388337.40 56.10 194 168.70 28.05 97084.35 14.03 48542.18
kddcup_DOS_versus_U2R 4.80 388337.40 2.40 194168.70 1.20 97084.35 0.60 48542.18
kddcup_normal_versus_PRB 4076.20 97312.10 2038.10 48656.05 1019.05 24328.03 509.53 12164.02
kddcup_normal_versus_R2L 117.20 97273.50 58.60 48636.75 29.30 24318.38 14.65 12159.19
kddcup_normal_versus_U2R 4.10 97279.20 2.05 48639.60 1.03 24319.80 0.51 12159.90
poker_0_vs_2 4933.30 51319.70 2466.65 25659.85 1233.32 12829.93 616.66 6414.96
poker_0_vs_3 2151.60 51382.00 1075.80 25691.00 537.90 12845.50 268.95 6422.75
poker_0_vs_4 398.30 51369.70 199.15 25684.85 99.57 12842.43 49.79 6421.21
poker_0_vs_5 210.40 51364.80 105.20 25682.40 52.60 12841.20 26.30 6420.60
poker_0_vs_6 152.00 51364.20 76.00 25682.10 38.00 12841.05 19.00 6420.52
poker_0_vs_7 22.60 51371.20 11.30 25685.60 5.65 12842.80 2.83 6421.40
poker_0_vs_8 1.90 51370.00 0.95 25685.00 0.48 12842.50 0.24 6421.25
poker_0_vs_9 0.80 51370.20 0.40 25685.10 0.20 12842.55 0.10 6421.27
poker_1_vs_2 4863.20 43329.30 2431.60 21664.65 1215.80 10832.32 607.90 5416.16
poker_1_vs_3 2162.80 43310.30 1081.40 21655.15 540.70 10827.57 270.35 5413.79
poker_1_vs_4 394.10 43313.40 197.05 21656.70 98.52 10828.35 49.26 5414.17
poker_1_vs_5 197.90 43316.80 98.95 21658.40 49.47 10829.20 24.74 5414.60
poker_1_vs_6 142.40 43313.30 71.20 21656.65 35.60 10828.32 17.80 5414.16
poker_1_vs_7 24.50 43308.80 12.25 21654.40 6.12 10827.20 3.06 5413.60
poker_1_vs_8 2.00 43309.40 1.00 21654.70 0.50 10827.35 0.25 5413.67
poker_1_vs_9 1.20 43309.30 0.60 21654.65 0.30 10827.32 0.15 5413.66
RLCP 2097.60 572815.60 1048.80 286407.80 524.40 143203.90 262.20 71601.95

9E=C (S107) 85T sSwaiskg puv s1a8 £22n. /v 12 22doT A

I

Table 12
Runtime elapsed in seconds and in the hh:mm:ss.SSS format for the Chi-FRBCS versions.
Datasets Chi-FRBCS Chi-FRBCS-BigData
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers

seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS
kddcup_10_DOS_versus_normal 33670.214 9:21:10.214 14472.846 4:01:12.846 4140.643 1:09:00.643 1778.238 0:29:38.238 1052.501 0:17:32.501 373.428 0:06:13.428
kddcup_10_DOS_versus_PRB 22510.587 6:15:10.587 9205.046 2:33:25.046 2547.166 0:42:27.166 1165.548 0:19:25.548 704.896 0:11:44.896 249.251 0:04:09.251
kddcup_10_DOS_versus_R2L 25448.700 7:04:08.700 9234.977 2:33:54.977 2492.280 0:41:32.280 1197.892 0:19:57.892 707.083 0:11:47.083 228.386 0:03:48.386
kddcup_10_normal_versus_PRB 1756.513 0:29:16.513 1068.581 0:17:48.581 234.787 0:03:54.787 136.951 0:02:16.951 99.986 0:01:39.986 67.127 0:01:07.127
kddcup_10_normal_versus_R2L 1599.831 0:26:39.831 875.615 0:14:35.615 215.648 0:03:35.648 128.611 0:02:08.611 94.273 0:01:34.273 62.629 0:01:02.629
Average (kddcup) 16997.169 4:43:17.169 6971.413 1:56:11.413 1926.105 0:32:06.105 881.448 0:14:41.448 531.748 0:08:51.748 196.164 0:03:16.164
poker_10_0_vs_2 1022.735 0:17:02.735 586.696 0:09:46.696 563.302 0:09:23.302 519.465 0:08:39.465 562.220 0:09:22.220 624.649 0:10:24.649
poker_10_0_vs_3 832.182 0:13:52.182 575.673 0:09:35.673 515.892 0:08:35.892 543.217 0:09:03.217 539.140 0:08:59.140 579.760 0:09:39.760
poker_10_0_vs_4 798.369 0:13:18.369 605.735 0:10:05.735 504.460 0:08:24.460 552.799 0:09:12.799 610.555 0:10:10.555 567.566 0:09:27.566
poker_10_0_vs_5 1209.566 0:20:09.566 596.255 0:09:56.255 522.352 0:08:42.352 512.363 0:08:32.363 507.853 0:08:27.853 504.863 0:08:24.863
poker_10_0_vs_6 1051.263 0:17:31.263 682.470 0:11:22.470 614.844 0:10:14.844 536.008 0:08:56.008 581.397 0:09:41.397 459.080 0:07:39.080
poker_10_0_vs_7 963.291 0:16:03.291 520.087 0:08:40.087 460.601 0:07:40.601 481.295 0:08:01.295 479.882 0:07:59.882 473.661 0:07:53.661
poker_10_1_vs_2 796.636 0:13:16.636 439.989 0:07:19.989 390.712 0:06:30.712 398.359 0:06:38.359 406.932 0:06:46.932 399.267 0:06:39.267
poker_10_1_vs_3 734.307 0:12:14.307 410.816 0:06:50.816 383.222 0:06:23.222 416.784 0:06:56.784 409.623 0:06:49.623 424.023 0:07:04.023
poker_10_1_vs_4 645.596 0:10:45.596 442.978 0:07:22.978 421.791 0:07:01.791 411.050 0:06:51.050 401.203 0:06:41.203 377.247 0:06:17.247
poker_10_1_vs_5 547.979 0:09:07.979 395.322 0:06:35.322 366.879 0:06:06.879 358.951 0:05:58.951 377.911 0:06:17.911 379.750 0:06:19.750
poker_10_1_vs_6 697.428 0:11:37.428 393.996 0:06:33.996 366.409 0:06:06.409 370.342 0:06:10.342 366.044 0:06:06.044 360.484 0:06:00.484
poker_10_1_vs_7 690.171 0:11:30.171 381.735 0:06:21.735 363.016 0:06:03.016 353.859 0:05:53.859 347.198 0:05:47.198 353.263 0:05:53.263
Average (poker) 832.460 0:13:52.460 502.646 0:08:22.646 456.123 0:07:36.123 454.541 0:07:34.541 465.830 0:07:45.830 458.634 0:07:38.634
RLCP_10 8683.187 2:24:43.187 4420.900 1:13:40.900 1174.823 0:19:34.823 562.273 0:09:22.273 369.080 0:06:09.080 179.112 0:02:59.112
Total average 5758.809 1:35:58.809 2517.207 0:41:57.207 904.379 0:15:04.379 579.111 0:09:39.111 478.765 0:07:58.765 370.197 0:06:10.197

(43

96 (S107) 85T swaiskg puv s1a8 £22n, /v 12 22doT A

Table 13

Runtime elapsed in seconds and in the hh:mm:ss.SSS format for the Chi-FRBCS cost-sensitive versions.

Datasets Chi-FRBCS-CS Chi-FRBCS-BigDataCS
2 mappers 4 mappers 6 mappers 8 mappers 16 mappers
seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS

kddcup_10_DOS_versus_normal 32892.936 9:08:12.936 15414.766 4:16:54.766 4162.916 1:09:22.916 1843.283 0:30:43.283 1076.427 0:17:56.427 415.060 0:06:55.060
kddcup_10_DOS_versus_PRB 29981.173 8:19:41.173 9798.818 2:43:18.818 2585.928 0:43:05.928 1188.691 0:19:48.691 758.516 0:12:38.516 250.027 0:04:10.027
kddcup_10_DOS_versus_R2L. 25498.727 7:04:58.727 9649.161 2:40:49.161 2543.190 0:42:23.190 1206.790 0:20:06.790 673.231 0:11:13.231 266.537 0:04:26.537
kddcup_10_normal_versus_PRB 1730.916 0:28:50.916 1066.950 0:17:46.950 236.391 0:03:56.391 139.344 0:02:19.344 101.652 0:01:41.652 68.790 0:01:08.790
kddcup_10_normal_versus_R2L 1578.991 0:26:18.991 1072.229 0:17:52.229 212.853 0:03:32.853 134.370 0:02:14.370 94.847 0:01:34.847 65.116 0:01:05.116
Average (kddcup) 18336.549 5:05:36.549 7400.385 2:03:20.385 1948.256 0:32:28.256 902.496 0:15:02.496 540.934 0:09:00.934 213.106 0:03:33.106
poker_10_0_vs_2 1804.004 0:30:04.004 777.028 0:12:57.028 552.463 0:09:12.463 557.443 0:09:17.443 579.395 0:09:39.395 572.595 0:09:32.595
poker_10_0_vs_3 1315.612 0:21:55.612 641.281 0:10:41.281 609.231 0:10:09.231 516.789 0:08:36.789 507.824 0:08:27.824 558.286 0:09:18.286
poker_10_0_vs_4 1630.399 0:27:10.399 764.142 0:12:44.142 607.250 0:10:07.250 582.549 0:09:42.549 581.717 0:09:41.717 572.004 0:09:32.004
poker_10_0_vs_5 1234.801 0:20:34.801 636.422 0:10:36.422 568.459 0:09:28.459 551.079 0:09:11.079 546.558 0:09:06.558 534.967 0:08:54.967
poker_10_0_vs_6 1456.625 0:24:16.625 828.762 0:13:48.762 652.770 0:10:52.770 659.502 0:10:59.502 620.019 0:10:20.019 470.053 0:07:50.053
poker_10_0_vs_7 1778.488 0:29:38.488 638.797 0:10:38.797 510.469 0:08:30.469 479.955 0:07:59.955 489.636 0:08:09.636 485.763 0:08:05.763
poker_10_1_vs_2 1137.676 0:18:57.676 496.250 0:08:16.250 425.849 0:07:05.849 396.363 0:06:36.363 396.681 0:06:36.681 397.112 0:06:37.112
poker_10_1_vs_3 1116.075 0:18:36.075 464.625 0:07:44.625 371.895 0:06:11.895 350.017 0:05:50.017 349.021 0:05:49.021 443.020 0:07:23.020
poker_10_1_vs_4 1220.649 0:20:20.649 498.319 0:08:18.319 403.404 0:06:43.404 385.980 0:06:25.980 398.769 0:06:38.769 368.581 0:06:08.581
poker_10_1_vs_5 1318.547 0:21:58.547 446.729 0:07:26.729 367.710 0:06:07.710 367.759 0:06:07.759 369.085 0:06:09.085 380.618 0:06:20.618
poker_10_1_vs_6 1453.041 0:24:13.041 478.021 0:07:58.021 394.152 0:06:34.152 377.446 0:06:17.446 351.418 0:05:51.418 362.195 0:06:02.195
poker_10_1_vs_7 1124.129 0:18:44.129 499.303 0:08:19.303 385.227 0:06:25.227 373.933 0:06:13.933 367.799 0:06:07.799 362.491 0:06:02.491
Average (poker) 1382.504 0:23:02.504 597.473 0:09:57.473 487.407 0:08:07.407 466.568 0:07:46.568 463.160 0:07:43.160 458.974 0:07:38.974
RLCP_10 8159.285 2:15:59.285 4165.285 1:09:25.285 1154.706 0:19:14.706 505.405 0:08:25.405 295.675 0:04:55.675 188.454 0:03:08.454
Total average 6468.449 1:47:48.449 2685.383 0:44:45.383 930.270 0:15:30.270 589.817 0:09:49.817 475.459 0:07:55.459 375.648 0:06:15.648

9E=C (S107) 85T sSwaiskg puv s1a8 £22n. /v 12 22doT A

€€

34 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

o
« 30000 \ e Chi-FRBCS-BigData

o 20000 \ Chi-FRBCS-BigDataCS

8 16 32 64
Number of mappers

Fig. 4. Execution times for the kddcup_full_DOS_versus_U2R dataset.

advance is better observed when the number of mappers is smaller than in the larger cases, that is, when the data
available per mapper is considerable.

The second group is related to the Poker Hand cases of study, where the processing time gain is not as clear as in
the previous cases. Without a doubt, we can state there are huge differences between the sequential versions and the
Hadoop implementations. When the big data versions are compared, the runtime improvement can only be detected
for the smaller values of the number of mappers. The Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS algorithms
seem to no further improve their behavior starting from 16 mappers.

Table 14 shows the average runtime spent in seconds and in the hh:mm:ss.SSS format for the full cases of study
by the Chi-FRBCS-BigData and Chi-FRBCS-BigDataCS algorithms. This table is organized in two big parts: the first
part is related to the results obtained by the Chi-FRBCS-BigData algorithm while the second part is related to the
Chi-FRBCS-BigDataCS method. Similarly to the preceding tables, these algorithms present their information in four
columns related to the number of mappers considered: 8, 16, 32 and 64 respectively. The sequential versions are not
included in this table as they are not able to provide a result, as it was shown in the scalability studies (Sections 3.3
and 4.2).

In this table, we can observe that the Chi-FRBCS-BigData approach shows a trend that slightly benefits its runtime,
however, it does not always surpass the runtime achieved by the Chi-FRBCS-BigDataCS algorithm for any number
of mappers. These results can be understood in the following manner: the Chi-FRBCS-BigData approach is a less
complex approach than the Chi-FRBCS-BigDataCS method and therefore, the second algorithm is bound to spend
more processing time due to its additional operations. The usage of cost-sensitive learning is thus a good alternative
as this time addition is insignificant compared to the performance improvement gained in imbalanced datasets. In
Fig. 4, we can see the difference between the performance of the big data alternatives for the kddcup_full_DOS_ver-
sus_UZ2R dataset, where the Chi-FRBCS-BigDataCS version consumes a bit more of time. However, the Chi-FRBCS-
BigDataCS tends to produce a lesser number of rules (scalability studies in Sections 3.3 and 4.2), and therefore the
search for identical rules may also be less computationally demanding.

In general, when larger values for the number of mappers are used, better runtime results are obtained for both the
Chi-FRBCS-BigData and the Chi-FRBCS-BigDataCS algorithms. However, the improvement in the processing times
is not linearly related to the number of mappers, as smaller number of mappers show a greater performance gain than
larger values of mappers.

If we analyze the behavior of the groups of cases of study derived from the original datasets we can also observe
the same groups of behavior as in the reduced cases of study previously considered. Again, a first group corresponds
to the bigger cases of study, the ones derived from the KDD Cup 1999 dataset and the RLCP dataset. This group
displays the general trend extracted from all the data: the usage of higher number of mappers can get faster execution
times, however, the runtime improvement is better appreciated with a reduced number of mappers instead of with
larger values, that means, when the data available per mapper is abundant. Fig. 4 also presents the trend in the usage
of different mappers.

The second group is related to the Poker Hand cases of study, where it is not possible to discern an improvement in
the processing times. For the smaller values of the number of mappers, the results obtained show equivalent results,

Table 14

Runtime elapsed in seconds and in the hh:mm:ss.SSS format for the big data Chi-FRBCS versions.

Datasets Chi-FRBCS-BigData Chi-FRBCS-BigDataCS
8 mappers 16 mappers 32 mappers 64 mappers 8 mappers 16 mappers 32 mappers 64 mappers
seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS seconds hh:mm:ss.SSS

kddcup_DOS_versus_normal 95135.040 26:25:35.040 26422.546 7:20:22.546 9678.697 2:41:18.697 4060.908 1:07:40.908 96833.551 26:53:53.551 25824.469 7:10:24.469 7692.155 2:08:12.155 3407.801 0:56:47.801
kddcup_DOS_versus_PRB 62034.217 17:13:54.217 17206.961 4:46:46.961 5336.043 1:28:56.043 5310.406 1:28:30.406 64827.368 18:00:27.368 18003.649 5:00:03.649 6094.751 1:41:34.751 5134.697 1:25:34.697
kddcup_DOS_versus_R2L ~ 60908.738 16:55:08.738 15615.652 4:20:15.652 6315.864 1:45:15.864 1789.012 0:29:49.012 62059.365 17:14:19.365 16897.451 4:41:37.451 6122.615 1:42:02.615 2047.410 0:34:07.410
kddcup_DOS_versus_U2R ~ 60942.589 16:55:42.589 15114.415 4:11:54.415 4288.956 1:11:28.956 1266.369 0:21:06.369 63665.339 17:41:05.339 15870.638 4:24:30.638 4302.037 1:11:42.037 1281.801 0:21:21.801
kddcup_normal_versus_PRB 6059.310 1:40:59.310 1765.673 0:29:25.673 548.857 0:09:08.857 262.545 0:04:22.545 6155.110 1:42:35.110 1523.940 0:25:23.940 753.089 0:12:33.089 301.214 0:05:01.214
kddcup_normal_versus_R2L ~ 4362.339 1:12:42.339 1807.435 0:30:07.435 451.027 0:07:31.027 279.080 0:04:39.080 4502.856 1:15:02.856 1274.320 0:21:14.320 503.814 0:08:23.814 329.662 0:05:29.662
kddcup_normal_versus_U2R 4279.778 1:11:19.778 1899.410 0:31:39.410 597.729 0:09:57.729 350.514 0:05:50.514 5064.459 1:24:24.459 1290.801 0:21:30.801 730.109 0:12:10.109 327.904 0:05:27.904
Average (kddcup) 41960.287 11:39:20.287 11404.584 3:10:04.584 3888.167 1:04:48.167 1902.691 0:31:42.691 43301.150 12:01:41.150 11526.467 3:12:06.467 3742.653 1:02:22.653 1832.927 0:30:32.927
poker_0_vs_2 12320.901 3:25:20.901 12325.506 3:25:25.506 12839.608 3:33:59.608 13612.564 3:46:52.564 12506.996 3:28:26.996 12083.205 3:21:23.205 12851.936 3:34:11.936 13292.345 3:41:32.345
poker_0_vs_3 11401.855 3:10:01.855 11659.858 3:14:19.858 12448.827 3:27:28.827 13212.002 3:40:12.002 11484.098 3:11:24.098 11393.884 3:09:53.884 12059.245 3:20:59.245 12349.548 3:25:49.548
poker_0_vs_4 11093.366 3:04:53.366 11244.520 3:07:24.520 12155.162 3:22:35.162 12350.617 3:25:50.617 11161.645 3:06:01.645 11380.513 3:09:40.513 12096.645 3:21:36.645 12087.170 3:21:27.170
poker_0_vs_5 10947.363 3:02:27.363 10870.675 3:01:10.675 11926.168 3:18:46.168 12341.788 3:25:41.788 11370.870 3:09: 10810.724 11944.131 - 12262.003 3:24:22.003
poker_0_vs_6 10977.253 3:02:57.253 11041.819 3:04:01.819 11674.877 3:14:34.877 12194.412 3:23:14.412 11344.606 - 11260.872 3t 11915.543 11807.885 3:16:47.885
poker_0_vs_7 10971.631 3:02:51.631 11158.933 3:05:58.933 11778.574 3:16:18.574 12228.561 3:23:48.561 11851.595 3:17:31.595 11624.443 3: 11963.442 3 11887.682 3:18:07.682
poker_0_vs_8 11040.804 3:04:00.804 11088.482 3:04:48.482 11615.557 3:13:35.557 12280.418 3:24:40.418 11790.836 3:16:30.836 11227.721 11679.059 11809.133 3:16:49.133
poker_0_vs_9 11059.629 3:04:19.629 11130.037 3:05:30.037 12039.400 3:20:39.400 11956.152 3:19:16.152 11386.511 3:09:46.511 11681.637 3 11977.673 3 12152.204 3:22:32.204
poker_1_vs_2 10502.985 2:55:02.985 10592.520 2:56:32.520 10823.188 3:00:23.188 11550.568 3:12:30.568 10256.908 2:50:56.908 10395.012 2:53:15.012 10769.729 11198.647 3:06:38.647
poker_1_vs_3 9734.080 2:42:14.080 10232.695 2:50:32.695 10770.971 2:59:30.971 10643.134 2:57:23.134 9661.590 2:41:01.590 9769.442 2:42:49.442 10434.828 10584.726 2:56:24.726
poker_1_vs_4 9362.164 2:36:02.164 9599.178 2:39:59.178 9981.443 2:46:21.443 10553.633 2:55:53.633 9443.253 2:37:23.253 9752.424 2:42:32.424 9765.667 2:42:45.667 9806.559 2:43:26.559
poker_1_vs_5 9298.083 2:34:58.083 9637.974 2:40:37.974 10428.014 2:53:48.014 10399.248 2:53:19.248 9412.589 2:36:52.589 9506.839 2:38:26.839 9942.829 2:45:42.829 10262.902 2:51:02.902
poker_I_vs_6 9009.779 2:30:09.779 9591.369 2:39:51.369 10112.862 2:48:32.862 10407.752 2:53:27.752 9739.623 2:42:19.623 9854.607 2:44:14.607 9963.349 2:46:03.349 10095.291 2:48:15.291
poker_1_vs_7 9285.360 2:34:45.360 9250.462 2:34:10.462 9962.175 2:46:02.175 10333.898 2:52:13.898 9580.927 2:39:40.927 9670.806 2:41:10.806 10300.841 2:51:40.841 10276.786 2:51:16.786
poker_I_vs_8 9545.055 2:39:05.055 9380.564 2:36:20.564 9872.084 2:44:32.084 10226.082 2:50:26.082 9830.342 2:43:50.342 9422.569 2:37:02.569 9912.194 2:45:12.194 10300.646 2:51:40.646
poker_1_vs_9 9179.436 2:32:59.436 9438.347 2:37:18.347 9893.532 2:44:53.532 10335.326 2:52:15.326 9776.855 2:42:56.855 9844.250 2:44:04.250 10195.108 2:49:55.108 10476.054 2:54:36.054
Average (poker) 10358.109 2:52:38.109 10515.184 2:55:15.184 11145.153 3:05:45.153 11539.135 3:12:19.135 10662.453 2:57:42.453 10604.934 2:56:44.934 11110.764 3:05:10.764 11290.599 3:08:10.599
RLCP 26551.162 7:22:31.162 7089.999 1:58:09.999 1922.670 0:32:02.670 606.831 0:10:06.831 27547.418 7:39:07.418 7270.635 2:01:10.635 1830.273 0:30:30.273 721.305 0:12:01.305
Final average 20250.122 5:37:30.122 10631.876 2:57:11.876 8644.262 2:24:04.262 8272.992 2:17:52.992 20885.613 5:48:05.613 10734.785 2:58:54.785 8575.044 2:22:55.044 8091.724 2:14:51.724

9E=C (S107) 85T sSwaiskg puv s1a8 £22n. /v 12 22doT A

S3

36 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

however, when larger values of mappers are considered, the runtime does not improve and it can even become worse.
This situation arises due to the smaller size of the Poker Hand cases of study.

Finally, it is necessary to recall that even when a larger number of mappers tend to provide better response times it
may not be wise to try to expand that number as much as possible. As we observed in Section 6.3.1, a large number
of mappers may cause a dramatically drop in the performance, an unwanted case when trying to extract information
from data. Therefore, it is needed to analyze the case under consideration to select an appropriate number of mappers
for the experiment. This number of mappers needs to provide a reasonable number of samples for each class to avoid
the small sample size problem and also enough data so that the experiments obtain lesser response times.

To sum up, our experimental study shows that cost-sensitive learning allows us to obtain better classification results
for the Chi-FRBCS algorithm. We have also observed that, in the big data versions, increasing the number of mappers
decreases the accuracy of the model, not only because the full information is not available but also because of the
induction of data intrinsic problems that difficult the classification with imbalanced datasets, such as the small sample
size problem. Finally, big data versions allow us to deal with huge amounts of data and obtain better response times
which are generally significantly decremented when the number of mappers of the original dataset is increased.

7. Concluding remarks

In this paper, we have introduced a linguistic cost-sensitive fuzzy rule-based classification method for imbalanced
big data called Chi-FRBCS-BigDataCS. Our aim was to obtain a model that is able to handle imbalanced big data
obtaining a good precision without incrementing the processing times. To do so, we use one of the most popular
approaches nowadays to deal with big data: the MapReduce framework, distributing the algorithm computing along
different processing units using the map and reduce operations that have been adapted to the calculations of the fuzzy
rule based classification system. We have also used cost-sensitive learning operations which have also modified the
algorithm to consider the misclassification costs, proposing a new approach, PCF-CS, to compute the rule weight that
consider these costs in its operations.

The experiments conducted in this work demonstrate that the MapReduce framework is able of dealing with big
data for fuzzy rule based classification systems. The use of a simple but effective fuzzy rule based classification system
such as the Chi et al.’s method as base of the approach has enabled the development of a proposal that can profit from
this simplicity to create an efficient approach. The proposal, Chi-FRBCS-BigDataCS, can obtain classification results
when its sequential counterpart was not able to provide results. Furthermore, the runtime needed by the proposal is
admissible according to the results presented. The inclusion of cost-sensitive learning in its way of working, using the
new rule weight procedure PCF-CS, has demonstrated to be a powerful collaborator when dealing with imbalanced
datasets providing effective classification results without largely increasing the processing times.

The performance of our model, Chi-FRBCS-BigDataCS, has been tested in an experimental study including
twenty-four imbalanced big data cases of study. These results corroborate the goodness of the integration of the
approaches that are used to solve the imbalanced problem and big data separately, namely the usage of the MapRe-
duce framework and cost-sensitive learning. Furthermore, the synergy between both strategies alleviates some data
intrinsic problems, like the small sample size problem, that are induced because of the way the learning is done.

Acknowledgements

This work was partially supported by the Spanish Ministry of Science and Technology under project TIN2011-
28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858. V. Lépez holds a FPU scholarship from
Spanish Ministry of Education.

References

[1] IBM, What is big data? Bringing big data to the enterprise, [Online; accessed December 2013], http://www-01.ibm.com/software/
data/bigdata/, 2012.

[2] P. Zikopoulos, C. Eaton, D. DeRoos, T. Deutsch, G. Lapis, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming
Data, McGraw-Hill, 2011.

[3] S. Madden, From databases to big data, IEEE Internet Comput. 16 (3) (2012) 4-6.

[4] A. Sathi, Big Data Analytics: Disruptive Technologies for Changing the Game, MC Press, 2012.

http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A696B3131s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A696B3131s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6D61643132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7361743132s1

V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38 37

[5] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng. 21 (9) (2009) 1263-1284.

[6] Y. Sun, A.K.C. Wong, M.S. Kamel, Classification of imbalanced data: A review, Int. J. Pattern Recognit. Artif. Intell. 23 (4) (2009) 687-719.

[7] V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An insight into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics, Inf. Sci. 250 (2013) 113-141.

[8] H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling with Linguistic Information Granules: Advanced Approaches to Linguistic
Data Mining, Springer-Verlag, 2004.

[9] Y. Jin, Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement, IEEE Trans. Fuzzy Syst. 8 (2)
(2000) 212-221.

[10] T.-P. Hong, Y.-C. Lee, M.-T. Wu, An effective parallel approach for genetic-fuzzy data mining, Expert Syst. Appl. 41 (2) (2014) 655-662.

[11] M. Rodriguez, D. Escalante, A. Peregrin, Efficient distributed genetic algorithm for rule extraction, Appl. Soft Comput. 11 (1) (2011) 733-743.

[12] Y. Nojima, H. Ishibuchi, I. Kuwajima, Parallel distributed genetic fuzzy rule selection, Soft Comput. 13 (5) (2009) 511-519.

[13] I. Robles, R. Alcald, J. Benitez, F. Herrera, Evolutionary parallel and gradually distributed lateral tuning of fuzzy rule-based systems, Evol.
Intel. 2 (1-2) (2009) 5-19.

[14] H. Ishibuchi, S. Mihara, Y. Nojima, Parallel distributed hybrid fuzzy GBML models with rule set migration and training data rotation, IEEE
Trans. Fuzzy Syst. 21 (2) (2013) 355-368.

[15] V. Lépez, A. Fernandez, J.G. Moreno-Torres, F. Herrera, Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification.
Open problems on intrinsic data characteristics, Expert Syst. Appl. 39 (7) (2012) 6585-6608.

[16] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer SMOTE, Synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002)
321-357.

[17] G.E.A.P.A. Batista, R.C. Prati, M.C. Monard, A study of the behaviour of several methods for balancing machine learning training data,
SIGKDD Explor. 6 (1) (2004) 20-29.

[18] C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the 17th IEEE International Joint Conference on Artificial Intelligence
(IICAT’01), 2001, pp. 973-978.

[19] B. Zadrozny, C. Elkan, Learning and making decisions when costs and probabilities are both unknown, in: Proceedings of the 7th International
Conference on Knowledge Discovery and Data Mining (KDD’01), 2001, pp. 204-213.

[20] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107-113.

[21] M. Wasikowski, X.-W. Chen, Combating the small sample class imbalance problem using feature selection, IEEE Trans. Knowl. Data Eng.
22 (10) (2010) 1388-1400.

[22] J.G. Moreno-Torres, T. Raeder, R. Aldiz-Rodriguez, N.V. Chawla, F. Herrera, A unifying view on dataset shift in classification, Pattern
Recognit. 45 (1) (2012) 521-530.

[23] Z. Chi, H. Yan, T. Pham, Fuzzy Algorithms with Applications to Image Processing and Pattern Recognition, World Scientific, 1996.

[24] T. Nakashima, G. Schaefer, Y. Yokota, H. Ishibuchi, Weighted fuzzy classifier and its application to image processing tasks, Fuzzy Sets Syst.
158 (2007) 284-294.

[25] V. Lépez, A. Ferndndez, M.J. del Jesus, F. Herrera, A hierarchical genetic fuzzy system based on genetic programming for addressing classi-
fication with highly imbalanced and borderline data-sets, Knowl.-Based Syst. 38 (2013) 85-104.

[26] A. Ferndandez, S. Garcia, M.J. del Jesus, F. Herrera, A study of the behaviour of linguistic fuzzy rule based classification systems in the
framework of imbalanced data-sets, Fuzzy Sets Syst. 159 (18) (2008) 2378-2398.

[27] A. Fernandez, M.J. del Jesus, F. Herrera, Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced
data-sets, Int. J. Approx. Reason. 50 (3) (2009) 561-577.

[28] K. Napierala, J. Stefanowski, S. Wilk, Learning from imbalanced data in presence of noisy and borderline examples, in: Proceedings of the 7th
International Conference on Rough Sets and Current Trends in Computing, RSCTC’ 10, in: Lecture Notes on Artificial Intelligence, vol. 6086,
2010, pp. 158-167.

[29] J.A. Séez, J. Luengo, F. Herrera, A first study on the noise impact in classes for fuzzy rule based classification systems, in: Proceedings of the
2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering, ISKE’ 10, IEEE Press, 2010, pp. 153-158.

[30] G.M. Weiss, The impact of small disjuncts on classifier learning, in: R. Stahlbock, S.F. Crone, S. Lessmann (Eds.), Data Mining, in: Annals
of Information Systems, vol. 8, Springer, 2010, pp. 193-226.

[31] J. Huang, C.X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Trans. Knowl. Data Eng. 17 (3) (2005) 299-310.

[32] T. White, Hadoop, The Definitive Guide, O’Reilly Media, Inc., 2012.

[33] D. Laney, 3D data management: Controlling data volume, velocity, and variety, META Group, 2001, Tech. rep., [Online; accessed December
2013], http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume- Velocity-and- Variety.pdf.

[34] M. Beyer, Gartner says solving big data challenge involves more than just managing volumes of data, [Online; accessed December 2013],
2011, http://www.gartner.com/newsroom/id/1731916.

[35] M. Beyer, D. Laney, The importance of big data: A definition, ID: G00235055, Retrieved from Gartner database [Online; accessed December
2013], 2012, http://www.gartner.com/id=2057415.

[36] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large clusters, in: Proceedings of the 6th Symposium on Operating System
Design and Implementation, OSDI 2004, 2004, pp. 137-150.

[37] J. Dean, S. Ghemawat, MapReduce: A flexible data processing tool, Commun. ACM 53 (1) (2010) 72-77.

[38] C. Lam, Hadoop in Action, Manning Publications Co., 2010.

[39] S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action, Manning Publications Co., 2011.

[40] J. Lin, MapReduce is good enough? If all you have is a hammer, throw away everything that’s not a nail!, Big Data 1 (1) (2013) 28-37.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing, in: Proceedings of the 9th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2012, 2012.

http://refhub.elsevier.com/S0165-0114(14)00056-6/bib68653039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib73756E3039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F70693133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F70693133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6973683034s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6973683034s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6A696E3030s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6A696E3030s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib686F6E3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib726F643131s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6E6F6A3039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib726F623039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib726F623039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6973683133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6973683133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F703132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F703132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6368613032s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6368613032s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6261743034s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6261743034s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib656C6B3031s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib656C6B3031s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A61643031s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A61643031s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6465613038s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7761733130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7761733130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib676F723132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib676F723132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6368693936s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6E616B3037s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6E616B3037s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F706B3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F706B3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6665723038s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6665723038s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6665723039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6665723039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib737465663130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib737465663130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib737465663130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7361657A3130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7361657A3130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7765693130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7765693130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6875613035s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7768693132s1
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://www.gartner.com/newsroom/id/1731916
http://www.gartner.com/id=2057415
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6465613034s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6465613034s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6465613130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C616D3130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6F77653131s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C696E3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A61683132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A61683132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A61683132s1

38 V. Lopez et al. / Fuzzy Sets and Systems 258 (2015) 5-38

[42] Apache Drill Project, Apache Drill, 2013, [Online; December 2013, accessed], http://incubator.apache.org/drill/.

[43] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, G. Fox, Twister: a runtime for iterative MapReduce, in: Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing (HPDC 2010), 2010, pp. 810-818.

[44] S. Das, Y. Sismanis, K.S. Beyer, R. Gemulla, P.J. Haas, J. McPherson, Ricardo: integrating R and Hadoop, in: Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD 2010), 2010, pp. 987-998.

[45] M. Bostock, O.V., J. Heer, D3 data-driven documents, IEEE Trans. Vis. Comput. Graph. 17 (12) (2011) 2301-2309.

[46] HCatalog, Hcatalog, [Online; accessed December 2013, accessed] http://hive.apache.org/hcatalog/ (2013).

[47] J. Leibiusky, G. Eisbruch, D. Simonassi, Getting Started with Storm, O’Reilly Media, Inc., 2012.

[48] Cloudera, Cloudera Impala, [Online; accessed December 2013] (2013). http://www.cloudera.com/content/cloudera/en/products/cdh/
impala.html.

[49] Q. Yang, X. Wu, 10 challenging problems in data mining research, Int. J. Inf. Technol. Decis. Mak. 5 (4) (2006) 597-604.

[50] T. Khoshgoftaar, K. Gao, A. Napolitano, R. Wald, A comparative study of iterative and non-iterative feature selection techniques for software
defect prediction, Inf. Syst. Front., in press, http://dx.doi.org/10.1007/s10796-013-9430-0.

[51] S. Wang, X. Yao, Using class imbalance learning for software defect prediction, IEEE Trans. Reliab. 62 (2) (2013) 434-443.

[52] L. Zhou, Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods, Knowl.-Based Syst.
41 (2013) 16-25.

[53] A. Gudys, M. Szczesniak, M. Sikora, I. Makalowska, HuntMi: An efficient and taxon-specific approach in pre-miRNA identification, BMC
Bioinform. 14 (2013) 1-10, Article number 83.

[54] Q. Wei, R. Dunbrack Jr., The role of balanced training and testing data sets for binary classifiers in bioinformatics, PLoS ONE 8 (7) (2013)
1-12, Article number e67863.

[55] H. Yu, J. Ni, J. Zhao, ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray
data, Neurocomputing 101 (2013) 309-318.

[56] Y.-H. Lee, P. Hu, T.-H. Cheng, T.-C. Huang, W.-Y. Chuang, A preclustering-based ensemble learning technique for acute appendicitis diag-
noses, Artif. Intell. Med. 58 (2) (2013) 115-124.

[57] J. Nahar, T. Imam, K. Tickle, Y.-P. Chen, Computational intelligence for heart disease diagnosis: A medical knowledge driven approach,
Expert Syst. Appl. 40 (1) (2013) 96-104.

[58] A. Orriols-Puig, E. Bernad6-Mansilla, Evolutionary rule-based systems for imbalanced datasets, Soft Comput. 13 (3) (2009) 213-225.

[59] V. Garcia, R.A. Mollineda, J.S. Sanchez, On the k-NN performance in a challenging scenario of imbalance and overlapping, Pattern Anal.
Appl. 11 (3—4) (2008) 269-280.

[60] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Folleco, An empirical study of the classification performance of learners on imbalanced and
noisy software quality data, Inf. Sci. 259 (2014) 571-595.

[61] J. Stefanowski, Overlapping, rare examples and class decomposition in learning classifiers from imbalanced data, in: Smart Innovation,
Systems and Technologies, vol. 13, 2013, pp. 277-306.

[62] A. Storkey, When training and test sets are different: Characterizing learning transfer, in: J. Quifionero-Candela, M. Sugiyama, A.
Schwaighofer, N.D. Lawrence (Eds.), Dataset Shift in Machine Learning, MIT Press, 2009, pp. 3-28.

[63] H. Shimodaira, Improving predictive inference under covariate shift by weighting the log-likelihood function, J. Stat. Plan. Inference 90 (2)
(2000) 227-244.

[64] V. Lopez, L. Triguero, C. Carmona, S. Garcia, F. Herrera, Addressing imbalanced classification with instance generation techniques: IPADE-ID,
Neurocomputing 126 (2014) 15-28.

[65] P. Domingos, MetaCost: A general method for making classifiers cost-sensitive, in: Proceedings of the 5th International Conference on
Knowledge Discovery and Data Mining (KDD’99), 1999, pp. 155-164.

[66] B. Zadrozny, J. Langford, N. Abe, Cost-sensitive learning by cost-proportionate example weighting, in: Proceedings of the 3rd IEEE Interna-
tional Conference on Data Mining (ICDM’03), 2003, pp. 435—442.

[67] M. Galar, A. Ferndandez, E. Barrenechea, H. Bustince, F. Herrera, A review on ensembles for class imbalance problem: Bagging, boosting and
hybrid based approaches, IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 42 (4) (2012) 463-484.

[68] A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit. 30 (7) (1997)
1145-1159.

[69] H. Ishibuchi, T. Nakashima, Effect of rule weights in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 9 (4) (2001) 506-515.

[70] H. Ishibuchi, T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems, IEEE Trans. Fuzzy Syst. 13 (2005) 428—435.

[71] O. Cordén, M.J. del Jesus, F. Herrera, A proposal on reasoning methods in fuzzy rule-based classification systems, Int. J. Approx. Reason.
20 (1) (1999) 21-45.

[72] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples, IEEE Trans. Syst. Man Cybern. 22 (6) (1992) 1414-1427.

[73] K. Bache, M. Lichman, UCI machine learning repository, [Online; accessed December 2013], 2013, http://archive.ics.uci.edu/ml.

[74] M. Fazzolari, B. Giglio, R. Alcald, F. Marcelloni, F. Herrera, A study on the application of instance selection techniques in genetic fuzzy
rule-based classification systems: Accuracy-complexity trade-off, Knowl.-Based Syst. 54 (2014) 32-41.

[75] J. Alcala-Fdez, L. Sanchez, S. Garcia, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernandez,
F. Herrera, KEEL: a software tool to assess evolutionary algorithms for data mining problems, Soft Comput. 13 (2009) 307-318.

[76] J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sanchez, F. Herrera, KEEL data-mining software tool: Data set repository,
integration of algorithms and experimental analysis framework, J. Mult.-Valued Log. Soft Comput. 17 (2-3) (2011) 255-287.

http://incubator.apache.org/drill/
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib656B613130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib656B613130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6461733130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6461733130s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib626F733131s1
http://hive.apache.org/hcatalog/
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C65693132s1
http://www.cloudera.com/content/cloudera/en/products/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products/cdh/impala.html
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib79616E3036s1
http://dx.doi.org/10.1007/s10796-013-9430-0
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib77616E3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A686F3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A686F3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6775643133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6775643133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7765693133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7765693133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib79753133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib79753133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C65653133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C65653133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6E61683133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6E61683133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6F72723039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib73616E3038s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib73616E3038s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7365693133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7365693133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7374653133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7374653133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib73746F3039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib73746F3039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7368693030s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7368693030s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F706E3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6C6F706E3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib646F6D3939s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib646F6D3939s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A61643033s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib7A61643033s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib67616C3132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib67616C3132s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6272613937s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6272613937s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6973683031s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib6973683035s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib636F723939s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib636F723939s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib77616E3932s1
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib66617A3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib66617A3133s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib616C633039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib616C633039s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib616C633131s1
http://refhub.elsevier.com/S0165-0114(14)00056-6/bib616C633131s1

	Cost-sensitive linguistic fuzzy rule based classiﬁcation systems under the MapReduce framework for imbalanced big data
	1 Introduction
	2 Classiﬁcation with big data and imbalanced datasets
	2.1 The difﬁculties of classiﬁcation with big data
	2.2 Classiﬁcation with imbalanced datasets

	3 Classiﬁcation with fuzzy rule based classiﬁcation systems: The Chi et al.'s algorithm and the scalability problem
	3.1 Fuzzy rule based classiﬁcation systems
	3.2 The Chi et al.'s algorithm for classiﬁcation
	3.3 Testing the scalability of the Chi-FRBCS algorithm

	4 The Chi et al.'s algorithm for classiﬁcation with imbalanced datasets and the scalability problem
	4.1 The Chi et al.'s algorithm for classiﬁcation with imbalanced datasets: using the penalized cost-sensitive certainty factor
	4.2 Testing the scalability of the Chi-FRBCS-CS algorithm

	5 The Chi-FRBCS algorithm for imbalanced big data: A MapReduce design
	5.1 General overview of the Chi-FRBCS algorithm for big data
	5.2 Building the knowledge base for the Chi-FRBCS-BigDataCS using a MapReduce design
	5.3 Classiﬁcation of new patterns
	5.4 Sample procedure of the Chi-FRBCS-BigDataCS algorithm for Imbalanced Big Data: A Case of Study

	6 Experimental study
	6.1 Datasets used in the study
	6.2 Algorithms and parameter settings
	6.3 Analysis of the Chi-FRBCS-BigDataCS behavior
	6.3.1 Analysis on the precision of the model
	6.3.2 Analysis on the runtime of the model

	7 Concluding remarks
	Acknowledgements
	References

