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Abstract

Many different proposals exist for the definition of lower and upper approximation operators in covering-based rough
sets. In this paper, we establish relationships between themost commonly used operators, using especially concepts
of duality, conjugacy and adjointness (also referred to as Galois connection). We highlight the importance of the
adjointness condition as a way to provide a meaningful link,aside from duality, between a pair of approximation
operators. Moreover, we show that a pair of a lower and an upper approximation operator can be dual and adjoint at the
same time if and only if the upper approximation is self conjugate, and we relate this result to a similar characterization
obtained for the generalized rough set model based on a binary relation.

Key words: rough sets, coverings, approximations, adjointness, Galois connections.

1. Introduction

Rough set theory, proposed by Pawlak [16] in 1982, is a prominent tool for dealing with uncertainty and in-
completeness in information systems. It revolves around the notion of discernibility of objects, which classically is
represented by means of an equivalence relation, or equivalently a partition of the set of objects. The theory has been
generalized from different perspectives. One generalization of rough sets is to replace the equivalence relation by a
general binary relation. In this case, the binary relation determines collections of sets that no longer form a partition of
U . This generalization has been used in applications with incomplete information systems and tables with continuous
attributes [9, 10, 27]. A second generalization is to replace the partition obtained by the equivalence relation with a
covering; i.e., a collection of nonempty sets with union equal toU . There are many works in these two directions and
some connections between the two generalizations have beenestablished, for example in [27, 42, 41, 38].

In our work, we focus on covering-based approaches. Recently, Yao and Yao [32] introduced a general framework
for the study of dual pairs of covering-based approximationoperators, distinguishing between element based, granule
based and subsystem based definitions. They emphasized the crucial importance of duality of the lower and upper
approximations, stating that without this condition one has no reason to investigate them jointly as a pair. Nevertheless,
a lot of other approximation pairs outside this framework have been studied in literature; for instance, in [25], Yang
and Li present a summary of seven non dual pairs of approximation operators used bẏZakowski [33], Pomykala [17],
Tsang et al. [18], Zhu [41], Zhu and Wang [43], Xu and Wang [23]. On the other hand, in a recent paper, Ciucci et al.
[4] study opposition diagrams for dual and non-dual approximations in rough set theory, indicating the relevance of
both.

In this paper, we draw attention to another important property of classical rough sets, namely the fact that the lower
approximationapr and the upper approximationapr form a Galois connection, or put differently, that they makeup an
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adjoint pair. Galois connections have been used in various areas of mathematics and theoretical computer science as
a way of providing a strong link between (morphisms on) ordered structures [1, 15]. In the context of rough sets, the
adjointness property guarantees for example that the fix points ofapr andapr coincide, in other words,apr(A) = A iff
apr(A) = A. This is particularly important when considering the notion of definable sets, i.e., subsets of the universe
for which the approximations equal the original set. Moreover, if an upper approximationapr has an adjointapr, then
it is unique, and vice versa a lower approximationapr can have at most one co-adjoint, so the Galois connection, like
duality, provides a one-to-one connection between approximation operators.

The adjointness property also plays an important role in thedefinition of logical systems derived from rough sets,
in particular modal logics, since lower approximation is related with the necessity operator and upper approximation
with the possibility operator. For example, Järvinen et al. describe in [12] an information logic for rough sets using
the Galois connection, while Yao shows in [30] that adjointness is necessary for modal logic typeB. Furthermore, a
Galois Connection also holds between the set theoretic operators used in Formal Concepts Analysis, which bears a
close relationship to rough set theory [28].

The objective of this paper is twofold: first, we want to establish relationships between the various definitions of
approximation operators in the covering-based rough set model; for this, we will be using some lattice concepts for
rough sets, such as meet and join preserving functions, conjugates, duals and Galois connections. Secondly, we want
to evaluate the existing proposals with respect to the adjointness condition, providing in particular a characterization
of approximation operators pairs that are both dual and adjoint. In this way, we hope to provide a clear cut roadmap
for the covering-based rough set landscape, pinpointing the most useful operators among the many that have been
proposed in the literature and guiding future research directions. In particular, we believe our results are helpful to
select appropriate approximation operators in typical rough set applications such as attribute selection and classifica-
tion; unlike in the classical case, there are many possibilities to define the approximations, and the particular choice
is likely to affect the quality of these applications.

The remainder of this paper is organized as follows. Section2 presents preliminary concepts about rough sets and
lower and upper approximations in covering based rough sets, as well as the necessary lattice concepts about duality,
conjugacy and adjointness. In Section 3, we present equivalences and relationships between various approximation
operators, evaluate which of them satisfy adjointness, andend with the characterization theorem for dual and adjoint
pairs. We also relate this characterization with previous results in generalized rough set theory based on a binary
relation. Finally, Section 4 presents some conclusions andoutlines future work.

2. Preliminaries

Throughout this paper, we assume thatU is a finite and nonempty set.P(U) represents the collection of subsets
of U .

2.1. Three definitions of Pawlak rough sets approximations

In Pawlak’s rough set model, an approximation space is an ordered pairapr = (U,E), whereE is an equivalence
relation onU . According to [29, 32], there are three different, but equivalent ways to define lower and upper approxi-
mation operators: element based definition, granule based definition and subsystem based definition. For eachA⊆U ,
the lower and upper approximations are defined by:

Element based definition.
apr(A) = {x∈U : [x]E ⊆ A} (1)

apr(A) = {x∈U : [x]E ∩A, /0} (2)

Granule based definition.
apr(A) =

⋃

{[x]E ∈U/E : [x]E ⊆ A} (3)

apr(A) =
⋃

{[x]E ∈U/E : [x]E ∩A, /0} (4)
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Subsystem based definition.
apr(A) =

⋃

{X ∈ σ(U/E) : X ⊆ A} (5)

apr(A) =
⋂

{X ∈ σ(U/E) : X ⊇ A} (6)

whereσ(U/E) is the σ algebra that is obtained from the equivalence classesU/E, by adding the empty set and
making it closed under set unions.

2.2. Covering based rough sets
Many authors have investigated generalized rough set models obtained by changing the condition thatE is an

equivalence relation, or equivalently, thatU/E forms a partition. In particular, we consider the case wherethe par-
tition is replaced by a covering ofU . Covering based rough sets and tolerance relation based rough sets are used in
information systems with missing data.

Definition 1. [36] Let C = {Ki} be a family of nonempty subsets of U.C is called a covering of U if∪Ki = U. The
ordered pair(U,C) is called a covering approximation space.

It is clear that a partition generated by an equivalence relation is a special case of a covering ofU , so the concept
of covering is a generalization of a partition.

2.2.1. Framework of dual approximation operators
In [32], Yao and Yao proposed a general framework for the study of covering based rough sets. It is based on

the observation that when the partitionU/E is generalized to a covering, the different definitions of lower and up-
per approximations in Section 2.1 are no longer equivalent.A distinguishing characteristic of their framework is
the requirement that the obtained lower and upper approximation operators form a dual pair, that is, forA ⊆ U ,
apr(∼ A) =∼ apr(A), where∼ A represents the complement ofA, i.e.,∼ A = U \A.

Below, we briefly review the generalizations of the element,granule and subsystem based definitions. In the
element based definition, equivalence classes are replacedby neighborhood operators:

Definition 2. [32] A neighborhood operator is a mapping N: U → P(U). If N(x) , /0 for all x ∈U, N is called a
serial neighborhood operator. If x∈ N(x) for all x ∈U, N is called a reflexive neighborhood operator.

Each neighborhood operator defines an ordered pair(aprN,apr
N
) of dual approximation operators:

apr
N
(A) = {x∈U : N(x) ⊆ A} (7)

aprN(A) = {x∈U : N(x)∩A, /0} (8)

Different neighborhood operators, and hence different element based definitions of covering based rough sets, can
be obtained from a coveringC. In general, we are interested in the setsK in C such thatx∈ K:

Definition 3. [32] If C is a covering of U and x∈U, a neighborhood systemC (C,x) is defined by:

C (C,x) = {K ∈ C : x∈ K} (9)

In a neighborhood systemC (C,x), the minimal and maximal sets that contain an elementx∈ U are particularly
important.

Definition 4. Let (U,C) be a covering approximation space and x in U. The set

md(C,x) = {K ∈ C (C,x) : (∀S∈ C (C,x),S⊆ K) ⇒ K = S)} (10)

is called the minimal description of x. [2] On the other hand,the set

MD(C,x) = {K ∈ C (C,x) : (∀S∈ C (C,x),S⊇ K) ⇒ K = S} (11)

is called the maximal description of x. [44]
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The setsmd(C,x) andMD(C,x) represent extreme points ofC (C,x): for anyK ∈ C (C,x), we can find neighbor-
hoodsK1 ∈ md(C,x) andK2 ∈ MD(C,x) such thatK1 ⊆ K ⊆ K2. Frommd(C,x) andMD(C,x), Yao and Yao [32]
defined the following neighborhood operators:

1. N1(x) = ∩{K : K ∈ md(C,x)}
2. N2(x) = ∪{K : K ∈ md(C,x)}
3. N3(x) = ∩{K : K ∈ MD(C,x)}
4. N4(x) = ∪{K : K ∈ MD(C,x)}

The setN1(x) =∩md(C,x) for eachx∈U , is called the minimal neighborhood ofx, and it satisfies some important
properties as is shown in the following proposition:

Proposition 1. [25] Let C be a covering of U and K∈ C, then

• K = ∪x∈KN1(x)

• If y ∈ N1(x) then N1(y) ⊆ N1(x).

Example 1. For simplicity, we use a special notation for sets and collections. For example, the set{1,2,3} will be
denoted by 123 and the collection{{1,2,3},{2,3,5}}will be written as{123, 235}. Let us consider the coveringC =
{1,5,6,14,16,123,456,2345,12346,235,23456,2356,12345} of U = 123456. The neighborhood systemC (C,x),
the minimal description md(C,x) and the maximal description MD(C,x) are listed in Table 1.

x C (C,x) md(C,x) MD(C,x)
1 {1, 14, 16, 123, 12346, 12345} {1} {12346, 12345}
2 {123, 2345, 12346, 235, 23456, 2356, 12345} {123, 235} {12346, 12345, 23456}
3 {123, 2345, 12346, 235, 23456, 2356, 12345} {123, 235} {12346, 12345, 23456}
4 {14, 456, 2345, 12346, 23456, 12345} {14, 456, 2345} {12346, 12345, 23456}
5 {5, 456, 2345, 235, 2356, 12345} {5} {23456, 12345}
6 {6, 16, 456, 12346, 23456, 2356} {6} {12346, 23456}

Table 1: Illustration of neighborhood system, minimal and maximal description.

The four neighborhood operators obtained fromC (C,x) are listed in Table 2.

x N1(x) N2(x) N3(x) N4(x)
1 1 1 1234 123456
2 23 1235 234 123456
3 23 1235 234 123456
4 4 123456 234 123456
5 5 5 2345 123456
6 6 6 2346 123456

Table 2: Illustration of neighborhood operators.

For the set A= 246, we have that apr
N1

(A) = 46, because N1(x) ⊆ A only for x= 4 and x= 6. apr
N2

(A) = 6 and

apr
N3

(A)= apr
N4

(A)= /0. The upper approximations are:aprN1
(A)= aprN2

(A)= 2346, andaprN3
(A)= aprN4

(A) =

123456.

Generalizing the granule based definitions (3) and (4), the following dual pairs of approximation operators based
on a coveringC were considered in [32]:
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apr′
C
(A) =

⋃

{K ∈ C : K ⊆ A} = {x∈U : (∃K ∈ C)(x∈ K∧K ⊆ A)} (12)

apr′C(A) = ∼ apr′
C
(∼ A) = {x∈U : (∀K ∈ C)(x∈ K ⇒ K∩A, /0)} (13)

apr′′
C
(A) = ∼ apr′′C(∼ A) = {x∈U : (∀K ∈ C)(x∈ K ⇒ K ⊆ A)} (14)

apr′′C(A) =
⋃

{K ∈ C : K∩A, /0} = {x∈U : (∃K ∈ C)(x∈ K ∧K∩A, /0)} (15)

(apr′C,apr′
C
) and(apr′′C,apr′′

C
) are referred to as the tight and loose pair of approximations1, reflecting the fact

thatapr′′
C
(A) ⊆ apr′

C
(A) ⊆ A⊆ apr′C(A) ⊆ apr′′C(A), for all A⊆U [6, 17].

Furthermore, Yao and Yao introduced four new coverings derived from a coveringC in [32]:

1. C1 = ∪{md(C,x) : x∈U}
2. C2 = ∪{MD(C,x) : x∈U}
3. C3 = {∩(md(C,x)) : x∈U} = {∩(C (C,x)) : x∈U}
4. C4 = {∪(MD(C,x)) : x∈U} = {∪(C (C,x)) : x∈U}

For example, the coveringC1 is the collection of all sets in the minimal description of each x ∈ U , while C3 is
the collection of the intersections of minimal descriptions for eachx ∈ U , i.e., {N1(x) : x ∈ U}. Additionally, they
considered the so-called intersection reductC∩ and union reductC∪ of a coveringC :

C∩ = C\
{

K ∈ C : (∃K ⊆ C\ {K})
(

K =
⋂

K
)}

(16)

C∪ = C\
{

K ∈ C : (∃K ⊆ C\ {K})
(

K =
⋃

K
)}

(17)

These reducts eliminate intersection (respectively, union) reducible elements from the covering, and it can be
proven that they also form a covering ofU .

Each of the above six coverings determines two pairs of dual approximations given by equations (12) and (13) and
equations (14) and (15), respectively.

Example 2. The six coverings obtained from the coveringC in Example 1 are:

1. C1 = {1,123,235,14,456,2345,5,6}
2. C2 = {12346,12345,23456}
3. C3 = {1,23,4,5,6}
4. C4 = {123456}
5. C∪ = {1,123,235,14,456,2345,5,6}
6. C∩ = {123,456,2345,12346,5,23456,14,16,2356,12345}

The lower and upper approximations of A= 246using the operators discussed above are shown in Table 3.

Covering apr′′
C

apr′
C

apr′C apr′′C
C /0 6 2346 123456
C1 /0 6 2346 12346
C2 /0 /0 123456 123456
C3 46 46 2346 2346
C4 /0 123456 123456 123456
C∪ /0 6 2346 123456
C∩ /0 /0 12346 123456

Table 3: Illustration of granule-based definitions of approximation operations.

1By contrast, note that in [5],apr′C is called tight upper approximation, referring to the fact that all elements ofC (C,x) are taken into account,
giving rise to a strict or ”tight” requirement; on the other hand,apr′

C
is called loose lower approximation in the same paper, meaning that we only

look at the best element inC (C,x), which is a more flexible, ”loose” demand.
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Finally, to generalize the subsystem based definitions (5) and (6), Yao and Yao used the notion of a closure system
overU , i.e., a family of subsets ofU that containsU and is closed under set intersection. Given a closure systemS
overU , one can construct its dual systemS′, containing the complements of eachK in S, as follows:

S′ = {∼ K : K ∈ S} (18)

The systemS′ contains /0 and it is closed under set union. GivenS= (S′,S), a pair of dual lower and upper
approximations can be defined as follows:

apr
S
(A) =

⋃

{K ∈ S′ : K ⊆ A} (19)

aprS(A) =
⋂

{K ∈ S : K ⊇ A} (20)

As a particular example of a closure system, [32] consideredthe so-called intersection closureS∩,C of a covering
C, i.e., the minimal subset ofP(U) that containsC, /0 andU , and is closed under set intersection. On the other
hand, the union closure ofC, denoted byS∪,C, is the minimal subset ofP(U) that containsC, /0 andU , and is closed
under set union. It can be shown that the dual systemS′∪,C forms a closure system. BothS∩ = ((S∩,C)′, S∩,C) and
S∪ = (S∪,C,(S∪,C)′) can be used to obtain pairs of dual approximation operationsby means of Eqs. (19) and (20).

Example 3. For the coveringC, the intersection and union closure can be obtained as follows.

• S∩,C = C∪{ /0,1,24,5,13,56,6,123456}

• S∪,C = C∪{ /0,1236,1235,1234,12356,1456,156,146,15,145,56,123456}

The corresponding lower approximations of A= 246are: apr
S∩

(A) = 6 and apr
S∪

(A) = 6. The upper approxi-

mations are:aprS∩(A) = 2346andaprS∪(A) = 2346.

Summarizing, twenty pairs of dual approximation operatorswere defined in this framework: four from the element
based definition based on neighborhood operators, fourteenfrom the granule based definition, based on the covering
C and six derived coverings, and two from the subsystem based definition, using intersection and union closure. All
pairs are listed in Table 4.

# Dual pair # Dual pair
1 aprN1

apr
N1

2 aprN2
apr

N2

3 aprN3
apr

N3
4 aprN4

apr
N4

5 apr′C apr′
C

6 apr′′C apr′′
C

7 apr′C1
apr′

C1
8 apr′′C1

apr′′
C1

9 apr′C2
apr′

C2
10 apr′′C2

apr′′
C2

11 apr′C3
apr′

C3
12 apr′′C3

apr′′
C3

13 apr′C4
apr′

C4
14 apr′′C4

apr′′
C4

15 apr′C∩
apr′

C∩
16 apr′′C∩

apr′′
C∩

17 apr′C∪
apr′

C∪
18 apr′′C∪

apr′′
C∪

19 aprS∩ apr
S∩

20 aprS∪ apr
S∪

Table 4: List of dual pairs of approximation operators considered in [32].

2.2.2. Framework of non-dual approximation operators
Another important line of research on covering-based roughsets has focused on pairs of approximation operators

that are not necessarily dual. The first of such proposals goes back toŻakowski [33], who was in fact the first to
generalize Pawlak’s rough set theory from a partition to a covering. In recent papers [19, 25], a total of two lower
approximation operators and seven upper approximation aresummarized, which are listed below.2

2There is no uniform notation for these approximation operators in literature. For example in [34],SH refers to the sixth upper approximation,
while in [40] SH refers to the second upper approximation. For ease of reference, here we use numerical subscripts in the definitions.
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For a coveringC of U , the principal lower approximations forA⊆U are:

• LC
1 (A) = ∪{K ∈ C : K ⊆ A} = apr′

C
(A)

• LC
2 (A) = ∪{N1(x) : x∈U ∧N1(x) ⊆ A}

It can be checked thatLC
2 is the particular case ofLC

1 when we useC3 instead ofC, soLC
2 = apr′

C3
. The seven

upper approximations are listed as follows:

• HC
1 (A) = LC

1 (A)∪ (∪{md(C,x) : x∈ A−LC
1 (A)})

• HC
2 (A) = ∪{K ∈ C : K∩A, /0} = apr′′C(A)

• HC
3 (A) = ∪{md(C,x) : x∈ A}

• HC
4 (A) = LC

1 (A)∪ (∪{K : K ∩ (A−LC
1 (A)) , /0})

• HC
5 (A) = ∪{N1(x) : x∈ A}

• HC
6 (A) = {x : N1(x)∩A, /0} = aprN1

(A)

• HC
7 (A) = ∪{N1(x) : N1(x)∩A, /0}

The couple(HC
1 ,LC

1 ) was proposed bẏZakowski in [33]. Pomykala [17] considered(HC
2 ,LC

1 ), while Tsang et al.
studied(HC

3 ,LC
1 ) in [18]. Zhu and Wang defined(HC

4 ,LC
1 ) in [43], while (HC

5 ,LC
1 ) was considered by Zhu in [41]. Xu

and Wang proposed(HC
6 ,LC

2 ), and finally(HC
7 ,LC

2 ) was discussed by Xu and Zhang in [24].
The definitions ofLC

2 , HC
5 , HC

6 andHC
7 can generate other approximations ifN1 is replaced by another neighbor-

hood operator. The operatorsHC
1 , HC

3 , HC
4 andHC

5 do not appear explicitly in Yao’s framework, althoughHC
1 andHC

4
can be expressed as union of a lower and an upper approximation operator. For example,HC

1 can be expressed as:

HC
1 (A) = apr′

C
(A)∪apr′′C(A−apr′

C
(A)) (21)

Example 4. In Table 5, we present the upper approximations for some subsets of U and the coveringC = {12,124,25,
256,345,26,6}. Since there are no two identical columns, we can conclude that all seven upper approximations are
different.

A HC
1 HC

2 HC
3 HC

4 HC
5 HC

6 HC
7

16 126 12456 126 1246 126 16 126
25 25 123456 123456 25 25 1235 12345
123 12345 123456 123456 12345 12345 123 12345
34 12345 12345 12345 12345 345 34 345

Table 5: Illustration of upper aproximationsHC
1 –HC

7 .

2.3. Dual, conjugate and adjoint operators

In this subsection, we recall the basic relations among dual, conjugate and adjoint operators, following the ideas
introduced by Järvinen in [11] in the context of lattices.

Let L be a bounded lattice with a least element 0 and greatest element 1. Fora ∈ L, we say thatb ∈ L is a
complement ofa if a∨b= 1 anda∧b= 0. A distributive and bounded lattice with complement for all a∈ L is called
a Boolean lattice. In particular, the collectionP(U) of subsets of a setU , with least element /0, greatest elementU
and intersection, union and complement operations is a Boolean lattice.
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2.3.1. Meet and join morphisms
If L,K are lattices, a mapf : L → K is a complete join morphism if wheneverS⊆ L and∨Sexists inL, then∨ f (S)

exists inK and f (∨S) = ∨ f (S). Analogously, a mapf : L → K is a complete meet morphism if wheneverS⊆ L and
∧Sexists inL, then∧ f (S) exists inK and f (∧S) = ∧ f (S).

A finite lattice is always complete, i.e.∨Sand∧Sexist for allS⊆ L. In this case a meet morphismf (a morphism
that satisfiesf (a∧b) = f (a)∧ f (b) for a andb in L) is a complete meet morphism, and dually, a join morphismf (a
morphism that satisfiesf (a∨b) = f (a)∨ f (b) for a andb in L) is a complete join morphism. Since in this paper, we
assume thatU is a finite universe, for the approximation operators we consider it will thus be sufficient to establish
that they are meet (resp., join) morphisms.

We recall some known results about the approximation operators from Section 2.2.2. Zhu showed thatHC
2 , HC

3
andHC

4 are join morphisms in [37, 40, 44], while Wu et al. in [21] showed this forHC
5 .

Moreover, in [36] it was shown that the upper approximationHC
1 is a join morphism and the lower approximation

LC
1 is a meet morphism if and only ifC is a unary covering. Recall that a coveringC is unary if for allx∈U , md(C,x)

is a singleton, or equivalently if∀K1,K2 ∈ C, K1∩K2 is a union of elements ofC. [44] As a particular example, the
coveringC3 obtained from any coveringC is a unary covering.

2.3.2. Duality
Definition 5. [11] Let f ,g : B→ B be two self-maps on a complete Boolean lattice B. We say thatg is the dual of f ,
if for all x ∈ B,

g(∼ x) =∼ f (x),

where∼ x represents the complement of x∈ B.

For any f , we denote byf ∂ the dual off . If g = f ∂ then f = g∂ .
An interesting relation between meet morphisms, join morphisms and duality can be seen in the following propo-

sition:

Proposition 2. [20] If (apr,apr) is a dual pair of approximation operators, then apris a meet morphism if and only
if apr is a join morphism.

2.3.3. Conjugacy
Definition 6. [11] Let f and g be two self-maps on a complete Boolean latticeB. We say that g is a conjugate of f , if
for all x,y∈ B,

x∧ f (y) = 0 if and only if y∧g(x) = 0.

If g is a conjugate off , then f is a conjugate ofg. If a map f is the conjugate of itself, thenf is called self-
conjugate. The conjugate off will be denoted asf c.

Proposition 3. [11] Let f be a self-map on a complete Boolean lattice B. Then fhas a conjugate if and only if f is a
complete join morphism on B.

From the proof given in [11], the conjugate off is defined, fory∈ B, by:

g(y) =∼ (∨{x : f (x) ≤∼ y}) = ∧{∼ x : f (x)∧y = 0} (22)

In the context of rough sets, the concept of conjugate is related to upper approximation operators. Here, we also
define a dual notion of co-conjugate for lower approximations, as follows:

Definition 7. Let f and g be two self-maps on a complete Boolean lattice B. Wesay that g is a co-conjugate of f , if
for all x,y∈ B,

x∨ f (y) = 1 if and only if y∨g(x) = 1.

If g is a co-conjugate off , then f is a co-conjugate ofg. If a map f is the co-conjugate of itself, thenf is called
self co-conjugate. The co-conjugate off will be denoted asfc.
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Proposition 4. If ( f1,g1) and( f2,g2) are pairs of dual self-maps on a complete Boolean lattice B, then f1 and f2 are
conjugate if and only if g1 and g2 are co-conjugate.

PROOF. We show just one part of the equivalence. The other part is similar.
If f c

1 = f2 then, for y∈ B:

x∨g1(y) = 1⇔∼ x∧ ∼ g1(y) = 0

⇔∼ x∧ f1(∼ y) = 0

⇔∼ y∧ f2(∼ x) = 0

⇔ y∨∼ f2(∼ x) = 1

⇔ y∨g2(x) = 1

So,(g1)c = g2.

2.3.4. Adjointness
The idea of adjoint can be found in various settings in mathematics and theoretical computer science. We consider

the particular case of adjoints defined on preordered sets, known as Galois connection.

Definition 8. [11] Let P and Q be two preorders; an ordered pair( f ,g) of maps f: P→ Q and g: Q→ P is called a
Galois connection if for all p∈ P and q∈ Q,

f (p) ≤ q if and only if p≤ g(q). (23)

The mapg is called theadjointof f and will be denoted asf a. The mapf is called theco-adjointof g and will be
denoted asga. It is easy to show that the maps are order-preserving, i.e.,if p≤ p′ then f (p)≤ f (p′) and ifq≤ q′, then
g(q) ≤ g(q′), and that the adjointness condition (23) is equivalent to the condition thatf andg are order-preserving
and that for allp andq, p≤ g( f (p)) and f (g(q)) ≤ q.

Conditions about the existence of adjoints and co-adjointsof a morphism between complete lattices are given in
the following proposition.

Proposition 5. [11] Let K and L be complete lattices.

1. A map f : L → K has an adjoint if and only if f is a complete join morphism.
2. A map g: K → L has a co-adjoint if and only if g is a complete meet morphism.

In this case, the adjoint off is given by:

f a(y) = ∨{x∈ L : f (x) ≤ y} (24)

and the co-adjoint ofg is obtained as:
ga(y) = ∧{x∈ K : y≤ g(x)}. (25)

The following important proposition establishes the relationship between duality, conjugacy and adjointness, and
will be used frequently in the next section.

Proposition 6. [11] Let B be a complete Boolean lattice. For any complete join morphism f on B, its adjoint is the
dual of the conjugate of f . On the other hand, for any completemeet morphism g on B, its co-adjoint is the conjugate
of the dual of g.

In classical rough set theory, the lower and upper approximations(apr,apr) form a Galois connection onP(U).
Järvinen shows in [11] that there also exist Galois connections in generalized rough set based on a binary relation. In
particular, ifR is a binary relation onU andx∈U , the sets:

R(x) = {y∈U : xRy} andR−1(x) = {y∈U : yRx} (26)
9



are called successor and predecessor neighborhoods, respectively. The ordered pairs(aprR,apr
R−1) and(aprR−1,apr

R
),

defined using the element based definitions (7) and (8), withR(x) andR−1(x) instead ofN(x), form adjoint pairs.
Moreover,(aprR,apr

R
) and(aprR−1,apr−1

R
) are dual pairs.

On the other hand, Yao [26] established the following important proposition which relates dual pairs of approxi-
mation operators with the relation-based generalized rough set model considered by Järvinen.

Proposition 7. [26] Suppose(apr,apr) : P(U) → P(U) is a dual pair of approximation operators, such thatapr
is a join morphism andapr( /0) = /0. There exists a symmetric relation R on U, such that apr(A) = apr

R
(A) and

apr(A) = aprR(A) for all A ⊆U if and only if the pair(apr,apr) satisfies: A⊆ apr(apr(A)).

By duality, we know thatapr is join morphism if and only ifapr is a meet morphism andapr( /0) = /0 if and only
if apr(U) = U . According to the proof, the symmetric relationR is defined by, forx,y in U ,

xRy⇔ x∈ apr({y}) (27)

3. Relationship among approximation operators

In this section, we want to relate the two groups of approximation operators discussed in Sections 2.2.1 and 2.2.2,
using the concepts of duality, conjugacy and adjointness. Additionally, we derive a characterization of operators that
satisfy both the duality and adjointness condition.

We start the section with a proposition that allows to compute the adjoint of an upper approximation operator in a
computationally efficient way. According to Proposition 5,an upper approximation operatorH : P(U)→ P(U) has
an adjoint if and only ifH is a join morphism. This adjoint is given by:

Ha(A) = ∪{B⊆U : H(B) ⊆ A}. (28)

Hence, the adjoint must be calculated on subsets ofU . However, the following proposition provides a less complex
alternative.

Proposition 8. If H : P(U) → P(U) is a join morphism, then the adjoint of H can be calculated by,for A⊆U:

Ha(A) = {x∈ A : H({x}) ⊆ A}. (29)

PROOF. We will show that the following equality holds:

{x∈ A : H({x}) ⊆ A} = ∪{B⊆ A : H(B) ⊆ A}.

If x ∈ A and H({x}) ⊆ A then{x} ⊆ ∪{B⊆ A : H({x}) ⊆ A} and x∈ ∪{B⊆ A : H({x}) ⊆ A}. On the other hand, if
x∈∪{B⊆ A : H(B)⊆A}, there exists B= {y1, . . . ,yn}, such that H(B)⊆ A and x∈B. Because H is a join morphism,
H(B) = ∪n

i=1H({yi}), from which follows that H({x}) ⊆ A.

This form of the adjoint approximation operator is actuallythe same as that of the Wybraniec-Skardowska lower
approximation operator [22]. Recall that the Wybraniec-Skardowska approximation operator pair(aprh,apr

h
) is

defined as:
apr

h
(A) = {x∈U : /0, h(x) ⊆ A} (30)

aprh(A) =
⋃

x∈A

h(x) (31)

whereh is an upper approximation distribution, i.e., anU → P(U) mapping that satisfies
⋃

x∈U
h(x) = U . In this case,

for all upper approximationsH such thatH({x}) , /0, equations (29) and (30) are the same.h can be considered as
a restriction ofH to the singletons. The pair of approximation operators given by Eqs. (30) and (31) are not dual
operators, but they are an adjoint pair, by definition.
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3.1. Non-dual framework of approximation operators

We first establish an important conjugacy relation between the upper approximation operatorsHC
5 andHC

6 . This
relationship holds regardless of the neighborhood operator N which is used in the definition, so we begin by proving
the following more general proposition.

Proposition 9. Let N be a neighborhood operator and GN
5 (A) = ∪{N(x) : x∈ A}, GN

6 (A) = {x∈U : N(x)∩A, /0}
operators defined for N, then GN5 is the conjugate of GN6 .

PROOF. We show that A∩GN
5 (B) , /0 if and only if B∩GN

6 (A) , /0, for A,B⊆U.
If A∩GN

5 (B) , /0, then there exists w∈U such that w∈ A and w∈ GN
5 (B). Since w∈ GN

5 (B), there exists x0 ∈ B
such that w∈ N(x0). Then N(x0)∩A, /0, with x0 ∈ GN

6 (B). Since x0 ∈ B, then B∩GN
6 (A) , /0.

If B∩GN
6 (A) , /0, then there exists w∈ U such that w∈ B and w∈ GN

6 (A), i.e., w∈ B and N(w)∩A , /0. Then
there exists z such that z∈ N(w) and z∈ A. Since z∈ N(w) and w∈ B, then z∈ GN

5 (B). So, z∈ A∩GN
5 (B), with

A∩GN
5 (B) , /0.

Corollary 1. HC
5 and HC

6 are conjugates.

PROOF. In this case, the operators HC5 and HC
6 correspond to GN5 and GN

6 , when neighborhood operator N1 is used.

Next, we prove thatLC
2 is the adjoint ofHC

5 . For this, we need the following lemma.

Lemma 1. For all w ∈U, HC
5 (N1(w)) = N1(w).

PROOF. By Proposition 1, from x∈ N1(w) follows N1(x) ⊆ N1(w), hence HC
5 (N1(w)) ⊆ N1(w). On the other hand, it

is clear that N1(w) ⊆ HC
5 (N1(w)), since w∈ N1(w).

Proposition 10. LC
2 = (HC

5 )a.

PROOF. We will show that LC2 (A) ⊆ (HC
5 )a(A) and(HC

5 )a(A) ⊆ LC
2 (A), for A⊆U. If w ∈ LC

2 (A), there exists x∈ U
such that w∈ N1(x) with N1(x) ⊆ A. The upper approximation HC5 of N1(x) is equal to N1(x), by Lemma 1; i.e.,
HC

5 (N1(x)) = N1(x). Hence, w∈∪{Y ⊆U : HC
5 (Y)⊆ A}, so w∈ (HC

5 )a(A). On the other hand, if w∈ (HC
5 )a(A), then

there exists Y⊆U, such that w∈Y and HC
5 (Y)⊆A; i.e.,∪{N1(x) : x∈Y}⊆A; in particular, w∈N1(w)⊆HC

5 (Y)⊆A,
so w∈ LC

2 (A).

Corollary 2. The dual of HC
6 is equal to LC2 .

PROOF. According to Propositions 10, 6 and corollary 1, we have:LC
2 = (HC

5 )a = ((HC
5 )c)∂ = (HC

6 )∂ .

The upper approximation operatorsHC
2 andHC

7 are closely related; they are discussed in the next two propositions.

Proposition 11. HC
2 is self-conjugate.

PROOF. According to Proposition 6 and the fact that HC
2 is a join morphism,(HC

2 )a = ((HC
2 )c)∂ , so HC

2 is self-
conjugate if and only if(HC

2 )a = (HC
2 )∂ , that is(HC

2 )a(∼ A) =∼ HC
2 (A). We show that(HC

2 )a(∼ A) =∼ HC
2 (A) for

any A⊆U. x< HC
2 (A) if and only if N1(x)∩A = /0 if and only if N1(x) ⊆∼ A if and only if x∈ (HC

2 )a(∼ A).

Proposition 12. HC
7 = HC3

2

PROOF. From the definition ofHC
7 andC3, we can see that, for allA⊆U :

HC
7 (A) = {N1(x) : N1(x)∩A, /0}

= {K ∈ C3 : K∩A, /0}

= HC3
2 (A).

11



Corollary 3. HC
7 is self-conjugate and its adjoint is equal to(HC3

2 )∂ = apr′′
C3

.

PROOF. Using HC
7 = HC3

2 and proposition 11, we have that HC
7 is self-conjugate. By proposition 6, we have:(HC

7 )a =

((HC
7 )c)∂ = (HC

7 )∂ = (apr′′C3
)∂ = apr′′

C3
.

Finally, we investigate whether any of the remaining upper approximation operatorsHC
1 , HC

3 andHC
4 forms an

adjoint pair withLC
1 .

Example 5. In Table 6, we compare lower approximations for some subsetsobtained with LC1 , and with the adjoints
of HC

1 , HC
3 and HC

4 . Since none of the final three columns is identical to the firstone, we conclude that none of HC
1 ,

HC
3 or HC

4 forms an adjoint pair with LC1 .

Set LC
1 (HC

1 )a (HC
3 )a (HC

4 )a

246 6 6 64 6
145 145 15 /0 15
123 123 1 1 1

Table 6: Comparison of the adjoints ofHC
1 , HC

3 andHC
4 with LC

1 .

From the above results, we can draw the following conclusion: none of the pairs(HC
1 ,LC

1 ), (HC
2 ,LC

1 ), (HC
3 ,LC

1 ),
(HC

4 ,LC
1 ), (HC

5 ,LC
1 ), (HC

6 ,LC
2 ) and (HC

7 ,LC
2 ) which have previously been considered in the literature (see Section

2.2.2) forms an adjoint pair; on the other hand,(HC
5 ,LC

2 ) does, but this is not a dual pair.

3.2. Dual framework of approximation operators

In this section, we examine the twenty pairs of approximation operators considered by Yao and Yao in [32]. First,
we establish an important proposition that follows from theduality of these operators.

3.2.1. Element based definitions
We first establish that upper (resp., lower) approximation element based definitions have adjoints (resp., co-

adjoints).

Proposition 13. For any neighborhood operator N, apr
N

is a meet morphism.

PROOF. Since apr
N
(A) = {x∈U : N(x) ⊆ A}, we have x∈ apr

N
(A∩B) iff N(x) ⊆ A∩B iff N(x) ⊆ A and N(x) ⊆ B

iff x ∈ apr
N
(A) and x∈ apr

N
(B) iff x ∈ apr

N
(A)∩apr

N
(B).

Corollary 4. For any neighborhood operator N,aprN is a join morphism.

Corollary 5. For any neighborhood operator N, apr
N

has a co-adjoint and it is equal to the conjugate ofaprN.

PROOF. By Proposition 6 and the duality ofaprN andapr
N

,
(

apr
N

)

a
=

(

apr∂
N

)c
= (aprN)c = (GN

6 )c = GN
5 .

Corollary 6. For any neighborhood operator N,aprN has an adjoint and it is equal to the dual of GN
5 .

PROOF. Indeed, by Proposition 6, we find(aprN)a = ((aprN)c)∂ =
(

GN
5

)∂
.

The remaining question now is whether(aprN,apr
N
) can ever form an adjoint pair. For this to hold, based on the

above we need to have that
(

apr
N

)

a
= GN

5 = GN
6 = aprN.

Proposition 14. (aprN,apr
N
) is an adjoint pair if and only if N satisfies GN5 = GN

6 .

12



The following proposition characterizes the neighborhoodoperatorsN that satisfyGN
5 = GN

6 , and establishes the
link with the generalized rough set model based on a binary relation.

Proposition 15. Let N be a neighborhood operator. The following are equivalent:

(i) For all x,y in U, N satisfies
y∈ N(x) ⇒ x∈ N(y) (32)

(ii) GN
5 = GN

6
(iii) There exists a symmetric binary relation R on U such that N(x) = {y∈U : xRy}.

PROOF. We first prove (i)⇒ (ii). Let A⊆U. If w ∈ GN
5 (A), then w∈ ∪{N(x) : x∈ A}. This means that w∈ N(x) for

some x∈ A, and by (32) x∈ N(w), so N(w)∩A, /0. Hence w∈ GN
6 (A).

If w ∈ GN
6 (A), then N(w)∩A, /0. In other words, there exists x∈U with x∈ A and x∈ N(w). By (32), w∈ N(x)

and thus w∈ ∪{N(x) : x∈ A} = GN
5 (A).

On the other hand, to prove (ii)⇒ (i), by the definition of GN5 , we have GN5 ({x}) = N(x). If GN
5 (A) = GN

6 (A), for
all A ⊆U and y∈ N(x) then N(x)∩{y} , /0, so x∈ GN

6 ({y}) = GN
5 ({y}) = N(y).

Finally, the equivalence (i)⇔ (iii) is immediate, with R defined by xRy⇔ x∈ N(y) for x,y in U.

The proposition thus shows that the only adjoint pairs amongelement-based definitions are those for which the
neighborhood is defined by Eq. (26), with symmetricR. The following example shows that for none of the neighbor-
hood operators considered in Section 2.2.1, the adjointness holds.

Example 6. We illustrate the fact that(aprNi
,apr

Ni
) is not an adjoint pair for i= 1, . . . ,4, by showing that the

property f(g(x)) ≤ x, satisfied by any Galois connection( f ,g), does not hold for them.
For the coveringC = {12,124,25,256,345,26,6}of U = 123456, the neighborhoods Ni for the elements of U are

shown in Table 7.

x N1(x) N2(x) N3(x) N4(x)
1 12 12 124 124
2 2 1256 2 12456
3 345 345 345 345
4 4 12345 4 12345
5 5 23456 5 23456
6 6 6 256 256

Table 7: Neighborhood operators for the covering in Example6.

We have that:

• aprN1
(apr

N1
(45)) = aprN1

(45) = 345* 45.

• aprN2
(apr

N2
(12)) = aprN2

(1) = 124* 12.

• aprN3
(apr

N3
(12)) = aprN3

(2) = 126* 2.

• aprN4
(apr

N4
(124)) = aprN4

(124) = 12345* 124.
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3.3. Granule based definitions

We first prove some propositions that provide a relationshipbetween different granule based definitions, and
between particular element and granule based definitions.

Proposition 16. apr′
C

= apr′
C1

.

PROOF. Let A⊆U be a subset of U. For all K∈ C with K ⊆ A there exists a K′ ∈ md(C,x) for some x∈U, such that
K′ ⊆ K ⊆ A, so∪{K ∈ md(C,x) : x∈U} ⊆ ∪{K ⊆C : K ⊆ A}, then apr

C1
≤ apr

C
. On the other hand, if w∈ K ⊆ A,

there exists K′ ∈ md(C,w) such that w∈ K′ ⊆ K ⊆ A, so w∈ ∪{K ∈ C1 : K ⊆ A}.

Proposition 17. apr′
C

= apr′
C∪

.

PROOF. We will show that for each x∈U, md(C,x) = md(C∪,x) and so, by Proposition 16, we have apr′
C

= apr′
C∪

.

From the definition ofC∪, we know thatC∪ is the∪-reduct andC∪ ⊆ C and md(C,x) ⊆ md(C∪,x). If K ∈
md(C∪,x) and let us suppose that K<md(C,x) there exists K′ md(C,x) such that x∈ K′ ⊆ K.

Proposition 18. apr′′C = apr′′C2

PROOF. Clearly, we haveC2 ⊆ C, and thereforeapr′′C2
(A) ⊆ apr′′C(A), for A⊆U.

On the other hand, for each K∈ C there exists K′ ∈ C2 such that K⊆ K′, so K∩A, /0 implies K′ ∩A, /0, thus
apr′′C(A) ⊆ apr′′C2

(A).

Proposition 19. apr′′C = apr′′C∩

PROOF. From the relationC∩ ⊆ C, we haveapr′′C∩
(A) ⊆ apr′′C(A), for all A⊆U.

If K ∈ C−C∩ there exists K′ ⊆C−{K} such that K=
⋂

K′, K ⊆ L for all L ∈ K′, thus if K∩A, /0 then L∩A, /0,
thusapr′′C(A) ⊆ apr′′C∩

(A).

Proposition 20. apr′
C3

= apr
N1

.

PROOF.

apr
N1

(A) = {x∈U : N1(x) ⊆ A}

= ∪{N1(x) : N1(x) ⊆ A} = apr′
C3

(A)

For the second equality, if w∈ apr′
C3

(A), there exists x such that w∈N1(x)⊆A. By proposition 1, N1(w)⊆N1(x)⊆ A,

so w∈ apr
N1

(A).

By Propositions 13 and 20, we have the following corollary.

Corollary 7. The approximation operator apr′
C3

is a meet morphism, but(apr′C3
,apr′

C3
) is not an adjoint pair.

In general, the dual pairs(apr′C,apr′
C
) are not adjoint, because we know thatapr′

C
= LC

1 is not a meet morphism
when the coveringC is not unary. Next, we study the case of the loose approximation operatorsapr′′C andapr′′

C
.

Proposition 21. apr′′C is a self-conjugate join morphism.

PROOF. By definitionapr′′C = HC
2 , so it is a join morphism and by Proposition 11 it is self-conjugate.

Using Proposition 2, we can establish thatapr′′
C

is a meet morphism, which allows us to prove the following result.

Proposition 22. The pair(apr′′C,apr′′
C
) is an adjoint pair.

PROOF. From propositions 6 and 21, we have:(apr′′C)a = [(apr′′C)c]∂ = [apr′′C]∂ = apr′′
C

and(apr′′
C
)a = [(apr′′

C
)∂ ]c =

[apr′′C]c = apr′′C.

14



Moreover, the following proposition shows that this adjoint pair can also be seen as a particular case of an element-
based definition.

Proposition 23. (apr′′C,apr′′
C
) = (aprN,apr

N
), where N is defined by

N(x) = {y∈U : (∃K ∈ C)(x∈ K∧y∈ K)} (33)

PROOF. By Proposition 7, we know that there exists a symmetric relation R onU such that(apr′′C,apr′′
C
)= (aprR,apr

R
),

where xRy⇔ x∈ apr′′C({y}) ⇔ x∈ ∪{K ∈ C : K ∩{y} , /0}⇔ x∈ ∪{K ∈ C : y∈ K}.
Putting N(x) = R(x), we find that y∈ N(x) if and only if there exists K∈ C such that x∈ K and y∈ K, or in other

words N(x) = {y∈U : (∃K ∈ C)(x∈ K∧y∈ K)}.

Summarizing, only the loose pair of granule based approximation operators in Yao and Yao’s framework is an
adjoint pair, and moreover this pair coincides with a particular element-based definition.

To conclude this section, we point out an error in [32]: it is stated there on page 104 thatapr′′
C

= apr
N4

and

apr′′C = aprN4
, however this incorrect; in particular, knowing that(apr′′C,apr′′

C
) is an adjoint pair and(aprN4

,apr
N4

)

is not, this equality cannot hold.

3.4. Subsystem based definitions

First, looking at the definitions we can observe thatapr
S∩

= L
S∩,C
1 andapr

S∪
= L

(S∪,C)′

1 . Furthermore, we can
establish the following relationship betweenapr

S∪
and the granule-based model.

Proposition 24. apr
S∪

= apr′
C

PROOF. Clearly,C ⊆ S∪,C, and therefore apr′
C
(A) ⊆ apr

S∪
(A), for A⊆U.

On the other hand, for each X∈ S∪,C, there existsK ⊆ C such that X=
⋃

K, thus if X⊆ A then L⊆ A, for all
L ∈ K. Hence∪{X ∈ S∪,C : X ⊆ A} ⊆ ∪{K ∈ C : K ⊆ A}, i.e., apr

S∪
(A) ⊆ apr′

C
(A).

This equality can be also be understood by the fact that adding unions of elements to a covering does not refine
the covering.

The following example shows that the approximation operators apr
S∩

andapr
S∪

are not meet morphisms, and
neitheraprS∩ noraprS∪ are join morphisms, so they cannot form adjoint pairs.

Example 7. Consider the subsystems S∩ and S∪ from Example 3.
If A = 123, B= 2456, then A∩B = 2, apr

S∩
(A) = 123, apr

S∩
(B) = 2456and apr

S∩
(A∩B) = /0, then apr

S∩
(A∩

B) , apr
S∩

(A)∩apr
S∩

(B) = 2.

On the other hand, If A= 1236, B= 1235, then A∩B = 23, apr
S∪

(A) = 1236, apr
S∪

(B) = 1235and apr
S∪

(A∩

B) = /0, then apr
S∪

(A∩B) , apr
S∪

(A)∩apr
S∪

(B)=123.

Analogously, it can be verified thataprS∩ andaprS∪ are not join morphisms.

3.5. Summary of relationships and properties

In Table 8, we summarize the results established in the previous subsections. In particular, we rearrange the group
of 20 dual pairs considered by Yao and Yao [32] into 14 groups of equivalent operators, showing in each case their
equivalence with members of the non-dual framework considered in [25]. For each group, we also indicate whether
the operators form an adjoint pair and whether their membersare join/meet morphisms.

For instance, group A consists of the dual pairs 1 and 11 from Table 4 which are equal due to Proposition 20. They
are equivalent to the pair(HC

6 ,LC
2 ), becauseapr

C3
= LC

2 by definition, and the dual ofLC
2 is HC

6 by Corollary 2. They
are join and meet morphisms, but not an adjoint pair as shown in Example 6.

It is interesting to note that all pairs of approximation operators in Yao and Yao’s framework can be described
from approximation operatorsLC

1 , LC
2 , HC

2 andHC
6 , their duals and/or their conjugates.
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Group # Dual pair Equivalent pair Adjoint pair Meet/Join
A 1, 11 aprN1

apr
N1

HC
6 LC

2 ✗ X

aprC3
apr

C3

B 2 aprN2
apr

N2
GN2

6 (GN2
6 )∂ ✗ X

C 3 aprN3
apr

N3
GN3

6 (GN3
6 )∂ ✗ X

D 4 aprN4
apr

N4
GN4

6 (GN4
6 )∂ ✗ X

E 5, 7, 17, 20 apr′C apr′
C

(LC
1 )∂ LC

1 ✗ ✗

apr′C1
apr′

C1

apr′C∪
apr′

C∪

aprS∪ apr
S∪

F 9 apr′C2
apr′

C2
(LC2

1 )∂ LC2
1 ✗ ✗

G 13 apr′C4
apr′

C4
(LC4

1 )∂ LC4
1 ✗ ✗

H 15 apr′C∩
apr′

C∩
(LC∩

1 )∂ LC∩
1 ✗ ✗

I 6, 10, 18 apr′′C apr′′
C

HC
2 (HC

2 )∂ X X

apr′′C2
apr′′

C2

apr′′C∪
apr′′

C∪

J 8 apr′′C1
apr′′

C1
HC1

2 (HC1
2 )∂ X X

K 12 apr′′C3
apr′′

C3
HC3

2 (HC3
2 )∂ X X

L 14 apr′′C4
apr′′

C4
HC4

2 (HC4
2 )∂ X X

M 16 apr′′C∩
apr′′

C∩
HC∩

2 (HC∩
2 )∂ X X

N 19 aprS∩ apr
S∩

(LS∩
1 )∂ LS∩

1 ✗ ✗

Table 8: Summary of relationships and properties of the approximation operators.

3.6. Characterization of dual adjoint pairs

In this section, we characterize pairs of dual and adjoint approximation operators in the covering-based rough set
framework.

First, in the left hand side of Figure 1 we illustrate schematically the relations among duality, conjugacy and
adjointness. The arrow∂ represents a dual transformation and the arrowsc and co represent transformations of
conjugate and co-conjugates, respectively. The pairs( fi ,gi) are dual,f1 and f2 are conjugate andg1 andg2 are co-
conjugate. The adjoint and co-adjoint can be obtained aftertwo consecutive transformations, so the adjoint off1 is g2,
and the co-adjoint ofg1 is f2. The middle diagram represents the specific situation for the pair(apr′′C,apr′′

C
), while

the right hand side represents the case of approximation operators defined from a binary relation as considered by
Järvinen [11].

f1 g1 apr′′C apr′′
C

aprR apr
R

f2 g2 apr′′C apr′′
C

aprR−1 apr
R−1

-� ∂

?

6
c

?

6

co

-� ∂

?

6
c

?

6
co

-� ∂

?

6
c

?

6

co

-�
∂

-�
∂

-�
∂

Figure 1: Arrow diagram for approximation operators.

The following important proposition establishes the relationship between duality, conjugacy and adjointness in the
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general case of a complete Boolean lattice.

Proposition 25. Let ( f ,g) be a dual pair on a complete Boolean lattice B. The pair( f ,g) is a Galois connection if
and only if f is self-conjugate.

PROOF. If ( f ,g) is a Galois connection, then g= f a = ( f c)∂ . By duality g= f ∂ , so fa = ( f c)∂ = f ∂ , hence f= f c.
On the other hand, if f= f c, then fa = ( f c)∂ = ( f )∂ = g and ga = (g∂ )c = f c = f .

In general, if DP represents dual pairs, GC Galois connections and SC pairs for which the upper approximation is
self-conjugate, then we have the following implications:

GC+SC→ DP (34)

DP+SC→ GC (35)

To summarize, Figure 2 contains a set diagram which depicts pairs of approximation operators.P is the set of
pairs of approximation operators(H,L). D contains all the dual pairs andA the adjoint pairs. InD we have the dual
pairs of Yao and Yao’s framework. The pairs in the intersection are precisely those pairs of approximations for which
the upper approximation is self conjugate. Outside ofD∪A there are other pairs which are neither dual nor adjoint,
such as(HC

7 ,LC
2 ). The pairs of approximations in Yao and Yao’s framework are represented with the letters fromA

to N and correspond to the groups in Table 8. Finally, the pair(aprh,apr
h
), defined from an upper approximation

distributionh (Wybraniec-Skardowska) is also an adjoint, but not dual pair.

P

A

A

B

E

C

F

D

D

h
apr

hapr( ),

h
apr’hapr’( ),

( ),H3 (H3 )a

( ),H2 (H2 )

( ),H5 L2  

( ),H7 L2  

...

...

( ),H7 (H7 )

( ),H6 (H5 )
( ),H5 (H5 )

Figure 2: Set diagram of pairs of approximation operators.

4. Conclusion and future work

In this paper, we have studied relationships between pairs of lower and upper approximation operators within
the covering-based rough set model. We have shown in particular that within the framework of twenty dual pairs
of approximation operators proposed by Yao and Yao in [32], only fourteen of them are different, and of these only
five pairs are adjoint. On the other hand, we have demonstrated that none of the pairs of approximation operators
(HC

1 ,LC
1 ), (HC

2 ,LC
1 ), (HC

3 ,LC
1 ), (HC

4 ,LC
1 ), (HC

5 ,LC
1 ), (HC

6 ,LC
2 ) and(HC

7 ,LC
2 ) considered in e.g. [19, 25] is adjoint; on

the other hand,(HC
5 ,LC

2 ) is an adjoint, non-dual pair. Furthermore, we have established that all operators in Yao and
Yao’s framework can be equivalently expressed in terms ofLC

1 , LC
2 , HC

2 andHC
6 .

We have also derived a characterization of dual and adjoint pairs in terms of the self-conjugacy of the upper
approximation operator, and have related this equivalenceto previous results established for generalized rough sets
based on a symmetric binary relation.
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As future work, it is interesting to study which are the coverings for which a specific adjoint pair is dual, and
conversely, for dual pairs.

On the other hand, a very important continuation of this workinvolves studying order relationships that hold
between the various approximation operators, such asapr′′C(A) ⊆ apr′C(A). Such order relations have already been
studied partially in [35], where they are induced by means ofnew entropy and co-entropy measures for covering-based
rough sets, and in [14], which studies order relations between various types of neighborhood-related covering-based
rough sets. Since approximation operators are used frequently in data analysis applications of rough sets such as
feature selection and classification (see e.g. [3] in the case of covering-based rough sets), order relationships can be
meaningfully used to guide the selection of appropriate pairs of approximation operators.

The results of this paper may also be applied to Formal Concept Analysis (FCA); FCA and rough set theory
have the formal context as a common framework [28]. A formal concept(U,A,R) is defined by two finite setsU
(objects) andA (attributes), and a binary relation fromU to A. As explained in [13], a regular formal context defines
a coveringCA as the set of object sets of attributesa∈ A. A dual pair of approximation operators is then derived from
this covering, using the operatorapr′

C
. However, we may consider other approximation operators associated with a

particular coveringC, and it makes sense to study their properties in the context of FCA.
As a final important line of future work, we want to extend the obtained results to fuzzy rough set theory, and in

particular to the ambit of fuzzy coverings, such as those studied in [7, 8].
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