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Abstract

Many different proposals exist for the definition of lowedampper approximation operators in covering-based rough
sets. In this paper, we establish relationships betweemts commonly used operators, using especially concepts
of duality, conjugacy and adjointness (also referred to a®i& connection). We highlight the importance of the
adjointness condition as a way to provide a meaningful lagide from duality, between a pair of approximation
operators. Moreover, we show that a pair of a lower and annggg@oximation operator can be dual and adjoint at the
same time if and only if the upper approximation is self coajie, and we relate this result to a similar characterinatio
obtained for the generalized rough set model based on ayielation.
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1. Introduction

Rough set theory, proposed by Pawlak [16] in 1982, is a premtitool for dealing with uncertainty and in-
completeness in information systems. It revolves arouachtition of discernibility of objects, which classically is
represented by means of an equivalence relation, or eguithalk partition of the set of objects. The theory has been
generalized from different perspectives. One generadizatf rough sets is to replace the equivalence relation by a
general binary relation. In this case, the binary relatietetmines collections of sets that no longer form a pantitio
U. This generalization has been used in applications witbrmlete information systems and tables with continuous
attributes [9, 10, 27]. A second generalization is to replde partition obtained by the equivalence relation with a
covering; i.e., a collection of nonempty sets with uniona@daU. There are many works in these two directions and
some connections between the two generalizations havedstésniished, for example in [27, 42, 41, 38].

In our work, we focus on covering-based approaches. Ret#fath and Yao [32] introduced a general framework
for the study of dual pairs of covering-based approximatiperators, distinguishing between element based, granule
based and subsystem based definitions. They emphasizeduti@ importance of duality of the lower and upper
approximations, stating that without this condition one hareason to investigate them jointly as a pair. Neversisele
a lot of other approximation pairs outside this frameworkénbeen studied in literature; for instance, in [25], Yang
and Li present a summary of seven non dual pairs of approidmaperators used ¥akowski [33], Pomykala [17],
Tsang et al. [18], Zhu [41], Zhu and Wang [43], Xu and Wang [Z3h the other hand, in a recent paper, Ciucci et al.
[4] study opposition diagrams for dual and non-dual appr@tions in rough set theory, indicating the relevance of
both.

In this paper, we draw attention to another important prigperclassical rough sets, namely the fact that the lower
approximatiorapr and the upper approximati@pr form a Galois connection, or put differently, that they makean
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adjoint pair. Galois connections have been used in varicessaof mathematics and theoretical computer science as
a way of providing a strong link between (morphisms on) cedestructures [1, 15]. In the context of rough sets, the
adjointness property guarantees for example that the fixgofapr andapr coincide, in other wordsipr(A) = Aiff
apr(A) = A. This is particularly important when considering the notid definable sets, i.e., subsets of the universe
for which the approximations equal the original set. Morif an upper approximaticampr has an adjoinapr, then

itis unique, and vice versa a lower approximatigr can have at most one co-adjoint, so the Galois connectian, li
duality, provides a one-to-one connection between appration operators.

The adjointness property also plays an important role irdgfaition of logical systems derived from rough sets,
in particular modal logics, since lower approximation ited with the necessity operator and upper approximation
with the possibility operator. For example, Jarvinen etdascribe in [12] an information logic for rough sets using
the Galois connection, while Yao shows in [30] that adjoésthis necessary for modal logic tyBeFurthermore, a
Galois Connection also holds between the set theoretiatgrsrused in Formal Concepts Analysis, which bears a
close relationship to rough set theory [28].

The objective of this paper is twofold: first, we want to efisdbrelationships between the various definitions of
approximation operators in the covering-based rough seemfor this, we will be using some lattice concepts for
rough sets, such as meet and join preserving functionsygatgs, duals and Galois connections. Secondly, we want
to evaluate the existing proposals with respect to the atijess condition, providing in particular a characterat
of approximation operators pairs that are both dual andrdjm this way, we hope to provide a clear cut roadmap
for the covering-based rough set landscape, pinpointiagribst useful operators among the many that have been
proposed in the literature and guiding future researctctioes. In particular, we believe our results are helpful to
select appropriate approximation operators in typicagioset applications such as attribute selection and clegsifi
tion; unlike in the classical case, there are many possdslio define the approximations, and the particular choice
is likely to affect the quality of these applications.

The remainder of this paper is organized as follows. Se@ipresents preliminary concepts about rough sets and
lower and upper approximations in covering based rough astsell as the necessary lattice concepts about duality,
conjugacy and adjointness. In Section 3, we present eguigak and relationships between various approximation
operators, evaluate which of them satisfy adjointness gaadwith the characterization theorem for dual and adjoint
pairs. We also relate this characterization with previeasilts in generalized rough set theory based on a binary
relation. Finally, Section 4 presents some conclusionsoaiches future work.

2. Preliminaries

Throughout this paper, we assume tHas a finite and nonempty set?(U) represents the collection of subsets
of U.

2.1. Three definitions of Pawlak rough sets approximations

In Pawlak’s rough set model, an approximation space is aereddpairapr = (U, E), whereE is an equivalence
relation onU. According to [29, 32], there are three different, but eqléwnt ways to define lower and upper approxi-
mation operators: element based definition, granule basfgdttbn and subsystem based definition. For ea¢hU,
the lower and upper approximations are defined by:

Element based definition.

apr(A) = {xe U : [Xe C A} (1)
apr(A) = {xeU : [xgeNA#0} (2
Granule based definition.
apr(A) = J{¥e € U/E: [Xe CA} 3)
apr(A) = J{[Xe € U/E: [Xe NA = 0} (4)
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Subsystem based definition.
apr(A) = J{X e a(U/E): X C A} (5)

apr(A) = (){X € G(U/E) : X 2 A} (6)

whereo (U /E) is the o algebra that is obtained from the equivalence clatsés, by adding the empty set and
making it closed under set unions.

2.2. Covering based rough sets

Many authors have investigated generalized rough set matdthined by changing the condition thats an
equivalence relation, or equivalently, thafE forms a partition. In particular, we consider the case witleeepar-
tition is replaced by a covering &f. Covering based rough sets and tolerance relation basgt smis are used in
information systems with missing data.

Definition 1. [36] Let C = {K;} be a family of nonempty subsets of O is called a covering of U itK; =U. The
ordered pair(U,C) is called a covering approximation space.

It is clear that a partition generated by an equivalencdiogids a special case of a coveringf so the concept
of covering is a generalization of a partition.

2.2.1. Framework of dual approximation operators

In [32], Yao and Yao proposed a general framework for theystfdcovering based rough sets. It is based on
the observation that when the partitior/E is generalized to a covering, the different definitions aféo and up-
per approximations in Section 2.1 are no longer equivaléntdistinguishing characteristic of their framework is
the requirement that the obtained lower and upper apprdidmaperators form a dual pair, that is, f&rC U,
apr(~ A) =~apr(A), where~ Arepresents the complementAfi.e.,~ A=U\ A

Below, we briefly review the generalizations of the elemgmgnule and subsystem based definitions. In the
element based definition, equivalence classes are rephgageighborhood operators:

Definition 2. [32] A neighborhood operator is a mapping:NU — 22(U). If N(x) # 0 for all x € U, N is called a
serial neighborhood operator. If& N(x) for all x € U, N is called a reflexive neighborhood operator.

Each neighborhood operator defines an ordered(gaiiy, apr,,) of dual approximation operators:

apry(A) ={xeU :N(x) C A} (7)

apry(A) = {xe U :N(x) NA# 0} 8)

Different neighborhood operators, and hence differemhela based definitions of covering based rough sets, can
be obtained from a coverin@. In general, we are interested in the 96t C such thak € K:

Definition 3. [32] If Cis a covering of U and x U, a neighborhood systef#i(C, x) is defined by:
¢(C,x)={KeC:xeK} (9)

In a neighborhood systef#(C, x), the minimal and maximal sets that contain an element) are particularly
important.

Definition 4. Let(U,C) be a covering approximation space and x inU. The set

md(C,x) = {K € €(C,x) : (VS ¢(C,x),SCK)=K=9)} (10)
is called the minimal description of x. [2] On the other hatitk set

MD(C,x) = {K € ¢(C,x) : (VvSe ¢(C,x),SDK) =K =S} (11)

is called the maximal description of x. [44]



The setsnd(C,x) andMD(C, x) represent extreme points f(C,x): for anyK € € (C,x), we can find neighbor-
hoodsK; € md(C,x) andK, € MD(C,x) such thatk; C K C K. Frommd(C,x) andMD(C,x), Yao and Yao [32]
defined the following neighborhood operators:

1. Ni(x) =n{K: K e md(C,x)}
2. Np(x) = U{K: K e md(C,x)}
3. N3(x) = N{K : K € MD(C,x)}
4. Ng(x) = U{K : K € MD(C,x)}

The selN; (x) = "md(C, x) for eachx € U, is called the minimal neighborhoodxfand it satisfies some important
properties as is shown in the following proposition:

Proposition 1. [25] Let C be a covering of U and k C, then
o K= ngKNl(X)
o Ify € Ni(x) then N(y) C Ny(x).

Example 1. For simplicity, we use a special notation for sets and caitets. For example, the s¢fl, 2,3} will be
denoted by 123 and the collecti¢fl,2,3},{2,3,5} } will be written as{123, 235. Let us consider the coverifg=
{1,5,6,14,16,123 456, 234512346235 23456 2356 12345 of U = 123456 The neighborhood syste#i(C, x),
the minimal description M, x) and the maximal description M2, x) are listed in Table 1.

X | €(C,x) md(C, x) MD(C,x)

1| {1,14,16, 123, 12346, 12335 5 {12346, 12345

2 | {123, 2345, 12346, 235, 23456, 2356, 12845{123, 235 {12346, 12345, 23436
3 | {123, 2345, 12346, 235, 23456, 2356, 12B45{123, 235 {12346, 12345, 23456
4 | {14, 456, 2345, 12346, 23456, 12345 {14, 456, 234% | {12346, 12345, 23456
5 | {5, 456, 2345, 235, 2356, 12345 {5} {23456, 12345

6 | {6, 16, 456, 12346, 23456, 2356 {6} {12346, 23456

Table 1: lllustration of neighborhood system, minimal arakimal description.

The four neighborhood operators obtained fraé(C, x) are listed in Table 2.

X N0 [ N | Na(x) | Na()
111 1 1234 | 123456
2123 1235 234 123456
3|23 1235 234 123456
41 4 123456| 234 123456
515 5 2345 | 123456
6|6 6 2346 | 123456

Table 2: lllustration of neighborhood operators.

For the set A= 246, we have that_am1 (A) = 46, because Nx) C A only for x=4 and x= 6. apr, (A) =6and

apry, (A)= apry, (A) = 0. The upper approximations arapry, (A) = apry, (A) = 2346 andapry, (A) =apry, (A) =
123456

Generalizing the granule based definitions (3) and (4),aHeviing dual pairs of approximation operators based
on a coveringC were considered in [32]:



apr.(A) = (J{KeC:KCA}={xeU:(FKeC)(xeKAKCA)} (12)
apic(A) = ~apr.(~A)={xeU:(VKeC)(xeK=KnNA#0)} (13)
apri(A) = ~apre(~A)={xeU:(VKeC)(xce K=K CA)} (14)
apic(A) = (HKeC:KNA#0} ={xcU: (3K eC)(xe KAKNA=D)} (15)

(apre,apri.) and(apr¢, apre.) are referred to as the tight and loose pair of approximatjmeslecting the fact
thatapr/,(A) C apr..(A) C ACaprg(A) Caprg(A), forall ACU [6, 17].

Furthermore, Yao and Yao introduced four new coverings/ddrirom a covering_ in [32]:

1. Ci=u{md(C,x) : xe U}

2. C,=U{MD(C,x):xe U}

3. C3={N(md(C,x)) :xeU} ={N(¥(C,x)) :xe U}

4. C4={UMD(C,x)) :xeU} ={U(¥(C,x)) : xecU}

For example, the coverin@; is the collection of all sets in the minimal description otka € U, while C3 is
the collection of the intersections of minimal descripidor eachx € U, i.e., {Ni(x) : x € U}. Additionally, they
considered the so-called intersection redligtand union reduct, of a coveringC :

Cn

C\{Kec:(aKgC\{K})(K:ﬂK)} (16)
Cu = (C\{KG(C:(EKQ(C\{K})(K:UK)} (17)

These reducts eliminate intersection (respectively, minieducible elements from the covering, and it can be
proven that they also form a coveringldf
Each of the above six coverings determines two pairs of dyaiaximations given by equations (12) and (13) and
equations (14) and (15), respectively.
Example 2. The six coverings obtained from the coveritgn Example 1 are:
. C1=1{1,123 235 14,456,23455,6}
. C, ={123461234523456
. C3={1,23/4,5,6}
. C4={123458
. Cu={1,12323514,456,23455,6}
. C~={1234562345123465,2345614,16,2356 12345
The lower and upper approximations oE£A246 using the operators discussed above are shown in Table 3.

U WNBE

Covering| apr/. | apr. apr: aprf
C 0 6 2346 | 123456
Cy 0 6 2346 | 12346
Ca 0 0 123456| 123456
Cs 46 46 2346 2346
Cy 0 123456| 123456| 123456
Cu 0 6 2346 | 123456
Cn 0 0 12346 | 123456

Table 3: lllustration of granule-based definitions of apjmmation operations.

1By contrast, note that in [SEPT. is called tight upper approximation, referring to the féittall elements o’ (C,x) are taken into account,
giving rise to a strict or "tight” requirement; on the othe{ﬁtd,ﬂ’C is called loose lower approximation in the same paper, megathiat we only
look at the best element ie'(C, x), which is a more flexible, "loose” demand.
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Finally, to generalize the subsystem based definitionsn&)&), Yao and Yao used the notion of a closure system
overU, i.e., a family of subsets df that containd) and is closed under set intersection. Given a closure syStem
overU, one can construct its dual systéfi containing the complements of ea€hn S, as follows:

S'={~K:KeS} (18)
The systenfS’ contains 0 and it is closed under set union. Gi&s (S',S), a pair of dual lower and upper
approximations can be defined as follows:
apr(A) = (J{KeS:KCA} (19)
apris(A) = [[{KeS:KDA} (20)

As a particular example of a closure system, [32] consid#redo-called intersection closuse ¢ of a covering
C, i.e., the minimal subset o#”(U) that containsC, ® andU, and is closed under set intersection. On the other
hand, the union closure @, denoted by5 ¢, is the minimal subset of?(U ) that containg, 0 andU, and is closed
under set union. It can be shown that the dual sys§m forms a closure system. Bo®, = ((S¢)’, S\c) and
S = (S, (Suc)’) can be used to obtain pairs of dual approximation operatigmseans of Eqgs. (19) and (20).

Example 3. For the coverindC, the intersection and union closure can be obtained asvialo

e S.c=Cu{0,1,24,5,1356,6,123456

e S,c=CuU{0,123612351234 123561456 156,146,15,145 56,123456

The corresponding lower approximations o=A246 are: apre. (A)=6 andﬂrSU (A) = 6. The upper approxi-
mations are@prg, (A) = 2346andaprg, (A) = 2346

Summarizing, twenty pairs of dual approximation operateeee defined in this framework: four from the element
based definition based on neighborhood operators, foufteenthe granule based definition, based on the covering
C and six derived coverings, and two from the subsystem basfiitibn, using intersection and union closure. All
pairs are listed in Table 4.

# Dual pair # Dual pair

1| aphy a_per 2 | apn, a_per
3 | APl a_prN3 4 | aphy, apfy,
5 | apr. | apr, | 6 | apr | apr’
7|, | apr, |8 [ Ep, | an
9 | apr., | apr, | 10| &P, | apr,
11 a_pr’(ca ﬂlcg 12 a_pr{é3 M(ég
13 a_pr’(u M@ 14 a_pr{é4 M((/Ll
15 | apre, apr’(Cn 16 | apre, | aprf )
17 | apr., | apr, | 18| aprr, | apr,
19 aprs, m& 20 aprs, a_prs“

Table 4: List of dual pairs of approximation operators cdased in [32].

2.2.2. Framework of non-dual approximation operators

Another important line of research on covering-based ragg has focused on pairs of approximation operators
that are not necessarily dual. The first of such proposals gaek toZakowski [33], who was in fact the first to
generalize Pawlak’s rough set theory from a partition toeedag. In recent papers [19, 25], a total of two lower
approximation operators and seven upper approximatiosiarenarized, which are listed beldw.

2There is no uniform notation for these approximation opmeain literature. For example in [34RH refers to the sixth upper approximation,
while in [40] SHrefers to the second upper approximation. For ease of referdere we use numerical subscripts in the definitions.
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For a coveringC of U, the principal lower approximations fé&rC U are:
o LT(A)=U{KeC:KCA}=apr.(A)
o LS(A) = U{Ny(x) : x€ U ANy (x) C A}

It can be checked thaf§ is the particular case df when we useC; instead ofC, soLS = a_pr’(cs. The seven
upper approximations are listed as follows:

A) =U{N1(X) : Npy(x) N A= 0}

The coupleg HE,LS) was proposed byakowski in [33]. Pomykala [17] consider¢H?, LS), while Tsang et al.
studied(H$, LT) in [18]. Zhu and Wang defineH, L) in [43], while (HS, L) was considered by Zhu in [41]. Xu
and Wang propose¢,LS), and finally(HY, LS ) was discussed by Xu and Zhang in [24].

The definitions oL5, HE, HS andHY can generate other approximationslifis replaced by another neighbor-
hood operator. The operatdi§’, HS, HY andHS do not appear explicitly in Yao's framework, althoulgly andHS
can be expressed as union of a lower and an upper approxmugtérator. For examplle{iC can be expressed as:

H{ (A) = apr’(A) uaprg.(A— apr.(A)) (21)

Example 4. In Table 5, we present the upper approximations for somestsilo$U and the coveringG = {12,124, 25,
256,345,26,6}. Since there are no two identical columns, we can concludeat seven upper approximations are
different.

A || HY HY HY HY HE HE | HY
16 || 126 | 12456 | 126 1246 [ 126 |16 | 126
25 || 25 123456 123456| 25 25 1235 12345
123 || 12345] 123456| 123456 12345 12345| 123 | 12345
34 || 12345| 12345 | 12345 | 12345| 345 |34 [ 345

Table 5: lllustration of upper aproximatioft™—H.

2.3. Dual, conjugate and adjoint operators

In this subsection, we recall the basic relations among, deajugate and adjoint operators, following the ideas
introduced by Jarvinen in [11] in the context of lattices.

Let L be a bounded lattice with a least element O and greatest etelneFora € L, we say thab € L is a
complemento&if avb=1andaAnb= 0. Adistributive and bounded lattice with complement fdreek L is called
a Boolean lattice. In particular, the collectiori(U) of subsets of a s&i, with least element 0, greatest element
and intersection, union and complement operations is agaodhttice.



2.3.1. Meet and join morphisms

If L,K are lattices, amap: L — K is a complete join morphism if whenevBC L andvSexists inL, thenv f (S)
exists inK andf (vS) = Vf(S). Analogously, a mag : L — K is a complete meet morphism if whene&t L and
ASexists inL, thenAf(S) exists inK and f(AS) = Af(S).

A finite lattice is always complete, i.&.SandASexist for allSC L. In this case a meet morphish{a morphism
that satisfies (aAb) = f(a) A f(b) foraandbin L) is a complete meet morphism, and dually, a join morphisa
morphism that satisfieg(aV b) = f(a) v f(b) foraandbin L) is a complete join morphism. Since in this paper, we
assume that is a finite universe, for the approximation operators we iwharst will thus be sufficient to establish
that they are meet (resp., join) morphisms.

We recall some known results about the approximation opesditom Section 2.2.2. Zhu showed théf, Héc
andHy are join morphisms in [37, 40, 44], while Wu et al. in [21] shemhthis forHS .

Moreover, in [36] it was shown that the upper approximat-'rtﬁwis a join morphism and the lower approximation
L‘lC is a meet morphism if and only @ is a unary covering. Recall that a coveriigs unary if for allx e U, md(C, x)
is a singleton, or equivalently ifK1, Ko € C, K1 NKj is a union of elements df. [44] As a particular example, the
coveringCs obtained from any coverinG is a unary covering.

2.3.2. Duality
Definition 5. [11] Let f,g: B — B be two self-maps on a complete Boolean lattice B. We saytisahe dual of f,
if for all x € B,

g(~x) =~ f(x),
where~ X represents the complement of B.
For anyf, we denote byf? the dual off. If g= f9 thenf = g°.

An interesting relation between meet morphisms, join mimk and duality can be seen in the following propo-
sition:

Proposition 2. [20] If (apr,apr) is a dual pair of approximation operators, then aipra meet morphism if and only
if apr is a join morphism.

2.3.3. Conjugacy
Definition 6. [11] Let f and g be two self-maps on a complete Boolean laBic®/e say that g is a conjugate of f, if
forall x,y € B,

xA f(y) = 0if and only if yAg(x) = 0.

If gis a conjugate off, thenf is a conjugate ofj. If a mapf is the conjugate of itself, theh is called self-
conjugate. The conjugate ¢fwill be denoted ag®.

Proposition 3. [11] Let f be a self-map on a complete Boolean lattice B. Théiad a conjugate if and only if f is a
complete join morphism on B.

From the proof given in [11], the conjugate bis defined, foly € B, by:

9(y) =~ (V{x: () <~y}) = A{~x: f(x) Ay =0} (22)

In the context of rough sets, the concept of conjugate isa@l upper approximation operators. Here, we also
define a dual notion of co-conjugate for lower approximatias follows:

Definition 7. Let f and g be two self-maps on a complete Boolean lattice Bsai¢hat g is a co-conjugate of f, if
for all x,y € B,
xV f(y) =1ifand only if yv g(x) = 1.

If gis a co-conjugate of, thenf is a co-conjugate aj. If a mapf is the co-conjugate of itself, thehis called
self co-conjugate. The co-conjugatefowill be denoted ad..
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Proposition 4. If (f1,91) and(f,,92) are pairs of dual self-maps on a complete Boolean latticéhBntf and % are
conjugate if and only if gand @ are co-conjugate.

PrROOFE We show just one part of the equivalence. The other part igagim
If f{ = f, then, for ye B:

XVoi(y) =1~ XA~ gi(y) =
S XA fi(~y
S~ YA fa(~ X
Sy~ o

Syvoga(x) =1

~ ~
2
x
Nz
I

S0,(91)c = Q2. L

2.3.4. Adjointness
The idea of adjoint can be found in various settings in mattars and theoretical computer science. We consider
the particular case of adjoints defined on preordered setsyk as Galois connection.

Definition 8. [11] Let P and Q be two preorders; an ordered p&ir,g) of maps f: P — Q and g: Q — P is called a
Galois connection if for all ge P and ge Q,

f(p) < qifandonly if p< g(q). (23)

The mapy is called theadjointof f and will be denoted af?. The mapf is called theco-adjointof g and will be
denoted ag,. It is easy to show that the maps are order-preservingifijes: p’' thenf(p) < f(p') and ifg < d, then
0(9) < g(d), and that the adjointness condition (23) is equivalent éoabndition thatf andg are order-preserving
and that for allpandq, p < g(f(p)) andf(g(q)) < q.

Conditions about the existence of adjoints and co-adjaihtsmorphism between complete lattices are given in
the following proposition.

Proposition 5. [11] Let K and L be complete lattices.

1. Amap f: L — K has an adjoint if and only if f is a complete join morphism.
2. Amap g K — L has a co-adjoint if and only if g is a complete meet morphism.

In this case, the adjoint df is given by:

fay) = vi{xeL:f(x) <y} (24)
and the co-adjoint of is obtained as:
Ga(y) = M{xeK:y<g(x)}. (25)
The following important proposition establishes the iielaghip between duality, conjugacy and adjointness, and
will be used frequently in the next section.

Proposition 6. [11] Let B be a complete Boolean lattice. For any complete joiorphism f on B, its adjoint is the
dual of the conjugate of f. On the other hand, for any comptetet morphism g on B, its co-adjoint is the conjugate
of the dual of g.

In classical rough set theory, the lower and upper appratems(apr,apr) form a Galois connection og” (U ).
Jarvinen shows in [11] that there also exist Galois conaestin generalized rough set based on a binary relation. In
particular, ifRis a binary relation okJ andx € U, the sets:

R(X) = {ycU : xRy} andR 1(x) = {yc U : yR® (26)
9



are called successor and predecessor neighborhoodstreslye The ordered pair(sa—er,a_er,l) and(a—erfl,a_er),
defined using the element based definitions (7) and (8), Rt and R~1(x) instead ofN(x), form adjoint pairs.
Moreover,(aprg,apry) and(a—mel,a_pr,;l) are dual pairs.

On the other hand, Yao [26] established the following imaetiproposition which relates dual pairs of approxi-
mation operators with the relation-based generalizedhr@etymodel considered by Jarvinen.

Proposition 7. [26] Supposgapr,apr) : Z(U) — £ (U) is a dual pair of approximation operators, such tragir
is a join morphism and@pr(0) = 0. There exists a symmetric relation R on U, such that(Apr= apr_(A) and
apr(A) = aprg(A) forall A C U if and only if the pair(@pr, apr) satisfies: AC apr(apr(A)).

By duality, we know thaapr is join morphism if and only ifipr is a meet morphism argipr(0) = 0 if and only
if apr(U) =U. According to the proof, the symmetric relati&is defined by, fox,yin U,

xRy« x € apr({y}) (27)

3. Relationship among approximation operators

In this section, we want to relate the two groups of approtiomeoperators discussed in Sections 2.2.1 and 2.2.2,
using the concepts of duality, conjugacy and adjointnesklithonally, we derive a characterization of operators tha
satisfy both the duality and adjointness condition.

We start the section with a proposition that allows to coraphié adjoint of an upper approximation operator in a
computationally efficient way. According to Propositiore, upper approximation operatdr. #(U) — &(U) has
an adjoint if and only iH is a join morphism. This adjoint is given by:

H3(A) = U{B C U : H(B) C A}. (28)

Hence, the adjoint must be calculated on subsets.dflowever, the following proposition provides a less comple
alternative.

Proposition 8. IfH : #2(U) — £2(U) is a join morphism, then the adjoint of H can be calculatedibyA C U:
H&A) = {xe A:H({x}) C A}. (29)
Proor We will show that the following equality holds:
{xe A:H({x}) CA} =U{BC A:H(B) CA}.

If x e Aand H{x}) C Athen{x} CU{BC A:H({x}) C A} and xe U{B C A: H({x}) C A}. On the other hand, if
xeU{BC A:H(B) C A}, there exists B= {y1,...,¥n}, such that HB) C A and x< B. Because H is a join morphism,
H(B) = U ;H({yi}), from which follows that Ki{x}) C A. O

This form of the adjoint approximation operator is actudiiig same as that of the Wybraniec-Skardowska lower
approximation operator [22]. Recall that the WybranieatSlkbwska approximation operator pﬁiar—prh,a_prh) is
defined as:

apr, (A) ={xeU:0#h(x) CA} (30)
apty(A) = (Jh(x) (31)
XEA

whereh is an upper approximation distribution, i.e.,ldn— £?(U) mapping that satisfie§) h(x) = U. In this case,
xeU
for all upper approximationsl such thatH ({x}) # 0, equations (29) and (30) are the sarhe&an be considered as

a restriction ofH to the singletons. The pair of approximation operatorsmivge Egs. (30) and (31) are not dual
operators, but they are an adjoint pair, by definition.
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3.1. Non-dual framework of approximation operators

We first establish an important conjugacy relation betwéerupper approximation operatd11§ and Héc. This
relationship holds regardless of the neighborhood opehatghich is used in the definition, so we begin by proving
the following more general proposition.

Proposition 9. Let N be a neighborhood operator ang'@®) = U{N(x) : x € A}, G} (A) = {x € U : N(x) N A # 0}
operators defined for N, thenfGs the conjugate of .

PROOF. We show that AGY/(B) # 0 if and only if BAG/(A) 0, for ABC U.

If ANGY(B) # 0, then there exists w U such that we A and we GY(B). Since we GY(B), there exists x< B
such that we N(Xo). Then Nxo) NA # 0, with xy € G} (B). Since % € B, then BAGY(A) # 0.

If BNGY(A) # 0, then there exists w U such that we B and we G} (A), i.e., we B and Nw) N A # 0. Then
there exists z such thatezN(w) and ze A. Since = N(w) and we B, then ze GY(B). So, ze ANGY(B), with
ANGY(B) #0. O

Corollary 1. HS and H are conjugates.

PROOE In this case, the operatorsg—land I—@C correspond to @ and G’g‘ when neighborhood operatonNs used.
O

Next, we prove that5 is the adjoint oTHéC. For this, we need the following lemma.
Lemma 1. Forallw € U, HE (N1 (w)) = Ny (w).

PROOF. By Proposition 1, from x Ny (w) follows N (x) C Ny (w), hence K (Ng(w)) € Ny (w). On the other hand, it
is clear that N (w) C HE (Ny(w)), since we Ny (w). O

Proposition 10. LS = (HS)2.

PROOF We will show that £(A) C (HE)3(A) and (HE)?(A) CLS(A), for ACU. If we LS(A), there exists x U
such that we Ny(x) with Ny(x) € A. The upper approximation Hof Ny(x) is equal to N(x), by Lemma 1; i.e.,
HE (N1(x)) = Ny (). Hence, we U{Y CU :HE(Y) C A}, so we (HS)3(A). On the other hand, if w (HS)3(A), then
there exists YZC U, such thatwe Y and I—§(Y) CA;i.e ,U{Ni(x):xe Y} CA;in particular, we Ny (w) C Héc (Y)CA,
sowe LS(A). O

Corollary 2. The dual of i is equal to S

PROOF According to Propositions 10, 6 and corollary 1, we havg= (HS)2 = (HE)¢)? = (HS)?. |
The upper approximation operatdﬂ§ andH‘7C are closely related; they are discussed in the next two [sitpos.

Proposition 11. Héc is self-conjugate.

PROOF. According to Proposition 6 and the fact thattHs a join morphism,(HS)2 = ((HS)¢)?, so H is self-
conjugate if and only ifHS)2 = (HS)?, that is (HS)3(~ A) =~ HS (A). We show thatHS )3(~ A) =~ HS (A) for
any ACU. x¢ HZ(A) if and only if N((x) NA = 0 if and only if N.(x) C~ A if and only if x€ (HS)3(~ A). O
Proposition 12. HE = Hy*

ProOF From the definition of—|§C andCs, we can see that, for al C U:

HE(A) = {Ny(x) : Ny (x) NA % 0}
={KeC3:KNA%0}
= H33(A).

11



Corollary 3. H¥ is self-conjugate and its adjoint is equal(ﬂd(zc3)" = a_pr{és.

PROOF. Using HY = H;C3 and proposition 11, we have thafHs self-conjugate. By proposition 6, we hayets )2 =
(HF)%)? = (HF)? = (Pt )? = apt’, .

Finally, we investigate whether any of the remaining upgsraximation operatorblic, Hé,,c and Hf forms an
adjoint pair withL .

Example 5. In Table 6, we compare lower approximations for some suledgtined with [, and with the adjoints
of HE, H and HY. Since none of the final three columns is identical to the dingt, we conclude that none ofH
HS or Hy forms an adjoint pair with .

Set| LT | (HD)? | (H9)® [ (H)?
246| 6 | 6 64 | 6
145|145 15 | 0 15
123 123| 1 1 1

Table 6: Comparison of the adjoints idf, HS andHY with LS.

From the above results, we can draw the following conclusiame of the pair¢H{,LT), (HS,LT), (HS,LY),
(HE, L), (HE,LD), (HE,LS) and (HY,LS) which have previously been considered in the literature @ection
2.2.2) forms an adjoint pair; on the other haftds, LS) does, but this is not a dual pair.

3.2. Dual framework of approximation operators

In this section, we examine the twenty pairs of approximmatiperators considered by Yao and Yao in [32]. First,
we establish an important proposition that follows from doglity of these operators.

3.2.1. Element based definitions
We first establish that upper (resp., lower) approximatitement based definitions have adjoints (resp., co-
adjoints).

Proposition 13. For any neighborhood operator N, apiis a meet morphism.

PROOF Since apy,(A) = {x €U :N(x) C A}, we have x apr, (ANB) iff N(x) C ANB iff N(x) € Aand Nx) C B
iff x € apr, (A) and xe apr, (B) iff x € apr, (A) Napr, (B). O

Corollary 4. For any neighborhood operator Ngpry is a join morphism.
Corollary 5. For any neighborhood operator N, apihas a co-adjoint and it is equal to the conjugateagfy,.
. . C —_—
PROOF. By Proposition 6 and the duality @fpry andapr, , (a_|orN)a = (a_prﬁ) =(@pry)‘=(GY)*=GY. O
Corollary 6. For any neighborhood operator Nipry has an adjoint and it is equal to the dual of'G
PROOF. Indeed, by Proposition 6, we fir@pry)? = ((@pry)¢)° = (G'g‘)a.

The remaining question now is wheth@pry, apr, ) can ever form an adjoint pair. For this to hold, based on the
above we need to have thén_prN)a =GN =Gl =apry.

Proposition 14. (a—prN,a_prN) is an adjoint pair if and only if N satisfiesg’;‘: Gg.

12



The following proposition characterizes the neighborhopdrators\ that satisfyGQ = GQ, and establishes the
link with the generalized rough set model based on a bindayioa.

Proposition 15. Let N be a neighborhood operator. The following are equintle

(i) Forallx,yinU, N satisfies
y € N(X) = x € N(y) (32)

(i) GY =GY
(iii) There exists a symmetric binary relation R on U such thadN- {y € U : xRy}.

PROOF. We first prove (i)= (ii). Let AC U. If w € GY(A), then we U{N(x) : x € A}. This means that & N(x) for
some x A, and by (32) xc N(w), so Nw) N A # 0. Hence we G} (A).

If w e GY(A), then Nw) N A # 0. In other words, there exists&xU with x € A and xe N(w). By (32), we N(x)
and thus we U{N(x) : x € A} = GY(A).

On the other hand, to prove (i#> (i), by the definition of &, we have @({x}) = N(x). If G} (A) = G} (A), for
all A C U and ye N(x) then Nx) N {y} # 0, so xe G} ({y}) = GY({y}) = N(y).

Finally, the equivalence (¥ (iii) is immediate, with R defined by xRy x € N(y) for x,y in U.

O

The proposition thus shows that the only adjoint pairs amelament-based definitions are those for which the
neighborhood is defined by Eqg. (26), with symmeRicThe following example shows that for none of the neighbor-
hood operators considered in Section 2.2.1, the adjoistneisls.

Example 6. We illustrate the fact tha(a—prNi,a_prN_) is not an adjoint pair for i=1,...,4, by showing that the

property f(g(x)) < x, satisfied by any Galois connectith g), does not hold for them.
For the coveringC = {12,124, 25,256,345, 26,6} of U = 123456 the neighborhoods;Mor the elements of U are
shown in Table 7.

X | Ni(x) | Na(%) | Na(x) | Na(x)
112 |12 124 | 124
22 1256 | 2 12456
3| 345 | 345 | 345 | 345
414 12345| 4 12345
55 23456 5 23456
6|6 6 256 256

Table 7: Neighborhood operators for the covering in Exarple

We have that:

o apry, (apry, (45)) =apry, (45) = 345¢ 45.

[ ]
Q)|

Phy, (a_prN2(12)) aphy, (1) = 124¢ 12

[ ]
Q)|

Phi, (@pry, (12)) = aphy,(2) = 126¢ 2.

[ ]
Q)|

Piy, (a_prN4(124)) = apry, (124) = 12345¢ 124

13



3.3. Granule based definitions

We first prove some propositions that provide a relationgt@pveen different granule based definitions, and
between particular element and granule based definitions.

Proposition 16. a_pr’c = a_pr’(cl.

PROOF. Let ACU be a subset of U. For all K& C with K C A there exists a Ke md(C, x) for some »x U, such that
K'CK CA, soU{Kemd(C,x) :xe U} CU{K CC:K C A}, thenﬂh <apre. On the other hand, if w K C A,
there exists Ke md(C,w) such thatwe K’ CK C A, sowe U{K € C; : K C A}. O

Proposition 17. apr;, = MCU'

PROOF. We will show that for each& U, md(C,x) = md(Cu,x) and so, by Proposition 16, we have apr apr, .

From the definition ofCy, we know thatC, is the U-reduct andCy C C and mdC,x) C md(Cy,x). If K Ue
md(Cy,x) and let us suppose that&md(C, x) there exists Kmd(C, x) such that xc K’ C K. O

Proposition 18. apre. = apr,

ProoF Clearly, we haveC, C C, and thereforea_pn’(é2 (A) Caprf(A), forACU.
On the other hand, for each K C there exists Ke C, such that KC K’, so KNA # 0 implies KNA # 0, thus
apr.(A) C aprg., (A). O

Proposition 19. apr¢. = apre,,

ProoF From the relationC C C, we havea—pr(ém (A) Capr(A), forall ACU.
If K € C— Cn there exists KC C — {K} suchthat K=NK’, KC L forall L € K’, thus if KN A= 0 then LNA # 0,
thusaprg (A) C apre, (A). O

Proposition 20. a_pr’(C3 =apry -
PrROOF
apr l(A) ={xeU :Ny(x) C A}
= U{N1(x) : Na(x) C A} = apr, (A)

N

For the second equality, if wm’ca (A), there exists x such thataN; (x) C A. By proposition 1, Nw) C N;(x) C A,
sowe apr, (A). O

By Propositions 13 and 20, we have the following corollary.

Corollary 7. The approximation operator_a@g is a meet morphism, bl@rpr’@s’ﬂm) is not an adjoint pair.

In general, the dual pair(a_pr’(c,a_pr’c) are not adjoint, because we know thitrgc = LY is not a meet morphism
when the covering is not unary. Next, we study the case of the loose approximatperatorsprg. andapr..

Proposition 21. apr{. is a self-conjugate join morphism.

PrRoOF By definitionapry. = Héc, so it is a join morphism and by Proposition 11 it is self-aargte. O
Using Proposition 2, we can establish tb_at{é is a meet morphism, which allows us to prove the followingites

Proposition 22. The pair(apr¢,apr’,) is an adjoint pair.

PROOF. From propositions 6 and 21, we hav@pr.)? = [(@pf.)°)° = [apr¢]? = apr/. and(apr/.)a = [(apry.)’]° =
[apryJ° — apr.
14



Moreover, the following proposition shows that this adfgiair can also be seen as a particular case of an element-
based definition.

Proposition 23. (apT¢,apr/.) = (aply,apr,,), where N is defined by
N(x)={yeU:(FK e C)(xe KAyeK)} (33)

PROOF. By Proposition 7, we know that there exists a symmetrici@iaR on U such tha@pr. ,a_pr’é) = (apTr,apry),
where xRy= x € apri({y}) @ xe U{K e C:KnN{y} #0} & xc U{K e C:yeK}.

Putting N(x) = R(x), we find that ye N(x) if and only if there exists kK C such that xc K and ye< K, or in other
words Nx) ={yeU : (IK e C)(xe KAy e K)}. O

Summarizing, only the loose pair of granule based approkimaperators in Yao and Yao's framework is an
adjoint pair, and moreover this pair coincides with a pattcelement-based definition.

To conclude this section, we point out an error in [32]: it fated there on page 104 tmﬂé = apr, and
apre = apry,, however this incorrect; in particular, knowing tHapre, apry.) is an adjoint pair an aprN4,a_prN4)
is not, this equality cannot hold.

3.4. Subsystem based definitions

= Lfﬁc L(lSJ(C),

First, looking at the definitions we can observe that anda_prSJ = . Furthermore, we can

establish the following relationship betwea_prSU and the_granule—based model.
Proposition 24. apry = M@

ProoF Clearly,C C S, ¢, and thereforeiq&(A) Caprg, (A), forACU.
On the other hand, for each X S, ¢, there existK C C such that X= JK, thus if XC A then LC A, for alll
LeK. Hence{X e S, c: XCA} CU{KeC:KCA}, i.e.,ﬂrSU(A) C apri.(A). O

This equality can be also be understood by the fact that gddiions of elements to a covering does not refine
the covering.

The following example shows that the approximation opesHQr. anda_prSU are not meet morphisms, and
neitheraprg, noraprg, are join morphisms, so they cannot form adjoint pairs.

Example 7. Consider the subsystems &d S, from Example 3.

If A=123 B = 2456 then AAB =2, apre. (A) =123 a_m$(B) = 2456andﬂrSj (ANB) =0, thenﬂg (AN
B) # a_pr“A) ma_prSn(B) =2

On the other hand, If A= 1236 B= 1235 then ANB = 23, aprg (A) = 1236 a_prSJ(B) = 1235andﬂrSU (AN
B) =0, thenﬂgU (ANB) # aprg, (A) ﬂa_prSJ(B)=123.

Analogously, it can be verified thaprg, andaprg, are not join morphisms.

3.5. Summary of relationships and properties

In Table 8, we summarize the results established in the guevsubsections. In particular, we rearrange the group
of 20 dual pairs considered by Yao and Yao [32] into 14 grodpegoivalent operators, showing in each case their
equivalence with members of the non-dual framework comsitlen [25]. For each group, we also indicate whether
the operators form an adjoint pair and whether their memdnergin/meet morphisms.

For instance, group A consists of the dual pairs 1 and 11 frabfeT4 which are equal due to Proposition 20. They
are equivalent to the pajHg,LS), becausapr, = LS by definition, and the dual df§ is HS by Corollary 2. They
are join and meet morphisms, but not an adjoint pair as showxample 6.

It is interesting to note that all pairs of approximation @giers in Yao and Yao's framework can be described
from approximation operatots’, LS, HY andHg, their duals and/or their conjugates.
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Group | # Dual pair Equivalent pair || Adjoint pair | Meet/Join
A 1,11 apry, | apry, | He L5 O v
apic, | apPle,
B 2 apny, | apr,, | Gg° (Gg2)? 0 v
C 3 aphy, | apry, Gye (Gg2)° O v
D 4 apry, | apry, Gy (Gg4)? O v
E 5,7,17,20| apr. | apr. | (L})? | L% O O
a_pr’cl ﬂ’/@l
a_prl(cu ﬂl((:u
aprg, a_prs
F 9 apre, | apr | (L1?)? | Ly 0 0
G 13 apre, | apr,, [ r? | L 0 0
H 15 apre, | apr. | (L7)? | L7 O 0
| 6,10,18 | aprl | apr’ | HS (HS)? v v
aprt, | apt,
apre, | aprg,
J 8 aprt, |apr. || Ht | (HpY)? v v
K 12 aprt, |apr, | H® | (H?)? v v
L 14 apre, | apr!, | H* (Hy*)? v v
M 16 apr¢, | aprl || H7" | (H")? v v
N 19 aprs, | aprg, | (L7)7 [ LY O 0

Table 8: Summary of relationships and properties of the@gppration operators.

3.6. Characterization of dual adjoint pairs

In this section, we characterize pairs of dual and adjoipt@ximation operators in the covering-based rough set
framework.

First, in the left hand side of Figure 1 we illustrate scheoadly the relations among duality, conjugacy and
adjointness. The arrow represents a dual transformation and the arrovesid co represent transformations of
conjugate and co-conjugates, respectively. The ddirg;) are dual,f; and f, are conjugate angd; andg; are co-
conjugate. The adjoint and co-adjoint can be obtained &fteconsecutive transformations, so the adjointiaf go,
and the co-adjoint of;; is f,. The middle diagram represents the specific situation feptir (apr;- ,a_pr’(é), while
the right hand side represents the case of approximatioratmpe defined from a binary relation as considered by
Jarvinen [11].

fq - 9 o1 a_pr’é 2, ﬂj(é aprg -9 apr,
c co c co co
f2<T>92 a_pr’é<T>a_pr’(é aprg 1<—>aer1

Figure 1: Arrow diagram for approximation operators.

The following important proposition establishes the lielaghip between duality, conjugacy and adjointness in the
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general case of a complete Boolean lattice.

Proposition 25. Let (f,g) be a dual pair on a complete Boolean lattice B. The ddirg) is a Galois connection if
and only if f is self-conjugate.

PROOF. If (f,g) is a Galois connection, then-g f2 = (f¢)?. By duality g= %, so R = (f¢)? = {9, hence f= fC.
On the other hand, if = f¢, then = (f¢)? = (f)? =gand g = (¢g°)° = f¢ = f.

In general, if DP represents dual pairs, GC Galois connestmd SC pairs for which the upper approximation is
self-conjugate, then we have the following implications:

GC+SC— DP (34)
DP+SC— GC (35)

To summarize, Figure 2 contains a set diagram which depats pf approximation operator® is the set of
pairs of approximation operatofs!,L). D contains all the dual pairs ardthe adjoint pairs. ID we have the dual
pairs of Yao and Yao’s framework. The pairs in the intergectre precisely those pairs of approximations for which
the upper approximation is self conjugate. Outsid®afA there are other pairs which are neither dual nor adjoint,
such as(HéC, L‘ZC). The pairs of approximations in Yao and Yao's framework agresented with the letters frof
to N and correspond to the groups in Table 8. Finally, the pa_irrh,a_mh), defined from an upper approximation
distributionh (Wybraniec-Skardowska) is also an adjoint, but not dual pai

(Hs, (HH)9)

(Hs, L) D
(apry, , apry, ) (Hy, H)
(Ho. (H5)\ (Hs, G5) (Hs, (HS)

(aprj,, apr;)
C ,c

(Hy, L)
- J

Figure 2: Set diagram of pairs of approximation operators.

4. Conclusion and future work

In this paper, we have studied relationships between péilea@r and upper approximation operators within
the covering-based rough set model. We have shown in platithat within the framework of twenty dual pairs
of approximation operators proposed by Yao and Yao in [32ly éourteen of them are different, and of these only
five pairs are adjoint. On the other hand, we have demondttatt none of the pairs of approximation operators
(HE,LD), (HE,LD), (HS,LY), (HE,LY), (HELD), (HE,LS) and(HE,LY) considered in e.g. [19, 25] is adjoint; on
the other hand(,HéC, L‘ZC) is an adjoint, non-dual pair. Furthermore, we have estadtighat all operators in Yao and
Yao's framework can be equivalently expressed in ternisioL5, HS andH .

We have also derived a characterization of dual and adja@s pn terms of the self-conjugacy of the upper
approximation operator, and have related this equivalemgeevious results established for generalized rough sets
based on a symmetric binary relation.
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As future work, it is interesting to study which are the cangs for which a specific adjoint pair is dual, and
conversely, for dual pairs.

On the other hand, a very important continuation of this wiorlolves studying order relationships that hold
between the various approximation operators, sucipEs(A) C apr(A). Such order relations have already been
studied partially in [35], where they are induced by meansswf entropy and co-entropy measures for covering-based
rough sets, and in [14], which studies order relations betwearious types of neighborhood-related covering-based
rough sets. Since approximation operators are used frédguerdata analysis applications of rough sets such as
feature selection and classification (see e.g. [3] in the cAgovering-based rough sets), order relationships can be
meaningfully used to guide the selection of appropriatespafi approximation operators.

The results of this paper may also be applied to Formal Cdngealysis (FCA); FCA and rough set theory
have the formal context as a common framework [28]. A fornmadaept(U,A R) is defined by two finite setd
(objects) andA (attributes), and a binary relation frothto A. As explained in [13], a regular formal context defines
a coveringCa as the set of object sets of attributes A. A dual pair of approximation operators is then derived from
this covering, using the operata_m’(c. However, we may consider other approximation operat@sdated with a
particular coverindC, and it makes sense to study their properties in the conféxta.

As a final important line of future work, we want to extend theained results to fuzzy rough set theory, and in
particular to the ambit of fuzzy coverings, such as thosdistlin [7, 8].
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