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Abstract When we face a problem with a high number of

variables using a standard fuzzy system, the number of

rules increases exponentially and the obtained fuzzy sys-

tem is scarcely interpretable. This problem can be handled

by arranging the inputs in hierarchical ways. This paper

presents a multi-objective genetic algorithm that learns

serial hierarchical fuzzy systems with the aim of coping

with the curse of dimensionality. By means of an experi-

mental study, we have observed that our algorithm obtains

good results in interpretability and accuracy with problems

in which the number of variables is relatively high.

Keywords Curse of dimensionality �
Hierarchical fuzzy systems � Multi-objective genetic
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1 Introduction

If a conventional fuzzy system (FS) is applied to large-

scale problems (i.e., those with a high number of input

variables), the number of rules grows exponentially with

respect to the number of inputs received (Raju et al. 1991;

Joo and Lee 1999). Indeed, if we have n variables and k

linguistic terms per variable, it requires up to kn rules

to build a complete Mamdanitype fuzzy system, and con-

sequently, the accuracy-interpretability balance is bro-

ken. This problem is better known as the ‘‘curse of

dimensionality.’’

In order to solve it, several approaches have been sug-

gested such as variable selection (Chiu 1996; Hong and

Chen 1999; Jin 2000; González and Pérez 2001; Hong and

Harris 2001; Lee et al. 2001; Xiong and Funk 2006; Tan

et al. 2008) and rule set reduction (Ishibuchi et al. 1995;

Taniguchi et al. 2001; Casillas et al. 2005; Alcalá et al.

2006, 2007, 2011b; Gacto et al. 2009). Nevertheless, when

the number of variables increases considerably, this kind of

reduction may not be enough to solve it. There is a dif-

ferent approach to deal with that: hierarchical fuzzy sys-

tems (HFSs). An HFS is made up of a set of fuzzy

subsystems or modules. These modules are linked in such a

way that the output of a module is the input of other ones.

We may distinguish between three types of modules

(Fig. 1):

• SISO (Single Input, Single Output): It has one input and

one output (Fig. 1a).

• MISO (Multiple Inputs, Single Output): It has several

inputs and a single output (Wang et al. 2006; Chen

et al. 2007; Zajaczkowski and Verma 2012) (Fig. 1b).

We can find Fuzzy Logic Unit (FLU) in this kind of

modules. An FLU special case has two inputs and one

output, which is equally found in the literature (Joo and

Lee 1999, 2002; Shimojima et al. 1995; Wang 1998;

Lee et al. 2003; Gaweda and Scherer 2004; Jelleli and

Alimi 2005, 2010; Zhang and Zhang 2006; Cheong

2007; Aja-Fernández and Alberola-López 2008).
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• MIMO (Multiple Inputs, Multiple Outputs): They have

several inputs and outputs (Salgado 2008) (Fig. 1c).

Apart from distinguishing several kinds of modules, it is

also possible to find different types of hierarchical struc-

tures. There are different classifications (Gaweda and

Scherer 2004; Duan and Chung 2002; Torra 2002), though

the most general one is the following (Aja-Fernández and

Alberola-López 2008):

• Serial HFS (SHFS): The input of a module is the output

of the previous ones, along with external variables (Lee

et al. 2003; Cheong 2007; Wang 1999; Aja-Fernández

and Alberola-López 2008; Zeng et al. 2008; Benftez

and Casillas 2009; Zajaczkowski and Verma 2012)

(Fig. 2a).

• Parallel HFS (PHFS): This system is organized in

layers (Fig. 2b). The first one is made up of a set of

modules receiving the input variables. Each variable is

used as an input only in a single module. The outputs of

the modules in the first layer are the inputs of the

modules which constitute the next layer, and so on.

An aggregate operation might also exist in order to

combine the outputs of one layer (Holve 1998; Joo

and Lee 1999; Jelleli and Alimi 2005, 2010; Lee et al.

2003; Salgado 2008; Zhang and Zhang 2006;

Aja-Fernández and Alberola-López 2008; Joo and

Sudkamp 2009).

• Hybrid HFS (HHFS): This type of HFS is a mixture of

the two previous ones (Joo and Lee 2002; Wang et al.

2006; Chen et al. 2004, 2007; Aja-Fernández and

Alberola-López 2008) (Fig. 2c).

Figure 2 shows this classification of hierarchical structures.

We want to emphasize each module of an HFS deals

with a subset of variables, in other words, it does not

handle the problem as a whole. Thanks to the decompo-

sition of the FS made in an HFS, the complexity of each

module is significantly reduced due to the fact that the

modules’ rules are simpler than the rules of the FS with a

module since the number of variables of each module is

lower.

Several approaches have studied the best way to deal

with the linking variables used to link modules. The gen-

eral way is to generate new linking variables without lin-

guistic meanings (Lee et al. 2003; Cheong 2007; Wang

1999; Zeng et al. 2008; Holve 1998; Joo and Lee 1999,

2002; Jelleli and Alimi 2005, 2010; Salgado 2008; Zhang

and Zhang 2006; Joo and Sudkamp 2009; Wang et al.

2006; Chen et al. 2004, 2007; Aja-Fernández and Alberola-

López 2008; Zajaczkowski and Verma 2012). Gaweda and

Scherer (2004) approach this task with fuzzy numbers.
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Fig. 1 Types of modules
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Fig. 2 Types of hierarchical

structures
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In this paper, the term mutual subsethood appears as a

similarity measure based on the degree of inclusion of A0 in

A and, at the same time, on the degree of inclusion of A in

A0, A being a fuzzy set and A0 a fuzzy numbers set.

Jelleli and Alimi (2005) propose an iterative algorithm,

which associates linearly the inputs in pairs (xL;i; xL;iþ1),

building a first layer with a set of FLUs, with L being Lth

the layer and i the ith FLU. Each FLU generates a linking

output, yL;i, and they are associated in pairs (yL;i; yL;iþ1).

The non-dominant linking output, dL;i, is selected from

each pair. Next, these variables are the inputs of the next

layer. This procedure is a looper manner until sweeping all

hierarchical levels.

Therefore, we distinguish three types of rule bases: (1) a

usual rule base of an FS (Fig. 3a), (2) HFS with artificial

linking variables (the linking variables are new variables

created by means of a mathematic function; in Fig. 3b,

variables y1 and y2), and (3) HFS with natural linking

variables (the linking variables are problem’s variables; in

Fig. 3c, variables X2 and X5). Let the FSs be in Fig. 3, if we

have five variables and three linguistic terms per variable,

the FS in Fig. 3a requires up to 35 ¼ 243 rules to build a

complete FS; in Fig. 3b there are 45 rules (33 rules in M1,

32 rules in M2, and 32 rules in M3), and in Fig. 3c there are

21 rules (32 rules in M1; 3
2 rules in M2, and 31 rules in M3).

In these figures, we can observe that the lowest total

number of rules is obtained in Fig. 3c. If we compare

the FS in Fig. 3c with the FS in Fig. 3a, we can notice the

variables distributed in modules in an HFS decrease the

total number of rules and, moreover, the complexity of

each rule is reduced. If we compare the FS in Fig. 3c with

the FS in Fig. 3b, the number of rules in Fig. 3c is lower

than Fig. 3b because it does not generate artificial linking

variables.

Therefore, in this paper, we suggest the use of the

problem’s variables in order to communicate the modules.

A previous version of our proposal was published in

Benftez and Casillas (2009). Each module has a set of

Mamdani-based rules, which infer the linking variables.

The FS generated is more interpretable because it uses

Mamdani-type rules and the natural linking variables have

semantic meaning. As far as we know, it is the first time

that an algorithm combines an HFS with Mamdani-type

rules. Besides, we use a robust approach with a learning

(b)

(a)

(c)

Fig. 3 Types of rule bases in a fuzzy system
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process based on evolutionary computation, called genetic

fuzzy systems (GFS). GFS combines a population-based

search with a linguistic representation interpretable (Casillas

and Carse 2009; Nojima et al. 2011).

We propose a multi-objective genetic algorithm (Multi-

Objective GA) with the following features:

• It allows large-scale problems to be dealt, thanks to its

hierarchical structure and the inclusion of variable

selection.

• It guarantees good interpretability due to the algorithm

uses of problem’s variables in order to link modules.

The hierarchical structure decreases the number of rules

and each rule is simpler because the number of

variables per rule is lower. Moreover, it allows the

algorithm to deal with Mamdani-type rules for a better

understanding.

• It obtains different trade-offs between interpretability

and accuracy, thanks to the multi-objective algorithm,

and so, it generates different solutions with different

trade-offs.

Most HFS proposals are focused on improving the

accuracy. However, the aim of our proposal is to improve

the interpretability by means of a precise and compact set

of rules, while the accuracy is maintained or improved.

The paper is organized in the following sections: in

Sect. 2, a summary of the most relevant algorithms that

work in this area is carried out; in Sect. 3, the proposed

algorithm is described: structure, coding scheme, initiali-

zation, genetic operators, inference mechanism, rule base

learning, multi-objective approach, and the objective

functions; in Sect. 4, the empirical study is shown: the

problems used are described, the results obtained, and an

analysis and study of its behavior; in Sect. 5, a comparison

between our proposal and the state of the art in the area of

GFSs is provided; in Sect. 6, conclusion and future work

are discussed.

2 Related works

In the literature, there are some proposals to deal with

HFS without learning a hierarchical structure (Wang

1998, 1999; Joo and Lee 1999, 2002; Gaweda and Scherer

2004; Lee et al. 2003; Zhang and Zhang 2006; Cheong

2007; Zajaczkowski and Verma 2012). These cases are

outside of our interest. Indeed, the design of an optimal

hierarchical structure is as important as the accuracy of

each module because if the HFS has a higher number of

modules, the number of errors carried by the system will

be higher too. This section reviews the main existing

approaches to learn hierarchical structures. The descrip-

tion is sorted in chronological order, and does not mention

approaches that use hierarchical structures, but do not

learn them.

The algorithm of Shimojima et al. (1995) learnt a hybrid

hierarchical structure with a GA and back-propagation

method. It uses exponential radial basis membership

functions (MFs) and are tuned with supervised learning by

means of the gradient descendent method. The rules of the

HHFS are Takagi–Sugeno–Kang (TSK).

Chen et al. (2004) designed an algorithm with the

capacity to learn HHFS structures by means of ant pro-

gramming and realizes a fine tuning of rule’s parameters

using Particle Swarm Optimization (PSO) algorithm. It

codes the HFS in a tree structure and uses TSK rules with

exponential MFs.

Wang et al. (2006) used the descendent gradient method

in order to learn the HHFS structure. It uses Mamdani-type

rules and triangular MFs.

Chen et al. (2007) improved the version of Chen et al.

(2004), which learns HHFS structures by means of Proba-

bilistic Incremental Program Evolution (PIPE) and realizes a

fine tuning of the rule’s parameters using evolutionary pro-

gramming. The shapes of MFs are learnt with adaptive

techniques and it uses TSK rules.

Aja-Fernández and Alberola-López (2008) create a new

way of learning the rule base by means of a matrix pro-

cedure called Fast Inference using Transition Matrices

(FITM), which is proposed as a methodology to perform

inferences with the standard additive model. It uses

Mamdani-type rules and this rule base learning can be used

in SHFS, PHFS, and HHFS.

Joo and Sudkamp (2009) designed a two-layer PHFS. It

uses Mamdani-type rules in the first layer, TSK-type rules

in the second layer, and applies a rule reduction estab-

lishing a dependence relationship among first-layer FSs.

The MFs are triangular. This approach is described in

detail in Appendix 3.

The learning of the HFS problem remains an open

problem. For example, Jelleli and Alimi (2010) have

recently published an learning algorithm of PHFS. The

variables are grouped in modules by means of the

learning the fuzzy behavior from data. Later, a decision

maker chooses the modules of the next layer according

to a weight. The MFs are Gaussian and TSK rules are

used.

Table 1 shows a summary of the approaches with hier-

archical structure learning. Notice that in all the reviewed

algorithms, new variables are generated to link the modules.

However, as stated above, our algorithm will use natural

variables, thus ensuring better interpretability.
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3 GSHFS algorithm

The algorithm, called Genetic SHFS (GSHFS), uses a

multi-objective genetic algorithm where there are two

objectives to minimize: the mean squared error (MSE) and

the maximum number of rules. Our algorithm has three

specific genetic operators: one crossover operator and two

mutation operators. Its scheme is shown in Algorithm 1.

The following subsections detail the different components

of the algorithm.

3.1 Coding scheme

We will distinguish between two kinds of input variables:

(1) endogenous variable: it is a variable linking two modules,

(2) exogenous variable: it is a system’s external variable.

In our algorithm, each individual represents an SHFS.

The variable-length coding scheme consists of a gene

concatenation. Each gene has two fields: a variable index

and a flag. The flag takes binary values (‘0’ if it is an

exogenous variable and ‘1’ if it is an endogenous variable).

A variable with ‘1’ in the flag field means that is an

endogenous variable and a module exists. This variable is

the input of the next module. All the used variables are

variables of the problem. The algorithm decides if a vari-

able of the problem will be endogenous or exogenous, but

does not create new variables. The highest hierarchy level

happens when all modules are SISO. In this case, all

variables will be endogenous except the first and the

number of levels is equal to the number of input variables.

Figure 4 shows an example of the coding scheme. This

example of SHFS has ten inputs: four of them are exoge-

nous variables (X10;X3;X5, and X6) and two of them are

endogenous variables (X8 and X7). There are four variables

(X1;X2;X4, and X9) that does not appear.

3.2 Initialization

The algorithm generates an initial population randomly.

The variable index and the endogenous/exogenous flag is

randomly chosen for each gene. The only restriction is that

the variable cannot be repeated and the flag of the first gene

cannot be ‘1’ (i.e., the first variable has to be exogenous).

The algorithm is constrained to a maximum number of

modules because if the number of modules is high, the

propagation error will increase considerably. On the other

hand, we want to reduce the search space too.

3.3 Crossover operator

The crossover operator is applied according to a probability

between mated parents and exploits the search space. When

the crossover operator is applied to two parents, P1 and P2,

different cases may be distinguished: (1) both parents, P1

and P2, have several modules, (2) parent P1 has several

Table 1 Summary of the main existing approaches with hierarchical structure learning

Author Membership functions Type of rules Structure Linking variable Learning

Shimojima et al. (1995) Radial basis TSK HHFS Artificial GA, back-propagation

Chen et al. (2004) Exponential TSK HHFS Artificial Ant programming

Chen et al. (2007) Exponential TSK HHFS, SHFS Artificial PIPE

Aja-Fernández et al. (2008) Triangular Mamdani PHFS, HHFS Artificial FITM

Joo and Sudkamp (2009) Triangular TSK PHFS Artificial Greedy

Jelleli and Alimi (2010) Gaussian TSK PHFS Artificial Decision maker

Our proposal (2012) Triangular Mamdani SHFS Natural Multi-objective GA

M1

M2 M3

X10

X3

X5

X6

X8

X7
Y

Flag

Variable X10 X3

101000

X7X6X8X5

Fig. 4 Example of coding scheme
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modules and parent P2 has one module (or the reverse case

with P2 and P1), (3) both parents, P1 and P2, have one

module. A parent-centric approach has been used in some

cases where the offspring mainly inherits the information

of one of the parents and takes the secondary parent in

order to add diversity. Figure 5 shows the cases by means

of decision trees. The crossover operator controls the

maximum number of modules in order to reduce the search

space. It creates a new solution if the cross between two

parents generates a number of modules less than or equal to

the maximum number of modules.

The crossover is applied to individuals depending on the

types of variables that the two parents have in common.

Each case has an ordered priority list, thus the crossover is

applied to the first matched.

3.3.1 Both parents, P1 and P2, have several modules

• Priority 1. Endogenous–Endogenous case If P1 has

common endogenous variables with P2, a common

endogenous variable is selected at random. This variable

is the crossing point. The offspring O1 is generated

centered on P1. Thus, the offspring O1 inherits from P2

the variables and modules from the beginning of the

chromosome to the crossing point, but excluding it. The

remaining one is taken from P1 and repeated variables

are removed from the part inherited from P2. The

offspring O2 is generated in the same way but centered

on P2. Figure 6a illustrates an example of this case.

• Priority 2. Endogenous–Exogenous case If P1 has

endogenous variables which are exogenous in P2, a

common variable is randomly selected as the crossing

point. The offspring O1 is generated centered on P1.

The common endogenous variable inherited from P1 is

converted into exogenous and the rest of previous

modules of this variable are removed. This kind of

alteration produces a lower aggressive change because

the offsprings resemblance their parents.

• Priority 3. Exogenous–Endogenous case If P1 has

exogenous variables which are endogenous in P2, one

of those variables is randomly selected as the crossing

point. The offspring O1 is created centered on P1, but

excluding the crossing point. The first part of O1 is

inherited from the first part of P2 (from the first gene to

the crossing point). The repeated variables are removed

in O1 from the part inherited from P2.

• Priority 4. Exogenous–Exogenous case If P1 has a set of

exogenous variables in common with exogenous vari-

ables in P2, the offspring O1 is generated as copy of P1,

but with a change: a common exogenous variable

between P1 and P2 is randomly chosen. This variable

in P2, along with other variables, is the input in a module

that generates an endogenous variable. This endogenous

variable in P2 is selected to replace the random

exogenous selected variable in O1, which is common

to P1 and P2. Later, the repeated variables of O1 in the

part inherited from P1 are removed. If this case is true

for P2, O2 offspring will be generated with the same

procedure, but centered on P2. Figure 6b shows an

example of this case. The generated SHFS offspring has

four modules. Notice that the common exogenous

variables of P1 are looked for in P2 excluding the

exogenous variables of the module with output Y in P2,

because, if this module is included, when an exogenous

variable is selected, there is no endogenous variable as

the output since it coincides with the output of the SHFS.

• Priority 5. Different variables case If the variables in

P1 and P2 are different, an endogenous variable from

P1 and P2 is chosen at random as the crossing point.

Offsprings are generated in the same way as in priority 1.

3.3.2 Parent P1 has several modules and parent P2

has one module

• Priority 1. Endogenous–Exogenous case If P1 has

common endogenous variables with the exogenous

variables of P2, the offspring O1 is generated as in the

Endogenous–Exogenous case when P1 and P2 have

several modules. Figure 6c depicts this case.

• Priority 2. Exogenous–Exogenous case If P1 and P2

have common exogenous variables, the offspring O1

centered on P1 is created as follows. Firstly, O1 is

generated as a copy of P1. Then, an exogenous common

variable of P1 and P2 is randomly chosen and moved to

module with output Y . This is shown in Fig. 6d.

• Priority 3. Different variables case In this case, O1 is a

copy of P1 and later, an exogenous variable of P2 is

selected at random and inserted into the module of O1

with the output Y .

3.3.3 Parent P1 has one module and parent P2 has several

modules

• Priority 1. Exogenous–Endogenous case If P1 has

exogenous variables which are endogenous in P2, the

offspring O1 is generated as in the Exogenous–Endog-

enous case when P1 and P2 have several modules.

Figure 6e illustrates this.

• Priority 2. Exogenous–Exogenous case If P1 has a set

of exogenous variables in common with exogenous

variables in P2, the offspring O1 is generated as in the

A. D. Benı́tez, J. Casillas
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(a)

(b)

(c)

(d)

Fig. 5 Decision trees of the crossover operator
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Crossover operator
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Exogenous–Exogenous case when P1 and P2 have

several modules.

• Priority 3. Different variables case If the variables in

P1 and P2 are different, an exogenous variable from P1

and an endogenous variable from P2 are chosen at

random as crossing point. The offsprings are generated

in the same way as in priority 1.

3.3.4 Both parents, P1 and P2, have one module

In this case, the offsprings O1 and O2 are generated as

follows (Fig. 6f shows this case): (1) the common exoge-

nous variables of P1 and P2 are inserted into both off-

springs, (2) the rest of the variables (no common variables

between parents) are inserted in a set V with n ¼ jVj being

its size, (3) a number r is randomly generated: if there

are no common variables between P1 and P2 then

r 2 f1; . . .; n� 1g; otherwise, r 2 f0; . . .; ng, (4) r vari-

ables are randomly taken out and inserted into O1, (5) the

rest of the variables are inserted into O2.

3.4 Mutation operator

The mutation operator makes local changes in the chro-

mosome. As well as the crossover operator, this operator

controls the maximum number of modules. Two kinds of

mutation have been designed (Fig. 7 shows a decision tree

of this operator):

3.4.1 Exchange mutation

This operator makes an exchange of variables in a module.

It chooses an exogenous variable at random in a module

and exchanges this exogenous variable for the endogenous

variable of the module. Figure 8 shows an example.

3.4.2 Insertion mutation

The mutation operator distinguishes between used and

unused variables in the individual. In accordance with this

and by means of a probabilistic decision (Algorithm 2

shows a scheme), the mutation operator chooses between

inserting an unused variable into a module, removing a used

variable, or moving a used variable to the other module.

Fig. 8 Example of exchange

mutation

Fig. 7 Decision tree of the mutation operator
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• The insertion of an unused variable is as follows. Given an

unused variable v, a module m is chosen randomly. Next,

the operator decides if v is inserted into m with a probability

of 0.5. If so, v is inserted as an exogenous variable.

Otherwise, if m has at least one exogenous variable as an

input, one of them, e, is selected at random. The mutation

operator creates a new SISO module previous to m where

the input is e and the output is v. Figure 9a shows an

example. In this case, v will be endogenous and the input of

module m. If m has no exogenous variables (Fig. 9b), the

m’s output is converted into a new exogenous variable of m

and v will be the new output of m. The mutation is applied if

the solution has a number of modules less than the

maximum number of modules.

• To remove a used variable, first a module m of the SHFS

is randomly chosen. If m has exogenous variables then

one of them is removed at random. Figure 9c depicts this

case. Otherwise, the module m is removed, thus linking

the output of the module before m with the input of the

module after m. Figure 9d illustrates an example.

• To move a used variable from one module to another, two

modules of the chromosome are chosen at random: a

source module m1 where a variable is removed and a

destination module m2 where the variable is inserted. An

exogenous variable of the m1 is randomly removed and

inserted as the exogenous variable of the m2. If there are no

exogenous variables into the m1 and consequently m1 has

one input and one output (a SISO module), its endogenous

variable is chosen. In this situation, m1 disappears and the

chosen variable is inserted as an exogenous variable into

m2. If m1 ¼ m2, an exogenous variable v is randomly

selected, then a new module is created after m1/m2. The

input of this new module (and therefore the output of the

module m1/m2) is v while the output of the new module

will be the old output of m1/m2. In this case, the mutation is

applied if the solution has a number of modules less than

the maximum number of modules.

Algorithms 3, 4, and 5 show the behavior of this mutation

operator.

3.5 Inference mechanism

We consider the Max–Min inference scheme (i.e.,

T-conorm of the maximum as aggregation and T-norm of

the minimum as relational operator), and the T-norm of the

minimum as conjunction, and center-of-gravity as defuzz-

ification. The inference in the SHFS is produced from left

modules to right modules. When a module infers the out-

put, it produces an error that is carried in the SHFS. For this

reason, it is not good to have a high number of modules

in an HFS because the carried error will increase consid-

erably. We must be careful to design the system in order to

get a lower propagation of the error because the more

modules are considered, the more uncertainty we get

(Maeda 1996).

3.6 Fuzzy rule set learning

The fuzzy rule set learning is as follows: each module

learns its Mamdani-type fuzzy rule set by Wang–Mendel

(WM) method (Wang and Mendel 1992) (see Appendix 1).

The module’s exogenous variables are extracted from the

data set and the endogenous variables in SHFS are inferred

by its respective module according to the input variables of

A. D. Benı́tez, J. Casillas
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(a)

(b)

(c)

(d)

Fig. 9 Insertion mutation

operator
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the module. Figure 10 shows a graphic example: the first

module receives three exogenous variables from the data

set and infers an endogenous natural variable; the value of

the endogenous inferred variable (it is not extracted from

the data set) is the input of the next module along with

other exogenous variables extracted from the data set, and

so on. The obtained system is evaluated by training data

examples and choosing the corresponding values of exog-

enous variables in that module. The aim is to build a closed

system in order to ensure good interpretability and reduce

the error.

3.7 Multi-objective approach

A generational approach with the multi-objective elitist

replacement strategy of NSGA-II (Deb et al. 2002 is used.

Crowding distance in the objective function space is

considered. Binary tournament selection based on the non-

domination rank (or the crowding distance when both solu-

tions belong to the same front) is applied. The crowding

distance is normalized for each objective according to the

extreme values of the solutions contained in the analyzed

front.

We use NSGA-II because of its efficient and effective

performance. Further analysis of the best multi-objective

approach is away of the scope of this paper.

3.8 Objective functions

We consider two objective functions to minimize:

• Mean square error (MSE) If MSE is lower, the

accuracy will be better. It is computed as:

F1ðSÞ ¼
1

N

XN

i¼1

ðSðxiÞ � yiÞ2 ð1Þ

with S being the SHFS to be evaluated, N the data set size

and ðxi; yiÞ the ith input–output pair of the data set. The

objective is to minimize this function to get good accuracy.

• Maximum number of rules The system will be more

interpretable with a lower maximum number of rules. It

is computed as follows:

F2ðSÞ ¼
XM

i¼1

ðknÞ ð2Þ

with M being the number of modules of the SHFS, and k

and n the number of labels and variables per module,

respectively. This objective has the main advantage

(compared to considering, e.g., the final number of rules) of

depending exclusively of the ‘‘static’’ structure of the

SHFS, that is the number of modules, number of variables

per module and number of linguistic terms used in each

variable. Therefore, the objective is not influenced by the

learning algorithm used to generate the fuzzy rule set at

each module. This is especially relevant when the MFs are

tuned, as two solutions with exactly the same hierarchical

structure would generate different number of rules.

Besides, although the number of modules or the number of

variables per module is also notable criterion to evaluate

the compactness of the SHFS, the maximum number of

rules is a more intuitive criteria to validate interpretability

because it combines both criteria in one objective. If the

maximum number of rules is considered, the number of

variables and modules will be controlled automatically; as

the maximum number of rules decreases, the number of

modules increases and the number of variables decreases.

We will analyze this behavior in Sect. 4.4.

4 Experimental results

4.1 Problems

We have considered 14 regression problems with a mod-

erate and high number of real-valued variables. Table 2

collects the main features of each problem, where #Input-

Var stands for the number of input variables, #Exam for the

total number of examples, #LingTerms for the number of

triangular-shaped uniformly distributed linguistic terms

considered for each variable in this experimental analysis,

and Available indicates the web site where the data sets are

available. We set three labels per variable for large-scale

problems because if the number of inputs and labels is

high, the rule set will grow up considerably and the FS has

lower interpretability. For this reason, a higher number of

labels are used in problems with a lower number of inputs.

Our proposal solves regression problems. The data set

with the highest number of inputs we have found of the

considered web sites (Table 2, column Available) has been

‘‘Ailerons’’ with 40 real-valued variables. A data set called

Fig. 10 Example of inference process
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TIC (85 variables) can be found at KEEL web site. We do

not use it because most of the variables are nominal with no

order and the output variable is binary. Therefore, this data

set is not a regression problem but a classification one.

4.2 Obtained results

The experiments shown in this paper have been performed

by a fivefold cross validation with six runs for each data set

partition (i.e., a total of 30 runs per problem). Thus, the

data set is divided into five subsets of (approximately)

equal size. The algorithm is then applied five times to each

problem, each problem consisting of leaving out one of the

subsets from training, but using only the omitted subset to

compute the test error.

Our algorithm has been run with the following param-

eter values: 50,000 evaluations, 60 as population size, 0.7

as crossover probability, 0.2 as mutation probability per

chromosome. We have not performed any previous anal-

ysis to fix these values, so better results may be obtained by

tuning them, though we have informally noticed our

algorithm is not especially sensitive to any parameter.

Strong fuzzy partitions with uniformly distributed trian-

gular MFs are used.

The maximum number of modules is set to four because

an SHFS with more modules gets more propagation error

and, at the same time, the search space is reduced.

Table 3 collects the obtained results, where MSEtra and

MSEtst are the approximation error (Eq. 1) values over the

training and test data set, respectively; #M, #R, and #V

stand for the number of modules, the number of fuzzy

rules, and the number of input variables, respectively; r#M

is the standard deviation of the number of modules, and

�x#R is the average number of variables per rule, which is

computed as follows:

�x#R ¼

X#M

i¼1
ðVi � RiÞ

P#M
i¼1 Ri

ð3Þ

with Ri being the number of rules of the ith module and Vi

the number of variables of the ith module. This measure

indicates the mean complexity of the rules.

Since our algorithm performs multi-objective optimi-

zation, several solutions are returned in each run. The

average Pareto fronts (30 runs per problem) is computed

according to a process based on percentiles. Let R be the

number of runs (30 in our experiments) and PSi the Pareto

set obtained in the ith run and ordered by the first objective.

Thus, given the average size of the Pareto sets:

�p ¼ round

PR
i¼1 jPSij

R

 !
; ð4Þ

the average Pareto set

PS ¼ fpk 2 R
C j k 2 f1; . . .; �pgg ð5Þ

is built as follows:

pk ¼ ðpk;1; . . .; pk;CÞ; pk;i ¼
PR

j¼1 tk
j;i

R
; ð6Þ

Table 2 Data sets considered in the experimental analysis

Data set #InputVar #Exam #LingTerms Available

Ele2 4 1,066 5 KEEL

Laser 4 993 5 KEEL

Dee 6 365 5 KEEL

Concrete 8 1,030 5 UCI

Census-House 8L (Census 8L) 8 22,784 5 Delve

Census-House 8H (Census 8H) 8 22,784 5 Delve

Weather-Ankara (WeAnk) 9 1,609 5 KEEL

Mortgage 15 1,049 5 KEEL

Treasury 15 1,049 5 KEEL

Census-House 16L (Census 16L) 16 22,784 3 Delve

Census-House 16H (Census 16H) 16 22,784 3 Delve

Elevators 18 16,559 3 web sitea

Computer activity (CompAct) 21 8,192 3 web sitea

Ailerons 40 13,750 3 web sitea

KEEL knowledge extraction based on evolutionary learning. http://www.keel.es, UCI Machine Learning Repository. Collection of regression

data sets. http://archive.ics.uci.edu/ml/datasets.html, Delve. Regression Data sets. http://www.cs.utoronto.ca/*delve/data/datasets.html
a L. Torgo, Collection of regression data sets. http://www.liacc.up.pt/*ltorgo/Regression/DataSets.html
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Table 3 Results obtained with MSEtra and MSEtst being the approximation error values over the training and test data set

Method MSEtra MSEtst #M � r#M #R �x#R #V Method MSEtra MSEtst #M � r#M MSEtst �x#R #V

Laser Mortage

WM 265.20663 278.57597 1.0 ± 0.0 58.4 4.0 4.0 WM 0.25600 0.26806 1.0 ± 0.0 197.2 15.0 15.0

JS 299.46004 323.24366 6.0 ± 0.0 55.6 2.1 4.0 JS 0.90399 0.90393 7.1 ± 2.4 80.6 2.7 5.0

GSHFS w/VS 263.73561 293.05683 1.2 ± 0.4 55.0 3.7 4.0 GSHFS w/VS 0.11376 0.12191 8.1 ± 1.2 101.7 2.9 15.0

GSHFS4M

w/VS

263.73561 293.05683 1.2 ± 0.4 55.0 3.7 4.0 GSHFS4M

w/VS

0.10971 0.11165 4.0 ± 0.0 131.9 4.2 15.0

VSGA 265.20662 278.57597 1.0 ± 0.0 58.4 4.0 4.0 VSGA 0.11871 0.12598 1.0 ± 0.0 61.5 5.4 5.4

GSHFS 263.73561 293.05683 1.2 ± 0.4 55.0 3.8 4.0 GSHFS 0.10097 0.10848 2.1 ± 1.0 40.7 4.6 7.2

309.01140 327.12956 1.3 ± 0.3 38.9 2.9 3.3 0.10856 0.11200 2.0 ± 0.9 33.6 3.7 5.5

342.74012 364.76369 1.1 ± 0.2 25.3 2.3 2.5 0.13511 0.13602 1.8 ± 0.9 27.6 2.9 4.3

694.76074 728.33412 1.1 ± 0.1 15.0 1.7 1.8 0.19417 0.20913 1.5 ± 0.6 16.5 2.0 2.7

1,469.78981 1,513.25361 1.0 ± 0.0 5.0 1.0 1.0 0.32981 0.34130 1.0 ± 0.0 5.0 1.0 1.0

ELE2 Treasury

WM 112,271.49 112,718.84 1.0 ± 0.0 65.0 4.0 4.0 WM 0.80168 0.80909 1.0 ± 0.0 195.2 15.0 15.0

JS 117,172.23 127,342.76 6.0 ± 0.0 36.6 1.3 3.0 JS 0.19888 0.20635 2.8 ± 1.6 18.8 1.8 2.0

GSHFS w/VS 98,205.19 102,993.59 2.0 ± 0.0 41.6 2.8 4.0 GSHFS w/VS 0.11325 0.11924 10.3 ± 1.1 80.0 1.9 15.0

GSHFS4M

w/VS

98,205.19 102,993.59 2.0 ± 0.0 41.6 2.8 4.0 GSHFS4M

w/VS

0.13011 0.13808 4.0 ± 0.0 130.2 4.4 15.0

VSGA 90,955.89 100,100.11 1.0 ± 0 36.6 3.0 3.0 VSGA 0.16362 0.17451 1.0 ± 0.0 16.8 2.2 2.2

GSHFS 72,231.50 75,695.27 1.4 ± 0.5 15.1 1.9 2.4 GSHFS 0.14692 0.15025 1.5 ± 0.8 17.5 3.0 4.1

183,426.35 185,362.76 1.3 ± 0.2 12.4 1.7 2.1 0.16304 0.17243 1.5 ± 0.7 16.4 2.5 3.4

349,446.24 347,696.12 1.6 ± 0.4 10.2 1.3 1.9 0.18550 0.19955 1.6 ± 0.9 14.8 2.0 2.8

487,699.80 473,206.32 1.5 ± 0.3 7.7 1.1 1.5 0.23274 0.24625 1.3 ± 0.5 10.7 1.6 2.0

591,402.90 565,461.80 1.0 ± 0.0 5.0 1.0 1.0 0.31949 0.33830 1.0 ± 0.0 5.0 1.0 1.0

DEE Census 16L

WM 0.14117 0.22888 1.0 ± 0.0 178.4 6.0 6.0 WM 32,504.7 32,886.8 1.0 ± 0.0 682.0 16.0 16.0

JS 0.23050 0.33550 9.8 ± 4.7 179.6 3.0 6.0 JS 23,814.6 24,107.9 6.4 ± 2.3 62.6 3.1 7.0

GSHFS w/VS 0.13961 0.22728 1.4 ± 0.5 162.5 5.6 6.0 GSHFS w/VS 19,772.1 19,972.3 8.3 ± 1.7 62.0 3.6 16.0

GSHFS4M

w/VS

0.13948 0.22713 1.4 ± 0.5 161.3 5.5 6.0 GSHFS4M

w/VS

19,796.9 20,069.3 3.9 ± 0.1 114.7 5.1 16.0

VSGA 0.13900 0.22390 1.0 ± 0.0 155.2 5.4 5.4 VSGA 21,506.6 21,804.3 1.0 ± 0.0 79.1 6.4 6.4

GSHFS 0.13728 0.23338 1.1 ± 0.2 155.1 5.6 5.6 GSHFS 17,884.4 18,163.4 2.6 ± 1.0 75.1 5.7 10.5

0.15308 0.22436 1.2 ± 0.3 87.5 4.0 4.2 18,529.2 18,823.2 2.5 ± 1.0 50.2 4.5 8.2

0.18253 0.21145 1.5 ± 0.5 38.8 2.7 3.5 20,052.2 20,273.0 2.6 ± 0.9 30.9 3.3 6.6

0.23023 0.23913 1.5 ± 0.6 14.7 1.9 2.4 23,701.0 23,877.6 2.2 ± 1.0 16.1 2.4 4.3

0.34664 0.35492 1.0 ± 0.0 4.5 1.0 1.0 41,698.3 41,841.1 1.0 ± 0.0 3.0 1.0 1.0

Concrete Census 16H

WM 73.0804 97.0062 1.0 ± 0.0 310.4 8.0 8.0 WM 33,217.9 33,895.9 1.0 ± 0.0 754.6 16.0 16.0

JS 95.5405 113.8403 13.6 ± 2.3 300.2 3.5 8.0 JS 28,557.4 29,022.0 7.9 ± 2.0 88.8 3.2 7.0

GSHFS w/VS 71.7252 88.1597 1.8 ± 1.0 263.4 6.8 8.0 GSHFS w/VS 25,756.6 26,002.0 8.7 ± 2.1 72.0 3.9 16.0

GSHFS4M

w/VS

70.3553 88.6661 1.7 ± 0.9 267.7 6.8 8.0 GSHFS4M

w/VS

24,395.4 24,758.0 4.0 ± 0.6 133.0 5.5 16.0

VSGA 72.4770 88.9838 1.0 ± 0.0 270.0 7.0 7.0 VSGA 24,905.7 25,318.7 1.0 ± 0.0 104.8 6.7 6.7

GSHFS 50.8595 73.5212 1.1 ± 0.2 312.5 7.0 7.1 GSHFS 22,532.9 22,843.7 1.8 ± 0.9 125.7 7.4 9.6

55.7862 71.1241 1.2 ± 0.5 231.5 5.4 5.8 23,181.9 23,458.2 1.8 ± 0.9 98.0 5.4 7.6

70.3104 79.0363 1.2 ± 0.4 133.7 4.1 4.4 24,924.8 25,197.7 2.3 ± 1.1 46.7 3.6 6.2

112.1841 117.8512 1.2 ± 0.4 48.1 2.6 2.9 27,946.3 28,183.0 1.9 ± 0.9 18.5 2.5 4.0

240.1951 248.0092 1.0 ± 0.0 3.9 1.0 1.0 50,624.0 50,711.6 1.0 ± 0.0 2.7 1.0 1.0

Census 8L Elevators

WM 15,233.8 16,122.2 1.0 ± 0.0 762.8 8.0 8.0 WM 0.33258 0.33485 1.0 ± 0.0 511.0 18.0 18.0

JS 14,503.1 15,187.9 6.3 ± 0.7 86.7 2.9 4.0 JS 0.28862 0.29267 4.7 ± 1.0 35.5 3.0 4.0

GSHFS w/VS 12,750.4 13,090.1 3.3 ± 0.6 145.0 4.2 8.0 GSHFS w/VS 0.23387 0.23466 10.6 ± 1.9 58.8 3.4 18.0

GSHFS4M

w/VS

12,546.0 12,973.7 3.1 ± 0.6 166.4 4.6 8.0 GSHFS4M

w/VS

0.23721 0.23774 4.0 ± 0.0 105.1 5.2 18.0
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with C being the number of objectives and

tk
j ¼ ðtk

j;1; . . .; tk
j;CÞ

¼ rank 1þ ðjPSij � 1Þ � ðk � 1Þ
�p� 1

; PSi

� �
ð7Þ

with rankðr;PÞ being the rth element of the ordered set

P. If r is the integer, the element holding this position is

directly taken. If not, a linear interpolation is computed.

For example, if we are considering two objectives ðC ¼ 2Þ
and PS1 ¼ fð1; 10Þ; ð2; 7Þ; ð5; 6Þ; ð7; 5Þ; ð9; 3Þg:

rankð1; PS1Þ ¼ ð1; 10Þ; rankð2; PS1Þ ¼ ð2; 7Þ;
rankð3; PS1Þ ¼ ð5; 6Þ; rankð4; PS1Þ ¼ ð7; 5Þ;
rankð5; PS1Þ ¼ 7ð9; 3Þ; rankð3:33; PS1Þ

¼ ð5; 6Þ � 0:33þ ð7; 5Þ � 0:77 ¼ ð6:33; 5:33Þ

Therefore, in an experiment with three runs (R ¼ 3) where

we have the above PS1; PS2 ¼ fð2; 9Þ; ð3; 6Þ; ð7; 4Þg, and

PS3 ¼ fð2; 10Þ; ð4; 8Þ; ð6; 5Þ; ð8; 3Þg, the average Pareto set

is:

PS ¼ fð1:67; 9:67Þ; ð3:22; 7:22Þ; ð5:56; 5:22Þ; ð8; 3:33Þg:

We show five representative solutions from the average

Pareto ordered from low to high MSEs: the first row of

each problem is the solution with the highest accuracy, the

second row is the first quartile, the third row is the median,

the fourth row is the third quartile, and the fifth row is the

solution with the lowest accuracy.

The following algorithms have been implemented in

order to carry out a study of the algorithm that we propose:

• WM method (Wang and Mendel 1992). Although WM

is a simple algorithm and the obtained results are not

good, we include it in the analysis because it has been

used to learn the rule base, and so, the benefits provided

by the hierarchical structure can be observed.

Table 3 continued

Method MSEtra MSEtst #M � r#M #R �x#R #V Method MSEtra MSEtst #M � r#M MSEtst �x#R #V

VSGA 13,468.4 14,023.2 1.0 ± 0.0 140.1 5.0 5.0 VSGA 0.24786 0.25033 1.0 ± 0.0 44.6 6.0 6.0

GSHFS 12,739.0 13,210.8 1.6 ± 0.6 169.4 5.6 6.7 GSHFS 0.22158 0.22221 1.7 ± 0.7 21.9 4.3 5.6

13,431.1 13,875.8 1.6 ± 0.8 98.3 4.3 5.2 0.23308 0.23294 2.1 ± 0.9 16.0 3.0 4.9

16,045.5 16,516.5 1.6 ± 0.8 39.9 2.9 3.8 0.24437 0.24395 2.0 ± 0.7 11.9 2.4 3.9

20,584.3 20,950.2 1.8 ± 0.8 19.8 1.8 2.8 0.26514 0.26509 1.6 ± 0.5 7.1 1.8 2.5

30,995.8 31,407.6 1.0 ± 0.0 5.0 1.0 1.0 0.31726 0.31712 1.0 ± 0.0 2.9 1.0 1.0

Census 8H Compact

WM 23,350.4 24,504.3 1.0 ± 0.0 713.4 8.0 8.0 WM 81.7173 82.4732 1.0 ± 0.0 425.6 21.0 21.0

JS 22,037.7 23,707.6 11.2 ± 7.0 291.7 3.1 5.0 JS 44.3714 44.0328 4.3 ± 0.7 21.6 2.5 5.0

GSHFS w/VS 20,734.4 21,846.0 2.7 ± 0.6 419.5 5.6 8.0 GSHFS w/VS 28.0853 28.3043 14.2 ± 1.8 56.0 4.0 21.0

GSHFS4M

w/VS

20,648.0 21,717.1 2.4 ± 0.6 444.1 6.0 8.0 GSHFS4M

w/VS

35.1213 35.8445 3.9 ± 0.1 6.2 21.0

VSGA 20,903.4 21,907.5 1.0 ± 0.0 5.4 5.4 VSGA 46.7455 46.5157 1.0 ± 0.0 20.2 5.3 5.3

GSHFS 20,284.0 21,238.4 1.4 ± 0.6 437.5 6.4 6.8 GSHFS 12.6598 12.7747 1.4 ± 0.6 45.5 8.4 9.8

21,194.7 220,71.9 1.3 ± 0.4 273.7 4.7 5.2 13.1206 13.2273 1.4 ± 0.5 38.9 6.4 7.5

22,713.9 23,242.2 1.6 ± 0.8 119.3 3.3 4.4 14.7702 14.9839 1.4 ± 0.5 27.7 4.6 5.8

25,139.6 25,270.0 1.5 ± 0.7 28.6 2.3 2.8 21.2532 21.3664 1.3 ± 0.4 16.8 3.0 3.6

30,390.6 30,344.6 1.0 ± 0.0 5.0 1.0 1.0 143.9023 144.5856 1.0 ± 0.0 3.0 1.0 1.0

Weank Ailerons

WM 9.75605 12.25650 1.0 ± 0.0 456.8 9.0 9.0 WM 0.06452 0.06534 1.0 ± 0.0 1,080.6 40.0 40.0

JS 13.13610 16.56026 6.9 ± 2.4 100.8 3.0 5.0 JS 0.05896 0.05931 6.8 ± 1.6 74.3 3.9 7.0

GSHFS w/VS 7.10852 7.35495 3.3 ± 0.6 148.9 4.8 9.0 GSHFS w/VS 0.06007 0.06049 31.5 ± 3.0 91.3 3.0 40.0

GSHFS4M

w/VS

7.10044 7.45815 3.0 ± 0.4 170.0 4.2 9.0 GSHFS4M

w/VS

0.04635 0.04695 4.0 ± 0.0 416.1 10.3 40.0

VSGA 7.58657 8.84168 1.0 ± 0.0 140.2 5.4 5.4 VSGA 0.04887 0.04912 1.0 ± 0.0 92.0 8.1 8.1

GSHFS 6.63906 6.84172 1.9 ± 0.8 64.8 3.8 5.7 GSHFS 0.04244 0.04263 2.7 ± 0.9 82.2 6.9 10.6

7.46367 7.49844 2.0 ± 0.8 40.1 3.0 4.9 0.04777 0.04794 2.5 ± 0.9 60.6 4.9 8.3

8.63689 8.62772 1.8 ± 0.6 25.7 2.4 3.7 0.05728 0.05760 2.5 ± 0.9 30.3 3.5 6.1

10.75790 11.00243 1.5 ± 0.5 13.8 1.9 2.6 0.06656 0.06735 2.5 ± 0.8 11.2 2.2 4.4

13.66512 13.62635 1.0 ± 0.0 2.1 1.0 1.0 0.10148 0.10228 1.0 ± 0.0 2.0 1.0 1.0

#M, #R, and #V stand for the no. of modules, fuzzy rules, and input variables, repsectively. r#M is the standard deviation of the no. of modules, and �x#R is the

average no. of variables per rule. The results in this table (MSEtra/MSEtst) should be multiplied by 105 in the case of Census 8L, Census 8H, Census 16L, and Census

16H
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• JS (Joo and Sudkamp algorithm). The algorithm is

explained in Appendix 3.

• GSHFS w/VS (GSHFS without Variable Selection).

This algorithm is the GSHFS but it does not do

variable selection. The crossover operator does module

exchanges between SHFS: a different crossing point is

selected randomly in each parent; the first offspring

inherits from the first parent from the beginning of

the chromosome to the crossing point; the rest of the

variables are inherited from the second parent but in the

same order as the second parent. The second offspring

inherits from the second parent from the beginning of

the chromosome to the crossing point; the rest of the

variables are inherited from the first parent but in

relative order of the first parent. Regarding the mutation

operator, it uses the exchange, insertion and movement

of variables of GSHFS. The algorithm creates SHFS

with n as maximum number of modules, being n the

number of problem’s inputs.

• GSHFS4M w/VS (GSHFS without variable selection

creating 4 modules). It is the GSHFS w/VS but

constrained to a maximum of four modules.

• VSGA (Variable selection by genetic algorithm). It is a

variable selection algorithm based on a genetic process.

See Appendix 2. It has been implemented because is a

fair comparison with our algorithm.

Table 3 shows the results obtained by these algorithms.

The GSHFS w/VS, GSHFS4M w/VS, and VSGA rows

show the average of the last most accurate of the obtained

Pareto per run which improves the WM solution. The JS

rows contain the average of the results obtained by the JS

algorithm.

An internal analysis of GSHFS is performed in

Sect. 4.4. With this study, we will observe whether our

algorithm’s benefits are due to the hierarchical structure,

the variable selection, or both. Previously, on the next

section, we will analyze the obtained results by GSHFS and

we will compare it with the results of JS algorithm.

4.3 Analysis

Our main objective is to improve the interpretability by

means of a precise and compact set of rules, while the

accuracy is maintained or improved. When the number of

rules of a FS decreases, the system gets better interpret-

ability, but the accuracy is lower and vice versa. This

event can be observed clearly in the results obtained in

problems with both low and high number of variables.

Notice that the fuzzy rule set is learned individually for

each module.

We can observe in the problems with a lower number of

variables (from four to six variables) that the SHFS

obtained by our algorithm with a higher number of mod-

ules has worse accuracy according to the WM method.

However, if we observe the problems with a considerable

number of variables (more than eight), our algorithm has a

better performance. The results obtained by our algorithm

in accuracy and complexity are better, the third quartile

included, than the results obtained by WM.

In Dee problem, we can observe that accuracy is high

when the number of rules is high and, consequently, the FS

has lower interpretability. According to the WM method,

the highest accuracy solution is better in accuracy, having a

number of rules and a number of variables lower. In first

quartile, the accuracy is slightly increased according to the

solution obtained by WM in the MSEtra, but the MSEtst is

lower and the interpretability decreases by almost half.

Now, we shall examine the Elevators problem, which

has 18 variables. The highest accuracy solution obtained by

our algorithm is better than the WM solution. In both

MSEtra and MSEtst, the interpretability is better because

the SHFS has a lower number of variables and almost two

modules. The number of rules has been decreased by 95 %.

The third quartile of the MSEtra is better in accuracy than

WM. The third quartile of the MSEtst is also more accurate

and the number of rules obtained by our algorithm has

decreased by 98 %.

In the Ailerons problem (40 variables), we can see that

our solution with the highest accuracy is better than the

solution obtained by WM. We want to emphasize that the

number of rules is decreased by 92 % and the number of

variables by 75 %. The median of the MSEtra and the

median of the MSEtst is lower and the interpretability is

better than the solution of WM, due to a decrease in the

number of variables and its distribution in modules.

Figure 11 shows the average Pareto front obtained by

GSHFS in the following large-scale problems: Concrete,

Census 8L, Census 16H, Elevators, Computer Activity, and

Ailerons. The SHFS achieves higher accuracy when the

number of modules tends to be two. If the SHFS has a

higher number of modules, the module’s carried error will

increase considerably. As for complexity, an SHFS has a

lower input configuration per module. For this reason, the

SHFS’ total number of rules is lower and allows major

system interpretability.

Figure 12 illustrates some examples of the hierarchical

structures obtained by our algorithm. It is an example of

non-dominated solutions obtained by GSHFS in a data set

partition of Census16H, Elevators, Computer Activity, and

Ailerons. Its aim is to observe the effect produced by the

first module in the SHFS. Therefore, we compare these

solutions obtained by GSHFS and by WM to the set of

input variables of the last module obtained by GSHFS. We

can observe that the MSEtra and MSEtst obtained by our

algorithm are lower than the values obtained by WM not
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inferencing the endogenous input variable in the last

module, decreasing the number of rules by 6 % in Cen-

sus16H, 14 % in Elevators, 26 % in Computer Activity,

and 16 % in Ailerons. The average number of variables per

rule is lower in the solutions obtained by GSHFS. It allows

major system interpretability because the rules are simpler.

The solutions obtained by GSHFS are more promising

in accuracy as well as complexity due to it searches in local

areas of the search space, and because the rules are simpler.

The obtained system is more compact: it has a lower

number of variables, which are handed out to different

modules, and so it is easier to interpret the learned rules

because they are simpler and there are not many modules

(the number of modules is around two).

Table 4 illustrates a real example of a hierarchical rule

base. This rule base corresponds to the SHFS in Fig. 12b.

The problem consists of 18 inputs. They have been

reduced to seven and hierarchically distributed in two

modules.

Figure 13 is a bar-chart of the variable dependence rate

from the most accurate to the first quartile solutions for all

problems. The variable dependence rate is defined as the

Fig. 11 Average Pareto Front in several problems
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number of different variables that depend on other vari-

able(s) at least in one of the most accurate non-dominated

solutions (those contained in the first quartile). We consider

that variable X is a dependent variable if it is the output of

one of the modules of the SHFS. The rate has been nor-

malized to a percentage.

The bar-chart shows that there are some complex

problems with a high percentage of dependent variables

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12 Example of solutions obtained by GSHFS (a, b, e, f) and the corresponding solutions obtained by WM over the set of input variables of

the last module obtained by GSHFS (c, d, g, h). The results in this figure (MSEtra/MSEtst) should be multiplied by 105 in the case of Census 16H
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(Mortgage, Census 16L, and Ailerons) but no others

(Treasury and Computer Activity). This behavior also

happens in problems with a low number of variables. For

example, Ele2 and Laser have more percentage of dependent

variables than Dee or Concrete problems. We can observe

that some simple problems (Laser and Ele2) have more

percentage of dependent variables than other complex prob-

lems (Treasury and Computer Activity). The dependence

between variables is not related to the number of variables of

the problem. The dependence of variables is linked with the

characteristics of the problem. This can be seen clearly on the

Census problems. The letters (L or H) denote a very rough

approximation to the difficulty of the task. For Low task

difficulty, more correlated inputs were chosen as signified by

univariate smooth fit of that input on the target. Tasks with

high difficulty have had their inputs chosen to make the

modeling more difficult due to higher variance or lower

correlation of the inputs to the target. Census 16L and Census

16H have the same number of variables and instances, but we

can observe in the bar-chart that the variable dependence rate

in Census 16L is higher than Census 16H. It means that the

variables of Census 16L are more correlated and the learning

of dependencies between variables is easier. In this way, an

SHFS can work in simple and complex problem.

This interesting behavior deserves a deeper analysis than

the one developed here. To do so, a data complexity

analysis in a similar manner as made in classification (Ho

and Basu 2002; Ho et al. 2006) would be helpful. However,

these data complexity measures are not easy to define in

regression, so tools as the GSHFS proposed in this paper

may help to provide a further insight to understand the

Table 4 Rule base obtained in

elevators problem

corresponding to Fig. 12b

(a) Rule base of the M1 module

R1: IF q is and absRoll is M and SaTime4 is S THEN curRoll is L

R2: IF q is and absRoll is L and SaTime4 is S THEN curRoll is L

R3: IF q is and absRoll is S and SaTime4 is S THEN curRoll is M

R4: IF q is and absRoll is M and SaTime4 is S THEN curRoll is L

R5: IF q is and absRoll is M and SaTime4 is M THEN curRoll is M

R6: IF q is and absRoll is L and SaTime4 is S THEN curRoll is L

R7: IF q is and absRoll is S and SaTime4 is S THEN curRoll is L

R8: IF q is and absRoll is M and SaTime4 is S THEN curRoll is L

R9: IF q is and absRoll is M and SaTime4 is M THEN curRoll is L

R10: IF q is and absRoll is L and SaTime4 is S THEN curRoll is L

(b) Rule base of the M2 module

R1: IF curRoll is M and diffRollRate is M and SaTimel is S and Si is L THEN Goal is M

R2: IF curRoll is M and diffRollRate is M and SaTimel is M and Si is L THEN Goal is S

R3: IF curRoll is M and diffRollRate is M and SaTimel is L and Si is L THEN Goal is S

R4: IF curRoll is M and diffRollRate is L and SaTimel is M and Si is L THEN Goal is M

R5: IF curRoll is M and diffRollRate is L and SaTimel is L and Si is L THEN Goal is S

R6: IF curRoll is L and diffRollRate is S and SaTimel is S and Si is M THEN Goal is M

R7: IF curRoll is L and diffRollRate is S and SaTimel is S and Si is L THEN Goal is M

R8: IF curRoll is L and diffRollRate is S and SaTimel is M and Si is L THEN Goal is S

R9: IF curRoll is L and diffRollRate is M and SaTimel is S and Si is M THEN Goal is M

R10: IF curRoll is L and diffRollRate is M and SaTimel is S and Si is L THEN Goal is M

R11: IF curRoll is L and diffRollRate is M and SaTimel is M and Si is L THEN Goal is M

R12: IF curRoll is L and diffRollRate is M and SaTimel is L and Si is L THEN Goal is S

R13: IF curRoll is L and diffRollRate is L and SaTimel is M and Si is L THEN Goal is M

R14: IF curRoll is L and diffRollRate is L and SaTimel is L and Si is L THEN Goal is S

Fig. 13 Bar-chart of the variable dependence rate from the most

accurate to the first quartile solutions
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complexity of the problem beyond merely considering its

number of variables and instances.

Figure 14 illustrates the correlation between variables

by directed graphs in several problems. Each node has been

labeled with the real name of the variable and the arcs

represent the degree of dependency between pair of vari-

ables, where the head is input of a module with the tail as

output in the shown percentage of cases. For instance, in

Fig. 14a, the variable H5.6 depends on P19.4 by 13 % (i.e.,

in a 13 % of cases the algorithm obtains an accurate

solution with a module where H5.6 is the output and P19.4

one of its inputs). This graphs may help to understand the

correlation among the input variables discovered by

GSHFS. As previously stated in Fig. 13, we can observe

that the dependencies may differ considerably in problems

with the same number of variables and instances as shown

in Fig. 14a (Census 16L) and c (Census 16H).

The JS algorithm (Joo and Sudkamp 2009) is one of

the most recent approach in this area. For this reason, we

thought it would be interesting to implement this approach

to compare it with our algorithm.

Table 3 shows the results obtained by JS for the dealt

problems. In problems with four variables, the most

accurate solution obtained by GSHFS is better than the JS

solution in MSEtra and MSEtst with a lower number of

rules and modules. In the problems with six to nine inputs,

the first quartile or the mean of GSHFS obtains better

results in MSEtra; MSEtst, number of modules, rules, and

variables than the JS approach. In large-scale problems, the

third quartile of GSHFS gets better accuracy and a lower

number of rules than the JS algorithm.

In Dee, the mean value is considerably more accurate

than the obtained solution by JS. Regarding the number of

modules, GSHFS reduces it by 85 % and the number of

(a)

(b)

(c) (d) (e)

Fig. 14 Some examples of found dependence graphs (dependencies below 10 % are omitted)
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rules by 78 %. In Census 16L, the highest accuracy solu-

tion obtained by GSHFS improves in accuracy by 25 %

and decreases by 59 % the number of modules. The

number of rules is a little higher. Ailerons is the dealt

problem with the highest number of variables. The mean

obtained by GSHFS improves the JS solution by 3 % in

MSEtra and MSEtst, the number of rules and modules are

decreased by 59 and 63 %, respectively.

GSHFS improves the results obtained by JS and main-

tain a better trade-off between accuracy and interpretabil-

ity. All in all, the JS approach obtains a solution with a

higher number of modules. In previous sections, we men-

tioned the carried error increases with a higher number of

modules. For this reason, the FS’s accuracy is worse. The

JS algorithm does not remove variables and so the number

of rules is higher. The generated FS is less interpretable

due to the use of TSK rules and it needs a complete rule

base in order to create the hierarchical fuzzy system. This

creates a serious problem when the algorithm considers a

higher number of variables, for example, with the Ailerons

problem.

However, GSHFS solves these problems; it controls the

number of modules and variables by means of genetic

operators and does not generate new linking variables. In

this way, there is a lower number of rules, and as the

GSHFS’ rules are Mamdani-type, they are more interpret-

able. For these reasons, it is a very suitable algorithm for

large-scale problems.

4.4 Study of the GSHFS’ behavior

In this section, we analyze the reasons why our algorithm

obtains good results. In order to do this, we compare our

algorithm with VSGA and with GSHFS generating one,

two, three, and four modules. The aim of this study is to

isolate the variable selection benefits and to check if the

variable selection or the hierarchical structure has more

influence.

The solution with the highest accuracy for each problem

obtained by VSGA is shown in Table 3. If we compare the

results obtained by VSGA and GSHFS for problems with a

number of variables between four and nine, we can observe

there is no major difference in accuracy of the results when

the problem has four variables (Laser and Ele2). If our

algorithm considers large-scale problems and problems

with a number of variables between six and nine, the

algorithm’s behavior is better. We can observe that the

results obtained by GSHFS are better than VSGA, both in

accuracy and simplicity. VSGA obtains a FS with a low

number of rules, and the inference is not correct.

x#R (Table 3) is a measure which distributes the number

of variables, and so, if the number of variables is equal, the

algorithm with a lower x#R will be better. In this way, we

can observe the GSHFS’s simplicity; the number of vari-

ables per rule in our algorithm is lower than VSGA. This is

due to the search space is dealt with a modular way by

GSHFS.

Figure 11 depicts the average Pareto Front of GSHFS

and VSGA, and the x#R in Concrete, Census 8L, Census

16H, Computer Activity, and Ailerons. It shows the GSHFS

algorithm is better in accuracy and simplicity (because

there is a lower number of variables per rule in each

module). If we consider the measure x#R, the value of this

measure in GSHFS is lower along the number of rules than

VSGA. We can see this behavior in the rest of the prob-

lems, and this indicates to us that the rules generated by

GSHFS are simpler and, therefore, more easily interpret-

able. In Census 16H, we can observe clearly how GSHFS is

a bit worse in x#R than VSGA when the number of rules is

between 60 and 100 rules more or less.

In order to get further insight into the GSHFS’ behavior,

we have experimented with other version of our algorithm.

We changed the dominance criterion to obtain solutions

with one, two, three, and four modules. In this way, we can

observe the benefits given by a hierarchical structure.

Figure 15 depicts the average Pareto fronts with one, two,

three, and four modules obtained in the Dee, Census 8L,

Census 16H, Elevators, Computer Activity, and Ailerons

problems by our algorithm. In the graph’s legend, the

average size of each Pareto is shown. These figures illus-

trate that the combination of this four types of SHFS gets a

better accuracy as long as the number of rules is higher

because the problem’s variables are selected and distrib-

uted in the SHFS.

Next, we compare the GSHFS algorithm with GSHFS

w/VS and GSHFS4M w/VS. We can observe that

GSHFS4M w/VS is more accurate than GSHFS w/VS in

some problems, although the number of rules is slightly

increased. In large-scale problems, the improvement is

more significant than problems with a lower number of

variables. In Concrete, the MSEtra is reduced by 2 % and

the number of rules is increased by 1.6 % approximately.

However, in Mortgage the accuracy is improved by 3.6 %

although the number of rules is increased by 23 %. We

want to notice that GSHFS4M w/VS reduces the WM’s

MSEtra and the number of rules by 57 and 33 %, respec-

tively. In this way, we can verify that it is not good to have

an SHFS with a higher number of modules, because it will

obtain worse accuracy.

If we compare GSHFS with GSHFS w/VS and

GSHFS4M w/VS, we will observe that the elimination of

variables by means of genetic operators produces improve-

ments in all problems, particularly the large-scale problems.

In Concrete, the mean improves the solution obtained by
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GSHFS4M w/VS in MSEtra and number of rules by 0.1 and

50 % respectively.

If we pay attention to CompAct, the improvement of the

most accurate solution produced by GSHFS is quite con-

siderable; the MSEtra is reduced by 64 % and the number

of rules by 63 %. The third quartile reduces the MSEtra

by 39 %.

4.5 Runtime analysis

To complete the analysis, we would like to show the run-

ning time of GSHFS. Table 5 collects the runtime of the

GSHFS algorithm, where #VarWM indicates the average of

the number of variables per module (and, therefore, per

WM method call) during the complete execution, and

#Runtime is the average and standard deviation runtime.

The algorithm was implemented in C language, and all the

experiments were executed in a Intel Core 4 Quad, 2.5-

GHz CPU, 8 GB of RAM, and Linux Red Hat 5.2.

The algorithm lasts until 12 h in the worst case. It can be

a reasonable runtime considering that we are dealing with

some large-scale regression datasets (which is not so pre-

valent in GFSs) and that the proposed algorithm is con-

ceived for off-line learning.

We can find some interesting aspects after a closer look

at the table. Indeed, the runtime mainly depends on the

Fig. 15 Average Pareto front with one, two, three, and four modules in several problems
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number of examples of the dataset (see Table 2). This fact

would be expected as the WM method generates as many

candidate rules as examples exist at the first stage, so it has a

clear dependency of this parameter. In this way, problems as

Census, Elevators or Ailerons last longer since the number

of training examples are between 11,000 and 18,228. Fur-

thermore, it is interesting to note that the number of input

variables of the problem is not so relevant to determine the

runtime. Thus, given almost the same number of examples, a

problem with 8 variables as Concrete lasts longer (about

8 min) than a problem with 15 variable as Treasury (about

2 min). The explanation on this must be found in the real

number of rules finally generated. As WM groups the can-

didate rules by antecedent and then chooses a rule per group

to avoid inconsistency, sparse training data may lead to a

higher number of rules even when the input dimension and

the number of examples is lower. As shown in Table 5, the

number of variables used in the modules along the execution

of the algorithm directly influences on the runtime and

ultimately may represent the difficulty of solving the prob-

lem beyond its number of variables. The parameter would be

related with more complex features as spareness of the

examples or correlation among the variables.

5 Comparison with other GFSs

In order to evaluate the accuracy and interpretability of our

proposal in large-scale problems, we compare with some

state-of-the-art algorithms in the area of GFSs. Nowadays,

most of the GFS algorithms (and particularly in multi-

objective optimization) develop an adjustment of the MF

parameters in order to reach additional accuracy rates.

Therefore, in order to do a fair comparison, we opted by

endowing our proposal with the capability of tuning the

fuzzy partitions. However, the main contribution of the

paper is not providing an algorithm that generates fuzzy

models with excellent accuracy but hierarchial fuzzy

models that organize the input variables in a more under-

standable way without sacrificing much accuracy.

This section is organized as follows: Sect. 5.1 explains

the proposed tuning approach of the GSHFS algorithm;

Sect. 5.2 describes the experimental setup; Sect. 5.3 shows

the obtained results, and Sect. 5.4 analyzes and compares

our algorithm with other well-known GFSs.

5.1 Proposed tuning algorithm

This approach consists of two genetic operators that move

the core of the MFs in order to adapt the fuzzy partitions

for an additional accuracy improvement. Strong fuzzy

partitions are considered.

1. Fuzzy partition codification A double-coding vector

scheme to represent the cores of the MFs per variable

is used. Figure 16 illustrates it. The interval of the MFs

is calculated by means of the parameter (Eq. 8):

e ¼ max�min

k � 1
ð8Þ

with max and min being the maximum and minimum of

the variable interval, respectively, k the number of labels

per variable. In this way, the core of the first label is the

minimum, the core of the second label is minimum þ e, the

core of the third label is minimum þ 2e, and so on.

2. Initialization The first half of the population have been

initialized with predefined MFs. The second half was

initialized randomly by means of the Algorithm 6.

Table 5 Runtime of the GSHFS algorithm

Data set #VarWM Runtime (hh:mm:ss)

Ele2 1.2 00:01:27 ± 00:00:12

Laser 1.6 00:02:03 ± 00:00:27

Dee 2.3 00:01:24 ± 00:00:17

Concrete 3.1 00:08:37 ± 00:02:41

Census-House 8L (Census 8L) 2.4 10:06:29 ± 01:43:53

Census-House 8H (Census 8H) 2.7 10:43:44 ± 01:14:00

Weather-Ankara (WeAnk) 2.1 00:06:19 ± 00:02:11

Mortgage 2.2 00:03:16 ± 00:00:56

Treasury 1.6 00:01:55 ± 00:00:50

Census-House 16L (Census 16L) 2.7 12:32:40 ± 02:50:47

Census-House 16H (Census

16H)

3.1 11:25:17 ± 02:24:37

Elevators 2.1 05:11:55 ± 01:03:27

Computer Activity (CompAct) 3.8 01:26:59 ± 00:27:10

Ailerons 3.6 08:38:05 ± 02:12:17
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3. Crossover operator This crossover operator is applied

per variable to an offspring obtained by means of the

GSHFS’ crossover. It is embedded into the GSHFS’

crossover operator. There are three types of crossing

for tuning. It depends on the offspring’s common

variable selected:

(a) If the variable inherited by the offspring comes

from the two parents, BLX-a crossover will be

applied per label. Figure 17 illustrates it.

(b) If the variable inherited by the offspring comes

from one of the two parents, the values of the

MFs are copied from the parent into the off-

spring’s inherited variable.

Finally, if the MFs’ cores are overlapping each, the MFs

vector will be sorted from lowest to highest value.

4. Mutation operator The mutation process is as follows:

(a) Select a random individual i.

(b) Choose a random variable x from i.

(c) Choose a random label l from x.

(d) Select a random number r belonging to l’s

interval.

(e) Test if r core are overlapping with the cores on

both sides. In the positive case, the new core will

be the average of the cores located on both sides

of r.

These genetic operators are used regardless of hierar-

chical genetic operators. When the 75 % of the evaluations

is exceed, the algorithm does not learn hierarchical struc-

tures and the MFs tuning is realized.

5.2 Experimental setup

The experiments shown in this section have been per-

formed again by a fivefold cross validation with six runs

for each data set partition (i.e., a total of 30 runs per

problem). Our algorithm has been run with the following

parameter values: 100,000 and 300,000 evaluations, 60 as

population size, 0.7 as crossover probability, 0.2 as muta-

tion probability per chromosome, and 0.3 as a BLX

crossing parameter. Strong fuzzy partitions with uniformly

distributed triangular MFs are used with five fuzzy sets for

each linguistic variable. The maximum number of modules

is set to four.

The used datasets with 100,000 evaluations are Ele2,

Weather Ankara, Mortgage, Treasury, and Computer Activ-

ity; while Ele2, Weather Ankara, Mortgage, and Computer

Activity have been used for 300,000 evaluations. In this way,

we can adapt our experiments to the setup applied by the

algorithms considered for comparison.

5.3 Experimental results

Table 6 collects the obtained results, where MSEtra and

MSEtst are the approximation error values (Eq. 1) over the

training and test data set, respectively; #M, #R, and #V

stand for the number of modules, the number of fuzzy

rules, and the number of input variables, respectively; r#M

is the standard deviation of the number of modules, and

�x#R is the average number of variables per rule.

The following GFSs have been included for comparison:

• Three single-objective-based methods: GR-MF (Cordón

et al. 2001a) learns the granularity for each fuzzy

Fig. 16 Example of fuzzy partition coding scheme

Fig. 17 MFs crossover
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partition and MF parameters. GA-WM (Cordón et al.

2001b) learns the granularity, scaling factors, and the

domains for each variable system. GLD-WM (Alcalá

et al. 2007b) learns the knowledge base by obtaining

the granularity and the individual lateral displacements

of the MFs. The results are extracted from Alcalá et al.

(2011a).

• Three versions of the two-objective (2 ? 2)M-PAES:

PAES-RB learns only rules. PAES-SF and PAES-SFC

learn concurrently the RB and the MF parameters by

means of the piecewise linear transformation. These

algorithms have been taken from Antonelli et al.

(2011).

• A three-objective evolutionary algorithm: PAES-SF3

(Antonelli et al. 2011) seeks for different balances

among complexity, accuracy, and partition integrity by

concurrently learning the RB and MF parameters of the

linguistic variables.

Table 6 shows the results of the most accurate solution

obtained by our tuning approach (called GSHFS-Tuning),

GR-MF, GA-WM, and GLD-WM. These algorithms have

been run with 100,000 evaluations and five fuzzy sets for

each linguistic variable. This table also presents the FIRST

point obtained by PAES-RB, PAES-SF, PAES-SFC, and

PAES-SF3. They have been run with 300,000 evaluations

and five fuzzy sets for each linguistic variable. Most of

datasets in Antonelli et al. (2011) have a lower size.

GSHFS-Tuning has been run with 100,000 and 300,000

evaluations in order to compare it with the algorithms

previously mentioned. The most accurate Min and the one

of the first quartile Q1 solutions (with ascending sorting by

error) are shown in this table.

5.4 Analysis

In this subsection, we will analyze the ability of hierar-

chical structures against other GFS algorithms that gener-

ates non-hierarchical structures.

We can observe in the problems from 4 to 15 variables

that the accuracy as well as the number of rules obtained

for GSHFS-Tuning is ranked at intermediate positions

against the rest of algorithms. However, in large-scale

problems (from 18 to 40 variables) the approach is the most

accurate but with a higher number of rules. However,

notice that the number of variables per rule is lower in

GSHFS-Tuning than the different MOEAs implemented by

Antonelli et al. (2011). It means that although the number

of rules obtained is high, each individual rule is simpler.

We can observe that with 100,000 evaluations, the

GSHFS-Tuning errors are usually higher than GLD-WM

but the number of rules is significantly decreased (e.g., by

70 % in Ele2).T
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Compared to PAES-based algorithms with 300,000 eval-

uations, GSHFS-Tuning’s accuracy only improves to PAES-

RB algorithm in Ele2 problem but the simplicity is higher in

both the number of rules as in the number of variables per

rule, decreased by 65 and 50 %, respectively. If we take a

look at the Computer Activity problem, we can observe that

GSHFS-Tuning obtains the most accurate result. The accu-

racy is improved by 25 % compared to the result obtained by

PAES-SF. GSHFS-Tuning increases the number of rules by

97 %, but we want to notice that the number of variables per

rule is lowest and therefore simpler rules are considered. The

accuracy is even outperformed by the first quartile solutions

and the number of rules is reduced more than a half.

To sum up, the results obtained by GSHFS-Tuning are

more accurate in large-scale problems but the number of

rules is higher. However, it is difficult to decide which is

better because the Pareto fronts of the PAES-based algo-

rithms are not available. Besides, GSHFS-Tuning is com-

pared with algorithms that learn the number of labels, thus

reducing the number of rules considerably.

6 Conclusion and further work

We have proposed a multi-objective genetic algorithm

applied to learning SHFS to palliate exponential increases

in the number of rules when the number of variables

increases. The set of variables is selected and distributed in

modules by the algorithm. We have proved that this divi-

sion by SHFS can obtain good results in problems with a

higher number of variables.

The interpretability is good due to several reasons: (1) the

hierarchical structure generates a lower number of variables,

(2) the algorithm does not generate artificial linking vari-

ables, and so, all of the variables are interpretable because

they belong to the system, (3) the rules are simpler because

the number of variables per module is lower. At the same

time, the accuracy is maintained or improved.

Besides, the hierarchical structures may help to analyze

the relationships existing among the input variables thus

providing a further insight to understand the complexity of

the problem beyond merely considering its number of

variables and instances.

The results obtained are promising, which opens a

research line in GFSs. As further work, we suggest the study

of other mechanisms for a better accuracy (e.g., learning

MFs), a detailed study of the interpretability of each rule of

the FS, and to extend this algorithm to parallel and hybrid

structure learning.
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Appendix 1: Wang–Mendel method

The ad hoc data-driven Mamdani-type fuzzy rule set gener-

ation process proposed by Wang and Mendel (1992) is widely

known and used because of its simplicity. In our algorithm,

GSHFS, it is used in the module’s rule base learning. It is

based on working with an input–output data pair set repre-

senting the behavior of the problem being solved:

E ¼ fe1; . . .; eNg; el ¼ ðxl
1; . . .; xl

n; y
l
1; . . .; yl

nÞ;

with N being the data set size, n the number of input

variables, and m the number of output variables. The

algorithm consists of the following steps:

1. Consider a fuzzy partition (definitions of the MFs

parameters) for each input/output variable.

2. Generate a candidate fuzzy rule set: This set is formed by

the rule best covering each example contained in E. Thus,

N candidate fuzzy rules, CRl, are obtained. The structure

of each rule is generated by taking a specific example,

i.e., an ðnþ mÞ-dimensional real vector, and setting each

one of the variables to the linguistic term (associated

fuzzy set) best covering every vector component:

CRl: IF X1 is Al
1 and . . . and Xn is Al

n

THEN Y1 is Bl
1 and . . . and Ym is Bl

m

Al
i ¼ arg maxA02Ai

lA0 ðxl
iÞ, Bl

j ¼ arg maxB02Bj
lB0 ðyl

jÞ

3. Give an importance degree to each candidate rule:

DðCRlÞ ¼ Pn
i¼1lAl

i
ðxl

iÞ �Pm
j¼1lBl

j
ðyl

jÞ

4. Obtain a final fuzzy rule set from the candidate fuzzy

rule set: To do so, the N candidate rules are first

grouped in g different groups, each one of them

composed of all the candidate rules containing the

same antecedent combination. To build the final fuzzy

rule set, the rule with the highest degree of importance

is chosen in each group. Hence, g will be both the

number of different antecedent combinations in the

candidate rule set and the number of rules in the finally

generated Mamdani-type fuzzy rule set.

Appendix 2: Variable selection by genetic algorithm

The VSGA makes a variable selection by means of a multi-

objective elitist population-based algorithm in order to
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obtain an accurate and interpretable FS. Algorithm 7 shows

a pseudocode.

Each individual is a FS with a module and two genetic

operators are applied:

• Crossover: It is similar to the GSHFS crossover

operator when both parents have a module (see

Sect. 3.3.4).

• Mutation: This operator chooses probabilistically

between to add an unused or remove a used variable

to/from an FS. This is shown in Algorithm 8.

The replacement strategy used is NSGA-II Deb et al.

(2002) algorithm, the inference mechanism considered is

the Max–Min inference scheme, and two objectives are

considered: the MSE and the maximum number of rules.

The FS’ Mamdani-type fuzzy rule set is learned by WM

method Wang and Mendel (1992).

Appendix 3: Joo and Sudkamp’s approach

The Joo and Sudkamp’s (2009) algorithm consists of the

conversion from a single-layer FS into a two-layer HFS.

The first step is to establish what is the number of variables

belonging to each layer is, as follows: let n be the number

of variables and k the number of labels, with k� 2; the

number of variables in the first layer is calculated by the

equation:

p� ¼ n� logk 2

3
ð9Þ

The number of variables which minimize the number of

rules is calculated in this way:

RðpÞmin ¼ min fRðbp�cÞ;Rðbp�c þ 1Þg ð10Þ

where bxc is the greatest integer less than or equal to x and

RðxÞ is obtained as follows:

RðxÞ ¼ kxkx þ kn�x: ð11Þ

The next step is to create the first layer’s modules: the

complete rule base is generated and the rules are put into

groups according to the variables’ antecedent belonging to

the second layer with the same label value. Each group

makes up a module in the first layer. If there are p variables

in the first label, the algorithm will generate kn�p modules

and each module will have kp rules. The algorithm includes

a hierarchical rule reduction mechanism which eliminates

the first layer’s modules with lineal dependence by means

of the calculation of the matrix rank called RB. Each i row

of the RB matrix represents a module and each column is

the consequent of the rule j of the module i. The number of

modules in the first layer is obtained by the rank of the RB

matrix. It uses singleton fuzzification, product inference,

and integer average defuzzification.

Next, the second layer is created. Unlike standard FSs,

the second layer FSs receives both the values of the rest

input variables and the values of the first layer’s rule

consequents as inputs. The algorithm generates the com-

plete TSK-type rule base with n� p variables. The rules’

consequents are constructed by means of the combination

of the inferred values of the first layer’s modules with real

constants. These constants are obtained from a set of dot-

matrix operations with the RB matrix.

Our JS implementation starts from a reduced set of

variables by VSGA per run, instead of generating the

complete rule base. The objective of this is to obtains a

comparable JS algorithm in the same conditions that the

rest of implemented algorithms. The main problem is the

RB matrix construction, because some matrix cells have no

associated value due to the lack of the rules. We decided to

fill the cells with the intermediate value of the output

variable in order to complete the empty cells of the matrix

and then, insert the associated rule into the filled cell in the

corresponding module. This insertion does not produce

major changes in the first layer’s output due to our use of

the FITA (First Inference, Then Aggregate) inference and

we can consider it as a simplified TSK.
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Aja-Fernández S, Alberola-López C (2008) Matriz modeling of

hierarchical fuzzy systems. IEEE Trans Fuzzy Syst 16(3):585–

599

A. D. Benı́tez, J. Casillas

123
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