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José Santamarı́a, Member, IEEE, Sergio Damas, Member, IEEE, Oscar Cordón, Senior Member, IEEE,
and Agustı́n Escámez

Abstract—Image registration (IR) is a challenging topic in both
the computer vision and pattern recognition fields; its main aim
is to find the optimal transformation to provide the best overlay
or fitting between two or more images. Usually, the success of
well-known algorithms, such as iterative closest point, highly
depends on several assumptions, e.g., the user should provide
an initial near-optimal pose of the images to be registered.
In the last decade, a new family of registration algorithms
based on evolutionary principles has been contributed in order
to overcome the latter drawbacks. However, their performance
highly depends on carefully tuning (usually by hand) the control
parameters of the algorithm, which is an error-prone and a time-
consuming task. In this paper, we propose a new self-adaptive
evolution model to deal with IR problems. To our knowledge,
this is the first time a self-adaptive approach has been used for
tuning the control parameters of evolutionary algorithms tackling
computer vision tasks. Specifically, we introduce a novel design
of the proposed self-adaptive approach facing pair-wise range IR
problem instances, which is a challenging real-world optimization
problem. In addition, several classical approaches, as well as
state-of-the-art evolutionary IR methods, have been considered
for numerical comparison.

Index Terms—3-D modeling, evolutionary algorithms (EAs),
image registration (IR), range images, self-tuning.

I. Introduction

IMAGE REGISTRATION (IR) is a fundamental task in
computer vision aimed at finding either a spatial transfor-

mation (e.g., rotation, translation) or a correspondence (match-
ing of similar image features) among two or more images
acquired under different conditions [1]. Over the years, IR
has been applied to tackle many real-world problems ranging
from remote sensing to medical imaging, artificial vision, and
computer-aided design (CAD). Likewise, different techniques
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A. Escámez is with the Telefónica Research and Development Division,
Granada 18005, Spain (e-mail: escamez@tid.es).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2012.2209890

facing the IR problem have been studied, resulting in a large
body of research. Several recent contributions reviewing the
state of the art on IR methods can be found in [1]–[3].

In the last few years, specialized communities have expe-
rienced a growing interest in using improved techniques to
build high-quality 3-D models of real-world objects and scenes
acquired by using range scanners [4]. The goal is not to require
humans to manually produce these models using laborious
and error-prone CAD-based approaches. Usually, the iterative
closest point (ICP) algorithm [5], [6] is the de-facto standard
for doing pair-wise IR of range images to build the 3-D
models in a process called 3-D modeling or reconstruction.
However, the optimization nature of this class of methods (i.e.,
solution estimation using the least-squares approach) needs
some further assumptions. For example, they assume that a
near-optimal pose estimation is initially provided to guarantee
convergence to the optimal solution. Otherwise, the IR process
will be likely to get trapped in a local optima solution [7].

Alternatively, approximate or heuristic optimization meth-
ods (also named meta-heuristics [8]) belonging to the field of
evolutionary computation (EC) [9] constitute a very interesting
choice since they are able to achieve good quality outcomes for
complex optimization problems. Specifically, the adoption of
this optimization paradigm has caused an outstanding interest
in the IR community in the last decade [3], [10]. In particular,
evolutionary algorithms (EAs) as genetic algorithms (GAs)
have been successfully applied for tackling the IR problem.

One of the main strengths of EC-based IR methods is that
they do not need an accurate estimation of the initial pose
of the images to operate. Nevertheless, these evolutionary
techniques require carefully tuning many control parameters
(e.g., probability of either mutation or crossover operators in
GAs) in order to achieve the best possible performance in
each specific application tackled. Usually, determining good
control parameters is a very time-consuming task, which is
carried out by hand. Users often do not waste time for tuning
these crucial parameter values. Hence, the automatic control
of the values of various EA parameters is one of the most
challenging issues in this field. The better the values of the
control parameters are tuned, the better the EA performance
will be when handling complex optimization problems [11].

In the last few years, advanced strategies have arisen in
the EC field in order to provide new optimization algorithms
with an adaptive behavior of control parameters [11]. In this
paper, we aim to contribute to the IR community with a new
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evolutionary IR method capable of self-tuning its control pa-
rameters. Notice that previous self-adaptive frameworks such
as [12] are highly sensitive to local minima. To overcome this
drawback, the specific design of our self-adaptive evolutionary
optimization method, SaEvO, takes advantage of the synergy
between two different EAs: a memetic algorithm (MA) [13],
[14] based on differential evolution (DE) [15] and variable
neighborhood search (VNS) [16], and an artificial immune
system (AIS) [17]. While the former memetic stage is aimed to
optimize problem solutions, the latter one is focused on tuning
the control parameters of both the global and local search steps
(i.e., DE and VNS).

We will carry out an experimental study of the proposed
method performance when facing pair-wise IR problem in-
stances of real-world objects 3-D modeling. We compare our
proposal with other state-of-the-art EC-based IR algorithms,
as well as with classical IR methods by using several range
image datasets.

The structure of this paper is as follows. Section II presents
some basics on the IR problem of range data and the applica-
tion of EC principles to solve it. Our self-adaptive evolutionary
approach is introduced in Section III. Section IV performs an
experimental study by considering the previously introduced
proposal and several state-of-the-art EC-based IR methods.
Section V draws the most relevant conclusions achieved in
this paper. Section VI gives conclusions and future works.

II. Range Image Registration

A. Background

Range scanner devices are able to capture 3-D images,
named range images, from different viewpoints of the sensed
object. Every range image partially retrieves the complete
geometry of the scanned object, then placing each of them in a
different coordinate system. Thus, it is mandatory to consider a
reconstruction technique to perform the accurate integration of
the images in order to achieve a complete and reliable model
of the physical object (see Fig. 1). This framework is usually
called 3-D model reconstruction [4] in which IR plays a crucial
role.

Usually, there are two reconstruction approaches to integrate
multiple range images [4]. The cumulative pair-wise approach
accomplishes successive applications of the IR method, con-
sidering pairs of range images each time in order to reconstruct
the original model. Alternatively, the application of a global
or multiview IR stage next to the previous one is aimed to
obtain a more accurate reconstruction result by simultane-
ously considering all these preregistered images. Regardless
of the reconstruction approach considered (i.e., cumulative or
multiview) the quality of the reconstructed model is highly
dependent on the success of the pair-wise range IR (RIR)
algorithm to be used.

There is no universal design for a hypothetical (pair-wise)
IR method that could be applicable to all registration tasks,
since various considerations on the particular application must
be taken into account [1]. However, IR methods usually
require the following four components (see Fig. 2): two
input images named scene Is = {�p1, �p2, . . . , �pn} and model

Fig. 1. Real case of 3-D model reconstruction.

Fig. 2. General framework of the IR optimization process.

Im = {�p ′
1 , �p ′

2 , . . . , �p ′
m}, with �pi and �p ′

j being image points;
a registration transformation f , being a parametric function
relating the two images; a similarity metric function F in order
to measure a qualitative value of closeness or degree of fitting
between the transformed scene image, noted f ′(Is), and the
model image; and an optimizer that looks for the optimal
transformation f inside the defined solution search space.

Likewise, an iterative process is often followed until con-
vergence, for instance, within a tolerance threshold of the con-
cerned similarity metric. Specifically, the ICP algorithm [5],
[6] was originally proposed to achieve an accurate estimation
of the rigid pose of pairs of range images by using an
optimization approach based on least-squares estimation of the
registration transformation f . However, the relative rotation
and traslation of the pair of images must be small for the
method to converge to a good alignment.

A highly detailed survey on IR methods, as well as recog-
nition and 3-D modeling techniques, is given in [4].

B. Evolutionary Image Registration

Since the proposal of the original ICP algorithm, many
contributions have been introduced extending it [7], [18]. De-
spite the latter, the pair of images must usually be prealigned
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Fig. 3. Nearest neighbor (NN) and the approximate NN approaches are
usually adopted for computing the closest point rule in the refinement and
the prealignment stages.

manually before running any ICP variant. In order to address
this shortcoming, some authors proposed using a two-stage
IR approach [18] (see Fig. 3) in which a first coarser and
time-consuming prealignment stage makes use of EAs, and
the subsequent refinement one applies their Trim-ICP variant.
Recently, it has been demonstrated that outcomes based on ICP
can be outperformed using a different refinement approach,
named the interpenetration measure [19].

We focus our attention on the prealignment RIR step using
the EC paradigm. Specifically, EAs [9] make use of compu-
tational models of evolutionary processes as key elements in
the design and implementation of computer-based problem-
solving systems. In the last decade, there has been an increas-
ing interest in applying EC principles to complex optimization
tasks due to their capability to escape from local optima. Op-
timization procedures using stochastic schemes as those based
on EAs are empirically found to provide global near-optimal
solutions for complex optimization problems, including some
examples from the computer vision and the computer graphics
fields. GAs are the more extensively adopted EAs facing opti-
mization problems. The first attempts to face the IR problem
using EC can be found in the 1980s [20], where a GA was
developed for tackling rigid IR of 2-D angiography images.
Since then, evolutionary IR has become a very active area due
to the successful results obtained and several well-known EAs
have been considered to tackle the IR optimization process.
Two detailed surveys on the application of evolutionary IR
methods to 3-D modeling and medical IR are given in [3]
and [10], respectively.

C. Evolutionary RIR Methods for 3-D Modeling

As said, the 3-D model reconstruction pipeline involves the
application of several pair-wise alignments of two adjacent
range images (see Fig. 1) in order to obtain the final 3-D
model of the physical object [21]. Therefore, every pair-wise
IR method aims to find the Euclidean motion that brings
the scene view (Is) into the best possible alignment with the
model view (Im). This Euclidean motion is usually considered
based on a 3-D rigid transformation (f ) determined by six
or seven real-coded parameters when using either Euler or
axis plus angle representation for rotation, respectively. In this
contribution, we define the rigid transformation as a rotation
R = (θ, Axisx, Axisy, Axisz) and a translation �t = (tx, ty, tz),
with θ and �Axis being the angle and axis of rotation, respec-
tively. The transformed points of the scene view are denoted

by

f (�pi) = R(�pi) + �t i = {1, . . . , n} (1)

where n is the number of points of the Is image. Hence, the
evolutionary pair-wise RIR procedure can be formulated as a
numerical optimization problem (in which RIR solutions are
7-D real-coded vectors x = 〈θ, Axisx, Axisy, Axisz, tx, ty, tz〉
developed to search for the Euclidean transformation f ∗

achieving the best alignment of both f (Is) and Im

f ∗ = arg min F (Is, Im; f ) s.t. f ∗(Is) ∼= Im
f (2)

according to the similarity metric, F , being optimized. Among
others, the median square error (MedSE) is usually considered
as the F function in 3-D modeling [22] due to its robustness
in the presence of outliers (e.g., acquired noisy range images)
in the RIR process. It can be formulated as

F (Is, Im; f ) = MedSE(d2
i ), ∀i = {1, . . . , n} (3)

where MedSE() corresponds to the median value of all the
squared Euclidean distances, d2

i = ‖f (�pi) − �p′
j‖2 (j =

{1, . . . , m}), between the transformed scene point, f (�pi), and
its corresponding closest point, �p′

j , in the model view Im.
Notice that it can be said that both the F function and either
the fitness or the objective function (see Section II-B) have
the same meaning within the optimization process.

In order to speed up the computation of the closest or nearest
point (see Fig. 3) of every f (�pi) point, advanced indexing
structures, such as kd-trees [19] or the grid closest point (GCP)
transform [23], are often used.

III. Self-Adaptive Evolutionary Image

Registration Proposal

Before running any EA, there is a need to choose the
most appropriate components (see Section II-B), i.e., how
to generate both the initial population and the subsequent
trial solutions. Moreover, it is well known that each of these
components may have several parameters that need to be
carefully tuned. For instance, we found the mutation and
crossover probabilities, and the tournament selection size,
among others [9]. The values of these parameters strongly
influence the performance of the optimization process, de-
termining whether the algorithm will efficiently find a near-
optimum solution. However, the election of the right parameter
values is a time-consuming task.

The parameter tuning procedure has a potential of ad-
justing the optimization algorithm to the problem domain
being solved. The automatic control of the values of various
parameters has been one of the most challenging issues since
the origins of EAs. Thus, some relevant contributions have
been proposed in the last few years [11], [24], [25].

Our contribution is two-fold: 1) the proposal of a new self-
adaptive evolutionary optimization (SaEvO) method for tack-
ling a computer vision task, in particular RIR problems, and
2) simultaneously achieving high-quality registration solutions
even better than those obtained by cutting-edge EA-based IR
algorithms from the state of the art.
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Fig. 4. Proposed self-adaptive RIR optimization framework.

Specifically, our proposed framework resembles the meta-
optimization approach adopted in [26] (earlier termed meta-
GA [27]) and it is inspired, but not based, on the two-
stage co-operative approach introduced in [28]. Fig. 4 depicts
our design for tackling the optimization task within the RIR
problem.

After randomly initializing both the registration solutions
and the control parameters (stage0), the optimization proce-
dure (stage1, based on the DE global search scheme) searches
for near-optimal registration solutions. Then, the second one
(stage2, based on the AIS) searches for near-optimal values
of the control parameters of the previous stage. Later, the
two linked optimization stages iteratively evolve by using the
same fitness function [see (3)]. Thus, the more adapted the
control parameters of the first optimization stage are, the more
accurate the registration solutions will be.

Unlike [28], our proposal extends the capabilities of the co-
operative scheme based on the DE [15] algorithm and the
AIS [17] by incorporating a local search (LS) strategy to
the former in order to find more accurate RIR solutions. In
particular, we used the VNS method [16] as the LS component.
Similarly to DE, VNS is easy to implement and requires
few control parameters. This hybrid approach, also known
as MA [14] in the specific literature, has been successfully
applied in IR [19], [29].

Contrary to previous IR contributions, SaEvO performs the
self-adaption of the control parameters of both the global and
the LS phases of the stage1. In particular, it is well known
that the adaptation of the steplength parameter is central to
EAs [30], [31], being one of the main novelties of our proposal
in which such a control parameter of the LS procedure is also
self-tuned.

The Appendix provides a more detailed algorithmic descrip-
tion of SaEvO in order to make its understanding easier for
its further development.

IV. Experimental Results

This section is aimed at presenting a number of experi-
ments to study how robust and accurate the results obtained

by the proposed self-adaptive optimization framework are.
As a benchmark, the results obtained by our SaEvO-based
prealignment algorithm (see Fig. 3) will be compared against
those obtained by four state-of-the-art IR methods also using
evolutionary approaches, as follows:

1) Santamaria et al.’s proposal (Santamaria09) [29], a re-
cent memetic contribution based on the scatter search
algorithm [32];

2) de Falco et al.’s method (deFalco08) [33], which makes
use of a basic implementation of the DE method;

3) Silva et al.’s contribution (Silva05) [19], in which a
steady-state GA variant is developed;

4) Wachowiak et al.’s proposal (Wachowiak04) [34], in
which the authors considered a particle swarm optimiza-
tion (PSO) algorithm [35], [36] for carrying out 2-D
to 3-D medical IR. In particular, we included the PSO
variant proposed by the authors that achieved the best
performance facing the latter IR problem, called PSO7.

In addition, we used the improved variant of the original
ICP method proposed by Zhang [37], I-ICP, to carry out the
refinement step (see Fig. 3). This method has shown a more
accurate performance compared with other ICP variants (see
the minimum values shown in Table III).

The proposed algorithm (SaEvO), the four baseline IR
methods, and the I-ICP algorithm are implemented in C++ and
compiled with the GNU/g++ tool. We adapted all the tested
methods by using the same representation of the rigid trans-
formation (f ) and objective function [see (3) in Section II-C].
Other similarity metrics can also be used as fitness functions
depending on the application being faced.

In order to perform a fair comparison among the prealign-
ment RIR methods included in this paper, we considered the
run (CPU) time as the stop criterion. The refinement stage
considers a maximum value of 100 iterations for the I-ICP
algorithm.

A. Range Image Datasets and Problem Scenarios

In order to ease the comparison with the results reported
in other contributions in the field [2], [19], our experi-
ments correspond to a number of pair-wise RIR problem
instances, using different range datasets obtained from the
well-known public repository of the Signal Analysis and Ma-
chine Perception Laboratory (SAMPL, http://sampl.ece.ohio-
state.edu/data/3DDB/RID/index.htm). Specifically, Fig. 5
shows the eight range datasets we considered, named in
previous contributions [19]: Bird, Duck, Frog, Tele, Angel,
Buddha, Bunny, and Lobster. The datasets range from 8000 to
15 000 points in size.

The second group of datasets are specific ones acquired by
the Physical Anthropology Laboratory, University of Granada,
Granada, Spain, using their Konica-Minolta VI-910 laser scan-
ner. They are named Skull, Sculpture, and Tooth (see Fig. 6).
This second group of datasets ranges from 30 000 to 70 000
points size.

Concerning the views misalignment, 20 and 40 overlapping
degrees of the turn table have been commonly used in the
literature for testing RIR proposals [2], [19]. In our case,
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TABLE I

RIR Problem Scenarios Considering 20°, 40°, 45°, and 60° of Overlapping

SAMPL Datasets Specific Datasets
Overlap Bird Duck Frog Tele Angel Buddha Bunny Lobster Skull Sculpture Tooth

20° ✓ ✓ ✓ ✓

40° ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
45° ✓
60° ✓ ✓

Each scenario collects one or more pairs of range images from each of the two considered groups of datasets: SAMPL and specific.

Fig. 5. Range image datasets available at the SAMPL repository. From left to right: Bird, Duck, Frog, Tele, Angel, Buddha, Bunny, and Lobster images.

Fig. 6. Specific range image datasets. From left to right: Skull, Sculpture,
and Tooth images.

four different pair-wise RIR problem scenarios have been set
up in this experiment. Specifically, we considered increasing
complexity scenarios using 20°, 40°, 45°, and 60°. As stated,
the lower the rotation degree of the turn table is, the more
overlapped the adjacent images and the easier the RIR problem
will be (see Section II-A). Table I details how each dataset has
been assigned to every RIR problem scenario.

We used both the GCP structure (see Section II-C) and the
subsampled version of each range image in order to speed
up the computation of the objective function [see (3)]. In
particular, Table II shows some numerical results reported by
Silva05, considering 40 000 points randomly chosen (using a
uniform distribution) from the original Skull dataset and three
different runtime limits 20, 60, and 120 s. The importance of
achieving a suitable tradeoff between the number of points and
the runtime in order to provide proper convergence conditions
is remarkable. Hence, we have randomly chosen 5000 points
and 20 s as a good threshold, allowing all the methods to
achieve good results.

Notice that feature-based approaches [1], [3], [10] can also
be adopted to achieve a reduced and a characteristic subset of
image points. However, the latter procedure usually needs the
intervention of expert users to obtain high-quality features.

B. Parameter Settings

In order to avoid execution dependence, 30 different runs
have been performed for each of the five tested prealignment
RIR algorithms when facing each of the two kinds of problem

TABLE II

Statistical Results of Silva05 Considering Different Runtime

Limits and Maintaining the Same Number of

Sampled Points (40 000)

Runtime (s) Min. Max. Mean St. dev.
20 0.6741 0.9742 0.9169 0.0628
60 0.3041 0.8986 0.7401 0.1638
120 0.2500 0.8929 0.6656 0.1888

scenarios considering 20° and 40° of image overlapping in the
classical datasets. All tested algorithms start from an initial
population of random solutions. Then, each run concerns
applying a rigid transformation, randomly generated using
a uniform distribution to the scene image fr(Is) and using
the RIR method to search for the optimal transformation f ∗

between the proposed image fr(Is) and the model image Im.
Every rigid transformation is randomly generated as follows:
each of the three rotation axis parameters will be in the range
[−1, 1], the rotation angle will range in [0°, 360°], and the
range of three translation parameters is [−40 mm, 40 mm].

All the pair-wise RIR methods are run on a PC in an Intel
Pentium IV 2.6 MHz processor and 2 GB RAM. We consid-
ered the values of the control parameters of each of the four
compared algorithms (Santamaria09, deFalco08, Silva05, and
Wachowiak04) as those used in their original contribution. Re-
garding SaEvO, we initially experimented using different pop-
ulation sizes for the optimization procedure of the stage1 and
noticed that it achieved a stable performance. Specifically, we
considered l = {50, 65, 80, 95} as population sizes for testing
SaEvO using the Bird dataset with 20° of overlapping (see
Section IV-D) and nonsignificant differences were obtained
(considering 30 different runs) with respect to the mean value
of the F function, i.e., {0.1812, 0.1864, 0.1814, 0.1824}.
Such an attractive behavior is partially supported by the self-
adaptive nature of SaEvO, which demonstrates its capability
for finding optimal values of the control parameters regardless
of the considered population size. Nevertheless, stable results
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TABLE III

Statistical Results of Silva05, I-ICP, and Liu-ICP Algorithms

Facing 30 Different Prealignment Scenarios

Algorithm Min. Max. Mean St. dev.
Silva05 1 13 118 2695 3941
I-ICP 4 14 822 6016 5028
Liu-ICP 163 12 993 5319 4033

Fig. 7. Outcomes of each of the three methods tackling the same problem
instance (run extracted from Table III). From left to right: the initial pose and
the poses estimated by I-ICP, Liu-ICP, and Silva05.

will depend on the dimensionality of the optimization problem
being considered, thus other semi-automatic approaches can be
adopted for tuning the population size [38]. Thus, we decided
to use a reduced set of solutions, l = 50, in order to speed up
the convergence of SaEvO.

C. Prealignment: ICPs Versus EAs

Before performing the whole experimental comparison, it
is interesting to first demonstrate the hypotheses formulated
in Sections II-A and II-B about the necessity of using EAs to
achieve coarse alignments prior to applying any refinement
procedure. Some preliminary experiments were conducted
using an evolutionary IR method, Silva05, and two different
ICP variants proposed by Zhang [37] (I-ICP) and Liu [39]
(Liu-ICP). Table III shows the statistical results (computed as
suggested in [3] using the ground truth of the images in order
to compare both the evolutionary and the non-evolutionary
RIR methods) of 30 independent runs using a subsampled
version of the Skull datasets of 40 000 points. The reported
results show the low performance obtained by the two ICP
variants according to the mean value. Moreover, there are
scenarios in which more accurate results can be achieved using
EAs taking a look at the minimum value. Fig. 7 remarks this
fact showing an instance in which the ICP variants are invalid
for prealignment. A deeper analysis of this behavior can be
found in [3] and [10].

D. SAMPL Case Study

Tables IV and V show statistical results of the minimized
fitness function F [see (3)] corresponding to the 30 runs
carried out by each of the five evolutionary prealignment
methods when facing the two RIR problem scenarios, i.e.,
20 and 40° of overlapping. In particular, each column of
these tables refers to the range dataset, the algorithm, and the
minimum, maximum, mean, median, and standard deviation
values of the F function.

According to accuracy and robustness, i.e., minimum and
mean or median values of F , respectively, we can see how
SaEvO achieves the best optimization performance compared

TABLE IV

Prealignment RIR Results for the 20° of Overlapping

Problem Scenario

Dataset Algorithm Min. Max. Mean Median St. dev.
SaEvO 0.1124 0.5998 0.1812 0.1151 0.1572

Santamaria09 0.1132 0.8881 0.2075 0.1155 0.2015
Bird deFalco08 0.1245 0.8429 0.4793 0.5040 0.2157

Silva05 0.1152 0.9178 0.3506 0.1365 0.3112
Wachowiak04 0.4337 0.9613 0.8638 0.9036 0.1180

SaEvO 0.1307 0.8689 0.1917 0.1329 0.1795
Santamaria09 0.1313 0.8402 0.2053 0.1341 0.1749

Duck deFalco08 0.1651 0.7159 0.4487 0.4481 0.1568
Silva05 0.1345 0.9070 0.4329 0.3306 0.2579

Wachowiak04 0.1936 0.9521 0.6983 0.7293 0.2159
SaEvO 0.1189 0.5296 0.1789 0.1226 0.1337

Santamaria09 0.1194 0.8120 0.2029 0.1239 0.1756
Frog deFalco08 0.1322 0.7345 0.4374 0.4624 0.1615

Silva05 0.1249 0.8555 0.4329 0.4394 0.2415
Wachowiak04 0.3633 0.9407 0.7792 0.8373 0.1448

SaEvO 0.0735 0.1071 0.0780 0.0750 0.0080
Santamaria09 0.0736 0.7867 0.1639 0.0753 0.2192

Tele deFalco08 0.0755 0.6578 0.3193 0.3215 0.1819
Silva05 0.0750 0.9234 0.3728 0.0981 0.3366

Wachowiak04 0.2510 0.9319 0.7801 0.8556 0.1622

The unit length is squared millimeters. The best minimum, mean, and
median results are underlined.

Fig. 8. Best prealignment RIR results (according to the minimum value in
Table IV) of the SaEvO algorithm when facing the 20° problem scenario in
the Bird and the Tele datasets.

to the other evolutionary proposals when facing every dataset
of the less complex RIR scenario (20°). As an illustrative
example, Fig. 8 shows two different renderings of accurate
RIR results achieved by SaEvO in the Bird and the Tele image
datasets.

Regarding the more complex scenario (40°), SaEvO main-
tains the previous outstanding robust behavior being again the
best algorithm in all the eight addressed datasets with respect
to the mean values. According to individual accuracy, the self-
tuned proposal obtains the most accurate results (see Table IV)
in five of the eight addressed datasets (i.e., Bird, Frog, Tele,
Angel, and Bunny), while Santamaria09 achieves better results
in the remaining three (i.e., Duck, Buddha, and Lobster). Fig. 9
shows four different renderings of these RIR results obtained
by SaEvO in the Angel, Frog, Duck, and Lobster datasets.

The median values (see Tables IV and V) have been
included to carry out a deeper analysis on robustness. We can
see how SaEvO shows the highest scores (the lowest values)
in all cases of both the 20 and 40° problem scenarios.
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TABLE V

Prealignment RIR Results of the 40°

of Overlapping Problem Scenario

Dataset Algorithm Min. Max. Mean Median St. dev.
SaEvO 0.2028 0.9269 0.4451 0.2120 0.3052

Santamaria09 0.2052 0.9373 0.4626 0.2131 0.3175
Bird deFalco08 0.2955 0.9350 0.7358 0.7772 0.1852

Silva05 0.2159 0.9425 0.5795 0.5809 0.3158
Wachowiak04 0.3230 0.9653 0.9091 0.9377 0.1128

SaEvO 0.1585 0.4822 0.2355 0.1693 0.1135
Santamaria09 0.1582 0.8216 0.3228 0.2760 0.1398

Duck deFalco08 0.2666 0.8245 0.6297 0.6248 0.1348
Silva05 0.1717 0.9450 0.5207 0.5259 0.1825

Wachowiak04 0.2171 0.9680 0.8174 0.8826 0.1848
SaEvO 0.2536 0.7725 0.3991 0.2612 0.1963

Santamaria09 0.2548 0.7812 0.4700 0.2759 0.2271
Frog deFalco08 0.3997 0.8000 0.6937 0.7012 0.0876

Silva05 0.2735 0.9474 0.6923 0.7583 0.1750
Wachowiak04 0.2697 0.9641 0.8174 0.8525 0.1632

SaEvO 0.1050 0.8062 0.1911 0.1085 0.1667
Santamaria09 0.1062 0.8354 0.2217 0.1086 0.2116

Tele deFalco08 0.1240 0.7722 0.4785 0.5001 0.1520
Silva05 0.1077 0.8950 0.5354 0.5142 0.2929

Wachowiak04 0.5338 0.9362 0.8034 0.8277 0.1177
SaEvO 0.3493 0.9440 0.4983 0.3584 0.2175

Santamaria09 0.3498 0.9539 0.5271 0.3587 0.2467
Angel deFalco08 0.3694 0.9599 0.7954 0.8420 0.1499

Silva05 0.3527 0.9711 0.6790 0.7546 0.2640
Wachowiak04 0.6317 0.9736 0.9182 0.9466 0.0730

SaEvO 0.3990 0.9032 0.6120 0.6141 0.1224
Santamaria09 0.3978 0.7524 0.6300 0.6559 0.1020

Buddha deFalco08 0.6705 0.9335 0.8105 0.8132 0.0812
Silva05 0.5075 0.9506 0.7146 0.7077 0.1126

Wachowiak04 0.4200 0.9865 0.8586 0.9031 0.1363
SaEvO 0.0712 0.7379 0.1800 0.0734 0.2052

Santamaria09 0.3978 0.7524 0.6300 0.0738 0.1020
Bunny deFalco08 0.6705 0.9335 0.8105 0.4990 0.0812

Silva05 0.5075 0.9506 0.7146 0.5837 0.1126
Wachowiak04 0.0790 0.9145 0.7555 0.8053 0.2028

SaEvO 0.2505 0.7582 0.3787 0.2613 0.1894
Santamaria09 0.2490 0.8056 0.4369 0.2636 0.2231

Lobster deFalco08 0.3392 0.7917 0.6642 0.6872 0.1020
Silva05 0.2665 0.9201 0.5727 0.5677 0.2089

Wachowiak04 0.5030 0.9607 0.8049 0.8390 0.1082

The unit length is squared millimeters. The best minimum, mean, and
median results are underlined.

E. Specific Image Datasets Case Study

1) Analysis of the Prealignment Results: As in the previous
section, Table VI shows the statistical results comparing the
tested prealignment RIR algorithms facing the three spe-
cific range image datasets: Skull, Sculpture, and Tooth. From
these results, we can see how SaEvO keeps on providing
outstanding performance, achieving the most accurate and
robust optimization results. In particular, its good behavior is
highlighted in the Tooth dataset considering both mean and
median values. Fig. 10 shows the 3-D models corresponding
to the worst RIR runs of the two best methods, i.e., SaEvO and
Santamaria09, tackling the most complex 60° of overlapping
problem scenario using the Sculpture dataset.

2) Analysis of the Refinement Results: Finally, we com-
pleted the pair-wise RIR procedure by entirely tackling the

Fig. 9. Best prealignment RIR results (according to the minimum value in
Table V) of the SaEvO algorithm when facing the Angel, Frog, Duck, and
Lobster datasets of the 40° problem scenario.

TABLE VI

Prealignment RIR Results for the Two Problem Scenarios (45

and 60°) Using the Specific Range Datasets

Dataset Algorithm Min. Max. Mean Median St. dev.
SaEvO 0.2229 0.7806 0.3589 0.2320 0.1964

Santamaria09 0.2260 0.8172 0.3620 0.2355 0.1974
Skull deFalco08 0.2311 0.8465 0.6677 0.7432 0.1831

Silva05 0.2395 0.8451 0.6691 0.7573 0.1859
Wachowiak04 0.2874 0.9682 0.7658 0.8275 0.1832

SaEvO 0.2446 0.3648 0.2599 0.2564 0.0198
Santamaria09 0.2451 0.9841 0.2994 0.2571 0.1458

Sculpture deFalco08 0.2530 0.9342 0.7081 0.8324 0.2317
Silva05 0.2555 0.9842 0.5008 0.3103 0.2790

Wachowiak04 0.5050 0.9874 0.9001 0.9379 0.1147
SaEvO 0.0393 0.6409 0.1889 0.0460 0.1830

Santamaria09 0.0443 0.7631 0.3076 0.3754 0.2301
Tooth deFalco08 0.0454 0.7237 0.4936 0.5427 0.1922

Silva05 0.0473 0.7511 0.3958 0.4339 0.2147
Wachowiak04 0.0812 0.9383 0.7278 0.7702 0.1971

The unit length is squared millimeters. The best minimum, mean, and
median results are underlined.

two-stage RIR approach (see Fig. 3). As stated, we utilized
the I-ICP algorithm in the refinement stage. We decided
using the surface interpenetration measure (SIM) [19] for RIR
evaluation purposes once each of the prealignment and the
refinement stages obtained their outcomes. In contrary to the
F function (used within the optimization component), high-
quality RIR results show high SIM values. The SIM metric
has shown more discriminant results when facing pair-wise
RIR problems [19] than other classical IR evaluation metrics
based on computing Euclidean distances as the well-known
mean square error.

Fig. 11 shows the mean value of SIM computed from the
30 different runs for each of the three specific datasets. It is



552 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 4, AUGUST 2013

Fig. 10. Worst prealignment RIR results (according to the maximum value
in Table VI) of the (a) SaEvO and (b) Santamaria09 algorithms, respectively,
for the Sculpture specific dataset.

Fig. 11. Line graph showing the mean value of SIM for each of the two
RIR stages based on prealignment and refinement using SaEvO and I-ICP,
respectively.

remarkable how the refinement stage facing the Skull datasets
does not show significant quantitative differences, compared
to the outcomes of the initially assumed coarser prealignment
stage based on SaEvO. That is, while SaEvO shows a mean
value of the SIM equal to 14, the I-ICP algorithm only
improves the latter result by a value of 15. Fig. 12 visually
supports the latter statement for the best results obtained.
This pleasant feature clearly demonstrates the outstanding
behavior of SaEvO, even achieving precise RIR results close
to the optimal ones obtained by adding I-ICP. Nevertheless, the
more interpenetration or splotchy refinement results between
surfaces in both the Sculpture and the Tooth datasets suggest
that it is still necessary using this second stage when requiring
highly accurate RIR outcomes.

V. Discussion

We proposed the first self-adaptive optimization approach
based on MAs for tackling a well-known challenging com-
puter vision task, i.e., the IR problem for range data. The
conducted experimental results have proved that the proposed
optimization framework is able to provide well-adapted control
parameters in order to obtain high-quality RIR outcomes.
Moreover, the reported results highlight the stable behavior
of SaEvO regardless of the complexity of the problem faced,
which is a precondition to be held for any non-self-adaptive
optimization algorithm before benchmarking.

Fig. 12. Best RIR results (according to the SIM metric) of the (a) prealign-
ment and (b) refinement stages using SaEvO and I-ICP.

What is more important, outstanding results regarding ac-
curacy and robustness have been obtained when comparing
the SaEvO approach with several state-of-the-art RIR methods
also based on EAs. Specifically, we carried out a statistical
test using the paired Mann–Whitney U test (also known as
Wilcoxon ranksum test [40]) in order to state how significant
the differences in performance are (based on the optimiza-
tion scores, i.e., the F values) between the two best EA-
based IR methods analyzed: SaEvO and Santamaria09. We
noticed how the results obtained by the proposed algorithm
significantly outperform those of the state-of-the-art algorithm
Santamaria09 in all the tackled RIR problem scenarios (con-
sidering a 5% level of confidence): 20°, 40°, 45°, and 60° of
overlapping.

As mentioned, we maintained the original values of control
parameters of the tested state-of-the-art algorithms in order to
demonstrate the importance of performing a careful tuning of
these crucial variables when tackling a particular optimization
problem. In particular, deFalco08 is an EA proposed for
addressing IR problems of 2-D satellite images using the
same evolutionary approach as in stage1 of SaEvO, i.e., a
DE algorithm. Despite the similarities between deFalco08 and
SaEvO, the great differences regarding performance between
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both IR methods are remarkable. Thus, it has been proved
that using a self-adaptive approach of the control parameters
is of key importance for achieving fully automatic optimization
procedures.

As a consequence, the proposed approach can be considered
as a novel parameter-free optimization tool that even provides
more robust and accurate outcomes than all the methods in
the state of the art. Likewise, together with the optimizer
component of the IR process (see Fig. 2), its capabilities
can also be utilized for simultaneously tuning the control
parameters of IR components as the Similarity metric (i.e., the
fitness function F ). In our case, there is only a need to increase
the dimensionality of the real-coded vectors evolved in SaEvO
stage2 in order to consider these new control parameters.

VI. Conclusion

IR is a very active research field today. A large number of
publications related to IR show the high relevance of this topic
to the computer vision and pattern recognition fields. In the
last two decades, evolutionary approaches demonstrated their
ability to tackle the IR problem due to their robust behavior
as global optimization techniques. Contrary to traditional IR
methods as the ICP algorithm, evolutionary IR methods did
not need a good initial estimation of the alignment to avoid
local optima in order to converge to near-optimal solutions.
However, one of the main shortcomings of EC-based algo-
rithms was that they should be carefully tuned in order to
achieve the best performance for each tackled problem.

In this paper, we contributed the first self-adaptive opti-
mization algorithm, SaEvO, based on MAs for facing IR
problem instances of range data. Outstanding results were
obtained when comparing SaEvO with several state-of-the-art
IR algorithms, also based on EAs.

In future works, the SaEvO algorithm can be quickly
extended for facing the RIR problem following the multiview
approach (see Section II-A) [41]. In particular, we are working
on extending the capabilities of the MeshLab [42] Open
Source 3-D modeling package by using this new self-adaptive
optimization framework. Moreover, novel designs based on the
AIS metaheuristic can be considered to improve our current
proposal [43], and other recent self-adaptive approaches using
LS, such as in [44] and [45], will be of interest for comparing
against the latter as well.

APPENDIX

SaEvO PSEUDOCODE

Pseudocode 1 shows the first-level algorithmic description
of SaEvO. In particular, lines 1–5, 6–36, and 37 concern
stage0, stage1, and stage2, respectively, of the proposed frame-
work, as shown in Fig. 4. Notice that the U[·, ·] and the U{. . .}
symbols refer to both the float and the integer random values
generated within the considered intervals using a uniform
distribution. The remaining symbols introduced in Pseudocode
1 are subsequently explained along the next subsections, which
are devoted to describing each of the two optimization stages,
i.e., stages 1 and 2.

Pseudocode 1 First-level algorithmic description of SaEvO

Begin SaEvO

1 t ← 0;
2 InitiatePopulations (�t , �t , ϒt)
3 SortPopulation(F ) (�t)
4 xbest ← x1
5 indexBestSolution ← 1
6 While (Not reached stop criterion) Do
7 For i ← 1 to l Do
8 Randomly select r1 �= r2 �= r3 (rj ∈ {1, . . . , l})
9 xtrial ← SolutionGeneration (i, �t , �t , r)
10 If (F (xtrial) < F (xi)) Then
11 aff�i ← F (xi)−F (xtrial)

F (xtrial)
12 xi ← xtrial
13 Else
14 aff�i ← 0
15 End-If
16 If (F (xtrial) < F (xbest)) Then
17 xbest ← xtrial
18 indexBestSolution ← i

19 End-If
20 End-For

21 If (U[0, 1] < ρ) Then
22 If (U[0, 1] < 1 − ρ) Then
23 i ← indexBestSolution

24 Else
25 i ← U{1, . . . , l}
26 End-If
27 xls ← LocalSearch(i,�t , �t)
28 If (F (xls) < F (xi)) Then

29 aff�i ← [F (xi)·aff�i
+F (xi)]−F (xls)

F (xls)
30 xi ← xls

31 End-If
32 If (F (xls) < F (xbest)) Then
33 xbest ← xls

34 indexBestSolution ← i

35 End-If
36 End-If

37 TuneControlParameters (�t, ϒt)
38 t ← t + 1
39 End-While
40 Return xbest

End SaEvO

A. Stage1: Searching for the Registration Solutions

As stated, the first stage of the proposed framework (see
Fig. 4) is devoted to searching for RIR solutions. Our specific
design is based on the optimization procedure of the DE
algorithm [15], a well-known EA. It is a parallel direct
search method that has proven to be a promising candidate to
solve real-valued optimization problems. DE combines simple
arithmetic operators with the classical crossover, mutation
and selection operators of GAs within an easy-to-implement
scheme. Recently, DE has been successfully applied in several
IR problems [33]. In addition, another interesting advantage of
DE against other EAs (e.g., GAs) is that it needs few control
parameters to be tuned.

The DE algorithm starts building an initial population of
solutions (line 2, Pseudocode 1), usually at random. The
fundamental idea of DE is a new scheme for generating
improved trial solutions, � = {x1, x2, . . . , xl}, by adding the
weighted differenced vector between two population members
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Pseudocode 2 The SolutionGeneration procedure

Begin SolutionGeneration

1 jrand ← U{1, . . . , D}
2 For j ← 1 to D Do
3 If ((U[0, 1] < �CR

i ) Or (j == jrand )) Then
4 x

j

trial ← x
j
r3 + �F

i · (xj
r1 − x

j
r2 )

5 Else
6 x

j

trial ← x
j

i
7 End-If
8 End-For
9 Return xtrial

End SolutionGeneration

or solutions of � to a third one (line 9, Pseudocode 1). There
are a number of DE variants to be utilized, each one using
a particular strategy for generation of trial solutions. Every
generated trial solution will compete with its parent, and the
former will replace the latter if a better score is obtained (lines
10–12, Pseudocode 1).

At each iteration t of SaEvO, every solution xi of the
population � is considered for possible replacement by a
trial solution xtrial. As in GAs, the strategy for generation
of trial solutions in DE is based on the application of both
the differential (i.e., mutation) and the recombination (i.e.,
crossover) operators. Only one strategy is usually adopted
when using DE, and the selection of the more suitable one will
depend on the particular optimization problem being faced.
Among all available strategies for solution generation, we
used the rand/1/bin scheme also adopted in [28] because
of its good performance facing other optimization problems.
Specifically, the SolutionGeneration procedure is accordingly
detailed in Pseudocode 2.

As said, each generation strategy concerns both the dif-
ferential and the recombination operations, and they can be
implemented as follows.

Differential operation: First, for a given solution xi,
a differential solution vector zi (noted as xtrial in lines
4 and 6, Pseudocode 2) is generated using the following
equation:

zd
i = xd

r1
+ �F

i · (xd
r2

− xd
r3

) ∀d ∈ {1, . . . , D = 7} (4)

where r1, r2, and r3 are three randomly generated integers
with uniform distribution and mutually different (line 8, Pseu-
docode 1), and the mutation factor �F

i ∈ (0, 1] (also named
F in the literature) that controls the amplification of the
difference between two solutions.

Recombination operation: Subsequently, in order
to increase the diversity of the new trial solution xtrial,
recombination is applied by replacing (according to the
recombination rate �CR

i ∈ (0, 1], also named CR in the
literature) certain randomly selected parameters (noted as
xjrand and jrand ∈ {1, . . . , D}) by the corresponding parameters
of the previously generated differential solution zi (noted as
xtrial in Pseudocode 2).

In addition, our novel design of SaEvO extends the ca-
pabilities of former self-adaptive approaches by adopting an

optimization scheme based on MAs, thus incorporating an LS
component (noted LocalSearch(·) in line 27, Pseudocode 1)
for improvement or refinement of problem solutions. In recent
contributions, the synergy between global and local search pro-
cedures of MAs has proven to be a more robust and accurate
approach for facing optimization problems such as RIR [19],
[29]. As shown in lines 21–36 in Pseudocode 1, the application
of the LS procedure at iteration t is carried out to a selected
RIR solution by means of a probabilistic decision. As proposed
in [46], we fixed an LS application probability ρ = 0.0625 as
a suitable trade-off between intensification and diversification
of the global and local search phases. Successful results were
also reported in [29] when tackling RIR problems using this
criterion. Lines 22–25 in Pseudocode 1 show how the parent
solution xi is selected for improvement by means of adopting
the probabilistic rule 1 − ρ, thus paying more attention to
improve the best solution found so far. Otherwise, a different
solution is randomly chosen from the evolved set of parent
solutions of DE. Then, the LS output solution, xls, will be
considered for replacement of either the parent xi or the best
xbest solutions in the case of the former will improve any of
the latter two (lines 28–35, Pseudocode 1).

Our specific design of the LS procedure is based on
VNS [16]. The basic idea of the VNS algorithm is a systematic
change of the neighborhood of the current solution following
a LS fashion (i.e., jumps to a new candidate solution if and
only if there is an improvement). Similarly to DE, VNS is
easy to implement and requires few control parameters. In
particular, only the step size parameter is needed to be tuned
in our design of VNS.

Pseudocode 3 details the description of the VNS-based LS
procedure used in stage1 of SaEvO (line 27, Pseudocode 1).
As shown in lines 37–42, the local optimizer will iterate for
either a fixed number of evaluations #evals = D · (2 · D)

1
2 or

until getting stuck at a local optimum (i.e., no improvement of
the current solution xls). In case the LS procedure is successful
(i.e., the new trial solution xtemp improves the current best xls)
when #evals evaluations are reached, a new LS phase is carried
out and the number of evaluations is accordingly increased
(line 38, Pseudocode 3) in order to promote intensification to
achieve accurate RIR results.

The core of the VNS-based LS procedure is sketched in
lines 12–36. Essentially, the search procedure systematically
changes to the next neighborhood structure, noted K (K ∈
{1, . . . , Kmax), when the current solution xls′ is not improved
(line 22, Pseudocode 3); otherwise, the search will continue
at the first neighborhood structure K = 1 in case of suc-
cess. Specifically, using different neighborhood structure sizes
means that different K real-valued parameters of the current
solution xls′ will be randomly selected (line 13, Pseudocode 3).
As shown in lines 17 and 19 in Pseudocode 3, each of
the K solution parameters is systematically changed, namely
shaking [16], based on using the specific value of the step size
control parameter �λ

i related to the ith parent solution selected,
xi. Next, L different shaking operations are performed and L

new surrounding solutions xls′ are generated from the current
neighborhood structure, K. The best of these new solutions is
accordingly selected. Notice how the extent of search space
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Pseudocode 3 The VNS algorithm. Both LB(xi) and UB(xi) refer to
the lower and upper bounds of the ith real-valued solution parameter
(i ∈ {1, . . . , D}), respectively

Begin LocalSearch

1 Kmax ← D

2 Stop ← false

3 #evals ← D · (2 · D)
1
2

4 xls ← xtemp ← xi

5 L ← 1
�λ
i

6 Do
7 K ← j ← 1
8 Do
9 h ← 1
10 improved ← false

11 xls′ ← xls

12 While (h ≤ L And j ≤ #evals And Not improved) Do
13 Randomly select m1 �= m2 . . . �= mK (md ∈ {1, . . . , D}
14 For k ← 1 to K Do
15 ωmk ← �λ

i · [UB(xmk ) − LB(xmk )]
16 If (U(0, 1] < 0.5) Then
17 x

mk

ls′ ← x
mk

ls
+ U(ωmk · (h − 1), ωmk · h]

18 Else
19 x

mk

ls′ ← x
mk

ls
− U(ωmk · (h − 1), ωmk · h]

20 End-If
21 End-For
22 If (F (xls′ ) < F (xls)) Then
23 improved ← true

24 xls ← xls′
25 Else
26 xls′ ← xls

27 End-If
28 h ← h + 1
29 j ← j + 1
30 End-While
31 If (Not improved) Then
32 K ← Modulus(K + 1, Kmax) + 1
33 Else
34 K ← 1
35 End-If
36 While (j < #evals)

37 If (F (xls) < F (xtemp)) Then
38 #evals ← #evals + 1

3 · #evals

39 xtemp ← xls

40 Else
41 Stop ← true

42 End-If
43 While (Not Stop)
44 Return xtemp

End LocalSearch

considered in each shaking operation is increasingly widened
from L = 1 to 1

�λ
i

different gaps. Then, the success of the
LS procedure clearly depends on the latter control parameter,
and it is necessary to provide a suitable value along the
optimization process.

As stated in Pseudocode 2, each parent solution xi of the
population � is linked to a 3-D vector �i ∈ � that stores
a candidate value for each of the three control parameters of
both the global and the LS procedures, i.e., {�F ,�CR} and {�λ},
respectively. The next section is devoted to describing how
such control parameters are adaptively tuned in stage2 of the
proposed optimization framework (see Fig. 4).

Pseudocode 4 The TuneControlParameters procedure

Begin TuneControlParameters

1 SortPopulation(aff�) (�t)
2 Build the new population of antibodies ϒt+1 by replacing

the last γ percent of antibodies in ϒt with the (best) first
γ percent of control parameters in �t

3 Hypermutation (�t+1)
4 ϕ1 ← 1
5 For i ← 2 to 2 · l Do
6 ϕi ← ϕi−1 + iβ

7 End-For
8 For i ← 1 to 2 · l Do
9 ϕi ← ϕi

ϕ2·l
10 End-For
11 For i ← 1 to l Do
12 If (U[0, 1] ≤ 
) Then
13 k ← 1
14 While (k < 2 · l And ϕk < U[0, 1]) Do
15 k ← k + 1
16 End-While
17 �i ∈ �t+1 ← �k ∈ ϒt+1
18 End-If
19 End-For
20 Return

End TuneControlParameters

B. Stage2: Searching for the Control Parameters

The clonal selection (CS) principle of immune systems
(IS) has been used as inspiration for the development of a
new class of EAs, named AIS [17]. AIS have been success-
fully applied in different pattern matching and optimization
problems.

The CS algorithm is primarily focused on mimicking the
CS principle that is composed of the following mechanisms:
clonal selection, clonal expansion, and affinity maturation via
somatic hypermutation. At each iteration, the IS develops a
memory from the previous attack of antigens by means of
the generation of more adapted antibodies with the aim of
achieving a more effective immune response. This natural
reactive mechanism is because of the latter ones having a
higher affinity for the antigens each iteration.

Each 3-D member �i = 〈�F , �CR, �λ〉 (i = {1, . . . , l}) of the
initial populations of both the antigens � = {�1, . . . , �l} and
the antibodies ϒ = {�1, . . . , �k=2·l} is randomly generated (line
2, Pseudocode 1), using a Gaussian distribution N(0, 1) and
a uniform distribution U[0, 1] for the parameters {�F , �CR}
within (0, 1] and [0.1, 0.25] for {�λ}, respectively. At each
iteration t, the affinity score is computed in stage1 (lines 11,
14, and 29 in Pseudocode 1) each time a new and improved
trial solution is found; otherwise, the corresponding antigen
�i ∈ � will be updated by a 0 value. Thus, higher values of
affinity mean the CS principle implemented in stage2 obtained
a better immune response by means of matching more adapted
control parameters, which will support stage1 for achieving
high-quality RIR solutions. Pseudocode 4 describes the AIS-
based stage2.

At each iteration t of SaEvO, the population of antigens
is increasingly sorted (line 1, Pseudocode 4) according to
the affinity scores previously computed in stage1. The clonal
mechanism (line 2, Pseudocode 4) will promote spreading of
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a greater amount of antibodies for acting against those most
ranked antigens, i.e., those control parameters �i achieving ac-
curate RIR results. Specifically, clonal reproduction considers
retaining the first best γ percent (usually, γ is fixed to 20)
of antigens in �t for selection to the subsequent population
�t+1. Next, the hypermutation procedure (line 3, Pseudocode
4) randomly generates the next population of antigens �t+1

using a Gaussian distribution N(0, 1). The aim of the latter is
injecting diversity in the optimization process of this stage. Fi-
nally, the clonal selection procedure (lines 11–19, Pseudocode
4) follows a probabilistic scheme: in case U[0, 1] < 
, the IS
memory is used in order to improve the immune response
and best ranked antibodies in ϒt+1 are more likely to be
selected for inclusion in the next population of antigens �t+1.
Otherwise, a previously generated antigen �i ∈ �t+1 in the
hypermutation step is considered instead. In Pseudocode 4,
lines 4–10 establish the (increasing) importance of antibodies
in ϒt+1 (previously arranged in lines 1 and 2, Pseudocode
4). Then, the TuneControlParameters(·,·) procedure will return
more adapted control parameters (�t+1) to be considered in the
next iteration t + 1 of SaEvO.

A preliminary experiment was carried out, aimed at analyz-
ing the robustness of SaEvO using different values of the two
AIS parameters, 
 and β. As expected, we obtained the same
results as those reported in [28] and [47], in which an AIS was
also applied for tackling two different real-world optimization
problems. Both the AIS-based stage2 and the whole proposed
framework (SaEvO) achieved significant stable optimization
outcomes with respect to the latter two control parameters for
all the RIR problem instances considered in this paper. Among
all the existing EAs, the latter interesting feature was our main
motivation for using AIS in stage2. Specifically, we used the
same values in [28]: 
 = 0.25 and β = 0.8.
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SANTAMARÍA et al.: SELF-ADAPTIVE EVOLUTION 557

[35] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., vol. 4. Nov. 1995, pp. 1942–1948.

[36] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[37] Z. Zhang, “Iterative point matching for registration of freeform curves
and surfaces,” Int. J. Comput. Vision, vol. 13, no. 2, pp. 119–152, 1994.

[38] J. Brest and M. Maucec, “Self-adaptive differential evolution algorithm
using population size reduction and three strategies,” Soft Comput., vol.
15, no. 11, pp. 2157–2174, 2011.

[39] Y. Liu, “Improving ICP with easy implementation for free form surface
matching,” Pattern Recognit., vol. 37, no. 2, pp. 211–226, 2004.

[40] S. Garcı́a, D. Molina, M. Lozano, and F. Herrera, “A study on the use of
non-parametric tests for analyzing the evolutionary algorithms behavior:
A case study on the CEC2005 special session on real parameter
optimization,” J. Heuristics, vol. 15, no. 6, pp. 617–644, 2009.

[41] L. Silva, O. R. P. Bellon, and K. L. Boyer, “Multiview range image
registration using the surface interpenetration measure,” Image Vision
Comput., vol. 25, no. 1, pp. 114–125, 2007.

[42] P. Cignoni, M. Corsini, and G. Ranzuglia, “MeshLab: An open-source
3-D mesh processing system,” ERCIM News, vol. 73, pp. 45–46, Apr.
2008.

[43] K. Woldemariam and G. Yen, “Vaccine-enhanced artificial immune
system for multimodal function optimization,” IEEE Trans. Syst., Man,
Cybern. B, vol. 40, no. 1, pp. 218–228, Feb. 2010.

[44] S. Zhao, P. Suganthan, and S. Das, “Self-adaptive differential evolution
with multi-trajectory search for large-scale optimization,” Soft Comput.,
vol. 15, no. 11, pp. 2175–2185, 2011.

[45] J. Brest, A. Zamuda, B. Boskovic, S. Greiner, M. Maucec, and V. Zumer,
“Self-adaptive differential evolution with SQP local search,” in Proc. 3rd
Int. Conf. Bioinspired Optimization Methods Their Applicat., 2008, pp.
59–69.

[46] W. E. Hart, “Adaptive global optimization with local search,” Ph.D.
dissertation, Dept. Comput. Sci. Eng., Univ. California, San Diego, 1994.

[47] K. K. Delibasis, P. A. Asvestas, and G. K. Matsopoulos, “Automatic
point correspondence using an artificial immune system optimization
technique for medical image registration,” Comput. Med. Imaging
Graph., vol. 35, no. 1, pp. 31–41, Jan. 2011.
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