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Abstract: Recently, many approaches to model regulatory networks
have been proposed in the systems biology domain. However, the
task is far from being solved. In this paper, we propose an Answer
Set Programming (ASP)-based approach to model interaction networks.
We build a general ASP framework that describes the network semantics
and allows modelling specific networks with little effort. ASP provides
a rich and flexible toolbox that allows expanding the framework with
desired features. In this paper, we tune our framework to mimic Boolean
network behaviour and apply it to model the Budding Yeast and Fission
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Yeast cell cycle networks. The obtained steady states of these networks
correspond to those of the Boolean networks.
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1 Introduction

Recent advances in molecular biology have led to a vast increase in experimental
biological information. Integrating this information into a coherent model is an
important task of systems biology. Nowadays, mathematical and computer science
formalisms are widely adopted in this research domain to facilitate the modelling
process.

The existing approaches (see, e.g., de Jong, 2002; Fisher and Henzinger, 2007,
for good overviews) can roughly be divided into two groups: quantitative and
qualitative ones. Typical quantitative models are built using differential equations.
Such models require specific mathematical skills and a lot of experimental data
to build, such as the concentration of different proteins over time, making their
construction costly and time-consuming.

Qualitative models are used to analyse the system dynamics when there is
a lack of experimental data, even though this has an influence on the model
precision. However, it turns out that significant simplifications made in qualitative
models, such as discrete timing and the absence of concentration dynamics,
still allow one to model the behaviour of a system correctly. Discrete models
are one of the cornerstones of computer science, thus, many attempts were made
to adopt already developed techniques to the bioinformatics domain. Among
them, discrete dynamical networks based on Boolean networks are one of the
best-established qualitative modelling methods that are widely used by biologists to
model protein regulatory networks (see, e.g., Albert, 2004; Davidich and Bornholdt,
2008; Mendoza et al., 1999). The nodes of a Boolean network represent protein
molecules and the directed edges represent interactions. Edges can be typed to
represent different kinds of interactions, such as inhibition and activation. For
example, in Figure 1(a), proteins a and b activate each other. When at least
one of the proteins is active at the initial state, the network settles in the state
{act(a), act(b)}, i.e., both proteins will eventually become active.

Figure 1 Examples of Boolean networks
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While liked for their simplicity, dynamical networks have the disadvantage of not
being self-descriptive, i.e., they are built under some background assumptions that
are not explicitly stated in the network itself. Furthermore, as will be explained in
Section 2.2, their use requires the development of specific algorithms to retrieve the
steady states of the network (see e.g., Garg et al., 2008), and different algorithms
can cause different execution flows.

Moreover, dynamical networks provide little support for reasoning about
network behaviour. As it was argued in Tran (2006), reasoning can leverage
a biologist’s experience and simplify tasks of model analysis and observation
assimilation.
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In this paper, we propose to represent gene and protein regulatory networks by
answer set programs. Example 1 introduces our idea and illustrates the notation we
will use throughout the paper.

Example 1: Program P;, consisting of the rules G1-G6 and S1-S6, models the
network in Figure 1(a). Rule labels, preceding the rules and separated from them
by a colon “’, are introduced to refer to a particular rule as well as to distinguish
general rules from specific ones. The specific rules or S-rules describe the structure
of a particular network, in this case S1-S4, and initial conditions, in this case
S5 and S6. The general rules or G-rules describe the semantics of the network,
1.e., what ‘activates’ or ‘inhibits’ means in the context of our network. We refer to
Section 3 for more details.

G1 :time(0..2). S1 : protein(a).
G2:act(Y, T+ 1) < act(X,T),activates(X,Y,T). S2 : protein(b).
G3:inh(Y, T+ 1) < act(X,T),inhibits(X,Y,T). S3: activates(a,b,T).
G4 : —act(X,T),inh(X,T). S4 : activates(b,a,T).
G5 :act(X, T+ 1) < act(X,T),not inh(X,T + 1). S5 : act(a,0).

G6 :inh(X, T + 1) « inh(X,T),not act(X, T + 1). S6 : inh(b,0).

7a7

As we will explain, the answer set of P is {act(a,0),inh(b,0),act(a,1),
act(b,1), act(a,2), act(b, 2), act(a, 3), act(b, 3) }. Here, the predicate act(a,0) means
that protein a is active at time 0, and correspondingly, inh(b,0) means that protein
b is inhibited at time 0. In this answer set, there is no difference between the states
at time steps 1 and 2, as both proteins remain active. Hence, we conclude that,
under the given initial conditions, the steady state of the system is {act(a), act(b)}.
As we will see later, the actual answer set of the program includes more information
that is not relevant to our task. In our answer set representation, we omit this
information for the sake of conciseness.

Note that in principle only network, specific rules such as rules S1-S6 need to be
redefined for a given regulatory network, whereas the other rules model general
biological properties. This makes the representation of such networks as answer set
programs intuitively simple, while at the same time the ASP machinery becomes
available to analyse and predict the behaviour of the described network at hand.

One of the main advantages of representing gene and protein regulatory
networks by answer set programs is that all background information can be
expressed explicitly in the program itself. This allows normalising differently
expressed networks with one standard representation, thus avoiding the ambiguity
of different descriptions. Furthermore, the use of ASP eliminates the need for
specific network execution algorithms to retrieve the steady states of the networks.
In fact, another main advantage of using ASP is that all supporting tools such as
solvers and grounders are readily available. For the results described in this paper
we used the clingo solver described in Gebser et al. (2007).

Our work is not the first attempt to use ASP to model biological networks.
In Baral et al. (2004), Dworschak et al. (2008) and Tran (2006), the authors
propose to use ASP-based action languages to model, query or plan the execution
of biological systems. Our approach, however, is different from theirs in several
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aspects. First of all, we do not use action languages; instead we propose a
framework that models Boolean network semantics. Second, as we show in Section
6, our approach is less verbose because only the structure of the network needs
to be described, and the semantics of the interactions is already defined in the
framework itself.

This work is an extension of the study stated in Fayruzov et al. (2009) in which
we proposed to model regulatory networks as answer set programs for the first
time. Here, we provide a formal description of the approach we have developed
and prove that this approach obtains correct results. Furthermore, we provide more
detailed explanations of the framework along with additional examples. Moreover,
we add an extra protein regulatory network example to showcase that our approach
is easily scalable to other networks and present a modelling software tool that
facilitates the modelling process for a biologist.

The remainder of this paper is structured as follows. We begin by recalling
the necessary preliminaries about ASP and Boolean networks in Section 2.
In Section 3, we explain in detail how to describe a regulatory network as an
answer set program: we develop a framework of general rules, the so-called G-rules,
that describe general Boolean network semantics, and we give examples of specific
rules, the so-called S-rules, that allow the biologist to describe a specific network
under study. Furthermore, in Section 4 we explain an efficient algorithm to solve
the resulting answer set program, i.e., to find the steady states of the regulatory
network while in Section 5 we describe a tool that we developed to facilitate the
modelling process. In Section 6, we explain the relationship of our approach to the
existing work and finally we conclude in Section 7.

2 Preliminaries

2.1 Answer Set Programming

Answer Set Programming (Gelfond and Lifschitz, 1988) is a declarative formalism
that allows expressing relations between truth values of propositions with rules
of the form « <« (. Such a rule intuitively states that whenever [ is true,
proposition « should be true as well. The basic building blocks of answer set
programs are constants, denoted by lower-case strings (e.g., a, b), that represent the
entities; variables, denoted by upper-case strings (e.g., X,Y’) that are substituted
by constants during the program grounding stage and predicates (e.g., protein(a),
activates(a, X)) that represent properties of, or relations between entities.

ASP allows two types of negation: classical negation denoted by —, and
negation-as-failure (naf) denoted by not. For instance, rule G5 from Example 1
uses naf, stating that if protein X is active at time 7" and there is no evidence that
X becomes inhibited at time T + 1, then X should still be active at time 7 + 1.
On the other hand, if we would change naf by classical negation in G5 the rule will
state that if protein X is active at time 7" and there is an evidence that X does not
become inhibited at time T + 1, then X should still be active at time T + 1.

In general, a rule is of the form

Lo+ Ly...Ly,not Lyt ...0n0t Ly, (1)
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in which Lg, Ly ... L, are literals. A literal is a constant, variable or predicate
that can be preceded with —. An expression of the form not L is referred to as a
naf-literal, whereas an expression of the form L is referred to as a positive literal.
Expression of the form pred/3 denotes the arity of a predicate without an explicit
reference to its arguments. Given a rule r of the form (1):

e The left-hand side of the rule is called the head, and defined as
head(r) = {Lo}

e The right-hand side of the rule is called the body, and defined as
body(r) = {L1,... , Lym,not Lyy1,... ,not L,}

e The set of all positive literals in the body of the rule is defined as
pos(r) ={Li,... , Ly}

e The set of all literals in the body of the rule preceded with not is defined as
neg(r) = {Lm+1,.-. ,Ln}

e The set of all literals is defined as lit(r) = head(r) U pos(r) U neg(r).

There exist two special kinds of rules: constraints and facts. A constraint is a rule
with an empty head, such as rule G4 from Example 1. A rule with an empty body
is called a fact. We usually write these as ‘a.” instead of ‘a <.”. Rules S1-S6 are
examples of facts.

Definition 1 (Answer set program): A program P composed of rules of the form
(1) is called an answer set program. Similar to the definitions on the rule level, the
following shorthand notations are defined for a program:

pos(P) = Upeppos(r)  lit(P) = Upeplit(r)
neg(P) = Upepneg(r) head(P) = Uyephead(r)

At solving time, all variables in a rule r are instantiated with all possible constants.
This process is called grounding. An answer set program that contains only
grounded rules is called a grounded program.

Example 2: Consider the following program

somePred(p).

protein(a).

protein(b).

act(Y) + activates(X,Y), protein(X), protein(Y).

The grounding of this program will be as follows

somePred(p).

protein(a).

protein(b).

act(a) + activates(a, a), protein(a), protein(a).
act(a) + activates(b, a), protein(b), protein(a).
act(b) + activates(a, b), protein(a), protein(b).
act(b) + activates(b,b), protein(b), protein(b).
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Note that constant p was not associated with variables X and Y, because we put
a restriction on the variables that they should occur as an argument of the protein
predicate. This predicate is called a domain predicate, and variables X and Y are
said to be domain restricted.

To define what it means for a program to be solved, we recall the concepts of
consistency, interpretation and satisfiability. A set of positive grounded literals S
is said to be consistent if it does not contain the literals ¢ and —a together. An
interpretation of a grounded program P is any consistent subset I C pos(P).

Definition 2 (Satisfiability): An interpretation [ is said to satisfy a grounded rule
with a non-empty head like (1), if {Ly ... Ly, } € T and {Ly11... Lyt NI = 0 imply
that Lo € I. When the head is empty, interpretation [ is said to satisfy the rule if
{Lle} g I or {Lm+1Ln}ﬂI?£®

In other words, to satisfy a rule with a non-empty head, an interpretation / should
contain the head when all positive literals and none of the literals with naf-prefix in
the rule body are contained in /. Otherwise, if the head is empty, the interpretation
should break the body conditions, i.e., either it does not contain some of the
positive literals or it contains literals that have a naf-prefix in the body of the rule.

Definition 3 (Minimal model): Any interpretation [ that satisfies all rules of a
program P is called a model of P. A model I is called a minimal model of P iff
there is no model K such that K C I.

On the basis of this notion of a model, we can define answer sets. First, we
consider the case of naf-free programs and then we proceed to programs containing
negation-as-failure. First of all, for a program P without negation-as-failure, an
answer set of P is a minimal model of P.

Example 3: Consider the program consisting only of a rule p < ¢q. The possible
models of this program are {p,q}, {p} and (. Indeed, if ¢ is in the model, then
p should be in the model because of the satisfiability definition; if there is no
information on ¢, then we can make any conclusion about p, which means that p
can be present or absent. The minimal model of the program is (), hence the unique
answer set of this program is (.

The concept of an answer set is extended for programs containing negation-as-
failure as follows. Suppose that an interpretation [ is a model of a program P (with
negation-as-failure), and our hypothesis is that [ is an answer set of P. Then we
first transform P into a naf-free program P! with respect to the hypothesis I and
solve this program as explained earlier. More formally,

Definition 4 (Gelfond-Lifschitz transformation) (Gelfond and Lifschitz, 1988):

Let P be a ground answer set program. For an interpretation I, let P! be the
program called a reduct program obtained from P by deleting (1) all rules that
contain a naf-literal not L with L € I and (2) all the naf-literals from the bodies of
the remaining rules.



216 T. Fayruzov et al.

Definition 5 (Answer set): Given a program P, any interpretation I that is a
minimal model of the reduct program P’ built from P is an answer set of the
original program P.

Example 4: A program with negation-as-failure can have more than one answer
set. Suppose that we have one seat and two persons p and ¢, and we want to assign
the seat to a person. We can model this by the following program P

seat(p) + not seat(q).
seat(q) < not seat(p).

It has two answer sets S; = {seat(p)} and Sz = {seat(q)}. Indeed, by applying the
Gelfond-Lifschitz transformation we can obtain the reduct program P°' consisting
of the only rule seat(p) <. The second rule is removed in the first step of the
transformation, and the body of the first rule is removed in the second step. P is a
naf-free program, and has a unique answer set {seat(p)}. This answer set coincides
with our hypothesis S;, which means that it is an answer set of the initial program
P. One can verify in a similar way that S is an answer set too.

We denote the set of all answer sets of a program P as AS(P). Two programs
P, and P, are said to be equivalent if they produce the same answer sets, i.e., if
AS(Py) = AS(P,).

2.2 Dynamical networks

A dynamical network of protein interactions, such as a Boolean network, captures
interactions between proteins in the form of a directed graph G = (V, E) with V
a set of nodes and E a set of edges. The nodes represent proteins whereas the
edges represent interactions between proteins. Pointed edges are used to represent
activation and blunt edges are used to represent inhibition. At any given time,
a protein or node is in one of the two states: either it is active, denoted by 1, or it
is inhibited, denoted by 0. The state of a protein interaction network at any given
time is defined in terms of the states of its nodes.

Definition 6 (Network state): Let G = (V,E) be a graph representing a protein
interaction network. Then, a mapping S : V' — {0, 1}, which maps every protein in
V to a protein state in {0, 1}, is called a network state. We use S to denote the
set of all possible network states of a protein interaction network represented by a
graph G.

Every node has input nodes that are determined by the inbound edges, and output
nodes that are determined by the outbound edges of the node. For example in
Figure 1(a), node b is at the same time an input and output node for node
a. For every node in the network, a deterministic transition function can be
defined that determines the next state of the node depending on the node’s inputs.
The network can switch from one state to another by applying such update
functions on its nodes. The update can occur synchronously (all elements are
updated simultaneously) or asynchronously (one or several nodes are updated at
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once). In this paper, we only consider synchronous updates, which allows us to
consider a transition function acting on the network as a whole.

Definition 7 (Transition function): Let G = (V,E) be a graph representing a
protein interaction network. Then, a mapping f:Sg — Sg, which maps every
network state to a network state is called a transition function of G.

For notational convenience, we use f(*)(S) to denote the state that is obtained after
applying transition function f to an initial state S € S¢ k times, e.g. f(0(S) =S,

FO8) = f(S), FP(S) = f(£(9)), ete.

Definition 8 (Trajectory): Let G = (V,E) be a graph representing a protein
interaction network, f be a transition function of G, and k£ > 1, then a sequence
[S, £(S),..., f*)(S)] with S € S¢ is called a trajectory of the network.

Definition 9 (Steady state, steady cycle): A state S of a network is called a steady
state w.r.t. a transition function f iff S = f(S). A trajectory [f(™)(S),..., f™M(S)]
with m < n is called a steady cycle iff f(™)(S) = f(")(S).

Note that once a steady state or cycle has been reached there is no point to
calculate the trajectory further, because no new states can be obtained due to the
deterministic nature of the transition function.

Example 5: Let us consider the network in Figure 1(a). The mapping for the
network states is given in Table 1(a), and the transition function is defined in
Table 1(b). Let us define the initial state of the network as Sj, then the next
state is f(S1) = S3. To obtain the following state, we apply the transition function
once again: f(f(S1)) = f(S3) = S3. The state does not change on this step, which
means that we encountered a steady state. The trajectory we have computed is

T: [SlvsBa 53]

Table 1 The network states and the transition function for the network in Figure 1(a)

A set of trajectories that reach the same steady state or cycle is called a basin of
attraction. For example, let us consider trajectory 7' = [So, S3, S3] of the network
from Figure 1(a). The set of trajectories {7,7'} is a basin of attraction for the
state S3 of the network in Figure 1(a).
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3 Building a network model in ASP

In this section, we set up the framework for describing gene and protein regulatory
networks as answer set programs. We begin with a detailed explanation of the
S-rules and G-rules of P; in Example 1. Next, we deal with issues such as conflicts
and self-degradation that do not occur in the network of Figure 1(a) but might
manifest themselves in other interaction networks.

3.1 Describing entities and their influences

The first step in describing a protein network is to introduce the network structure,
cfr. rules S1-S6 in Example 1. Rules S1 and S2 define the proteins in the network,
rules S5 and S6 define the initial state of these proteins, while rules S3 and S4
describe activation interactions between proteins. We add the extra time parameter
T in these predicates to be able to model the dynamical network structure. Some
interactions can be affected by external factors and be present or absent at different
time points.

By themselves, these rules (facts) do not model anything yet; although they
define the connection between proteins, they do not describe the influence of these
connections on the proteins at different time steps. To this end, we introduce the
G-rules. First of all, rule G1 is merely a shorthand for

time(0). time(1). time(2)

to introduce time steps into the program. Rules G2 and G3 define the actual
semantics of the activation and inhibition concepts. Rule G4 of program P; is a
constraint that expresses that a protein cannot be active and inhibited at the same
time. Indeed, recall that to satisfy a constraint, at least one of the body conditions
needs to be broken. Rules G5 and G6 are inertia rules that express what happens to
a protein when there is no environmental influence: at the next time step, a protein
stays in the same state unless its state was changed.

Once we have described the problem using ASP, the grounder is used to
substitute variables with all possible constants. The activation rule G2, for example,
says that protein Y will be active at time step 7'+ 1 if protein X is active and
there is an activating connection between X and Y at the previous time step. When
grounded, this rule will result in the following rules:

act(b, 1) < act(a,0), activates(a, b, 0).
act(b,2) < act(a, 1), activates(a, b, 1).
act(b, 3) + act(a, 2), activates(a, b, 2).
act(b, 1) < act(b,0), activates(b, b, 0).

In the programs presented in this paper, we omit domain predicates for the
sake of brevity. In a real program, every rule that contains variable 7" would
additionally contain the predicate time(T'), and every rule that contains at least one
of the variables X,Y and Z would contain a corresponding predicate protein(X),
protein(Y') and protein(Z) in its body.
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After the grounding has been done, the task of an ASP solver is to find an
answer set of the ground program. In our application scenario, an answer set
contains a sequence of protein states for each time point (see e.g., Example 1).
Therefore, we can retrieve the steady state of the network w.r.t the transition
function implicitly defined by G-rules by looking at the protein states in an answer
set at each time step. When the protein states in two consequent time steps do not
change, a steady state has been reached. In Example 1, we reach the steady state
at time point 1, because the protein states do not change after this point. Note
that, even though the last time step in rule Gl in Example 1 is 2, the network
evolution is computed up to time step 3 because the heads of the rules of program
P, contain T + 1.

Example 6: If we change rule S4 in program P; to inhibits(b,a,T)., we obtain
the network from Figure 1(b). The answer set of the resulting program P, is
{act(a,0),inh(b,0),act(a, 1), act(b,1), inh(a,2),act(b,2),inh(a,3),act(b,3)} (here
and in the rest of the paper we omit from answer sets the predicates that are
not essential for trajectory, e.g., protein(a), activates(a,b,0), etc). Intuitively, this
answer set can be explained as follows: all facts are in the answer set by definition,
thus the predicates from rules S1-S6 are in the answer set; rules S3 and S5 trigger
a ground version of rule G2 that causes the presence of act(b,1); rule G5 causes
the presence of predicate act(a,1); the fact act(b, 1) that is already in the answer
set together with the new version of rule S4 triggers a ground version of rule G3,
resulting in inh(a,2), and rules G5 and G6 result in the other predicates that are
in the answer set.

From the above, we conclude that the steady state of this network is

{inh(a),act(b)}.

3.2 Resolving conflicts

Rules G2-G4 might fail to work for more complex regulatory networks. Here
we explain why they should be replaced with more refined rules, as well as
supplemented by supporting rules.

Example 7: Let us consider the network in Figure 1(c). This network can be
presented as follows

S1:protein(a). S4: activates(c,b,T). S6: act(a,0).
S2 : protein(b). S5 :inhibits(a,b,T). ST :act(b,0).
S3 : protein(c). S8 :act(c,0).
The program consisting of these facts S1-S8 together with the rules G1-G6
from Example 1 does not have an answer set under initial conditions S6-S8.
Indeed, S5 together with S6 trigger rule G3, thus forcing inh(b,1) to be in the
answer set. On the other hand, S4 together with S8 trigger rule G2, thus pushing
act(b,1) to the answer set. However, due to constraint G4 both these predicates
cannot be in the same answer set, thus the program does not have an answer set
at all.
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To resolve this conflict, we adopt a solution used in Davidich and Bornholdt
(2008): if there are more incoming activation links than inhibition links, then
the protein is active; if there are more inhibition links, then the protein is
inhibited; if their number is equal, then the protein keeps the previous state.
To implement this, we need to adjust the constraint as well as the activation
and inhibition rules. The superscript in the rule labels here denotes the version
of the rules; the compound numeration denotes the supporting rules for the
main rule.

G2' s act(Y, T + 1) < act(X, T), activates(X,Y,T),not conflict(Y,T).

G2.1:act(Y, T+ 1) < conflict(Y,T),#_act(Y, A, T),#_inh(Y,1,T),
A—-1>0.

G3' 1 inh(Y,T 4 1) + act(X, T), inhibits(X,Y,T),not conflict(Y,T).

G3.1:inh(Y,T + 1) + conflict(Y,T), #_act(Y, A, T), #_inh(Y,I,T),
I-A>0.

G4' : conflict(Y,T) « activates(X,Y,T), inhibits(Z,Y,T),
act(X,T),act(Z,T).

The rules G2! and G3! say that if there is no conflict, then the old definitions
work, but if there is a conflict (the body of rule G4' is satisfied), then we count
the number of activation and inhibition links for the conflicting instance and make
the decision based on this count (rules G2.1 and G3.1). The integrity constraint G4
we had before is now transformed to the definition of conflict (rule G4%). It fires
only if there are inh/3 and act/3 links on the protein and both can be executed
at the current time point. The definition of the #_act/3 and #_inh/3 predicates is
omitted here, but can be found in Fayruzov (2009).

This set-up already allows modelling fairly complex interaction networks,
such as the Budding Yeast network described in Li et al. (2004). We describe the
model of this network in Fayruzov (2009).

3.3 Sensitivity thresholds

Some features still cannot be expressed in this framework. For example in reality,
proteins can become active when their inhibitors are not active, even without an
external activation input. Another example is that some proteins can have a certain
‘tolerance’ to an inhibition/activation influence. For example, a protein can become
inhibited only if two or more proteins that suppress it are active, otherwise it is
not affected. To address these issues, we introduce the notion of inhibition and
activation thresholds. Let us return to Figure 1(c). Under the current definitions,
protein b does not change its state when both a and ¢ are active, i.e., if b is active
it remains active. Imagine now that we want to modify the behaviour of b to
change its sensitivity to the activating or inhibiting influence such that it requires
less effort (less activation/inhibition inputs) to change the state of the protein. This
requirement can be implemented in the system by introducing inhibition/activation
thresholds.
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G22 : act(Y,T + 1) + act(X, T), activates(X,Y, T), not conflict(Y,T),
not mod_act_th(Y).
G2.1' s act(Y, T + 1) < conflict(Y,T),act_th(Y,Th),
4 act(Y, A, T),#_inh(Y,1,T),A— I > Th.
G2.2:act(Y, T+ 1) < act_th(Y,Th),Th # 0,#_act(Y, A, T),
#_inh(Y,I,T),A—I > Th.
G3? 1 inh(Y, T + 1) < act(X, T), inhibits(X,Y,T),not conflict(Y,T),
not mod_inh_th(Y').
G3.1% :inh(Y, T + 1) « conflict(Y,T),inh_th(Y,Th), #_act(Y, A, T),
# inh(Y,1,T),] — A > Th.
G3.2 - inh(Y, T + 1) < inh_th(Y,Th), Th # 0,4_act(Y, A, T),
#_inh(Y,I,T),I — A > Th.
GT: act_th(X,0) < not mod_act_th(X).
G7.1 : mod_act_th(X) + act_th(X,Th),Th # 0.
G8:inh_th(X,0) + not mod_inh_th(X).
G8.1 : mod_inh_th(X) < inh_th(X,Th),Th # 0.

Rules G4', G5 and G6 are omitted because they do not change. We replace
G2! and G3' by G22 and G32, respectively, so that now they take into account
the possible presence of a threshold. Conflict resolving rules G2.1 and G3.1 are
changed in the same manner, and a comparison of the inhibition and activation
influence is made against the threshold now. If there is no conflict, but an activation
or inhibition threshold is imposed, we follow rules G2.2 and G3.2. Rules G7 and
G8 set the activation and inhibition threshold of every protein to 0 in case it
was not set explicitly by a special S-rule (G7.1 and G8.1). If the threshold values
are not modified, the G-rules described earlier will lead to the same answer sets
as ones in Section 3.2. Having both inhibiting and activating thresholds instead
of one threshold is not redundant, since these thresholds characterise not the
‘on/off’ level of the protein, but rather an effort that is needed to change its state.
The thresholds can be viewed as tolerance degrees of a protein to a corresponding
input. Positive values make the protein more tolerant and negative ones make it
less tolerant. The default value can be altered by a specific rule as illustrated in
Example 9.

Example 8: Let P; be the answer set program consisting of general rules G1, G22,
G2.1%, G2.2, G32, G3.1%, G3.2, G41, G35, G6, G7, G7.1, G8, G8.1 and the specific
rules from Example 7. The activation and inhibition thresholds of these proteins
are not explicitly defined; hence, they are automatically set to the default value.
The answer set of this program is {act(a,0),act(b,0),act(c,0)act(a, 1), act(b, 1),
act(c, 1), act(a, 2), act(b, 2), act(c, 2), act(a, 3), act(b, 3), act(c,3)}. The state of
protein b does not change over time since its inhibiting and activating inputs are
equal, and its thresholds for activation and inhibition are both 0. From the answer
set, we retrieve that the steady state is {act(a), act(b), act(c)}.
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Example 9: For the network in Figure 1(c), let us explicitly set the inhibition
threshold of b to —1 to indicate that this protein is susceptible to
inhibition. In other words, let P, be the answer set program containing
all the rules from P; as well as the additional S9: inh_th(b,-1). The
answer set of this program is {act(a,0),act(b,0),act(c,0),act(a,1),inh(b,1),
act(e, 1), act(a, 2),inh(b,2), act(c,2), act(a, 3), inh(b, 3), act(c, 3)} The steady state
in this case is {act(a), inh(b), act(c)}.

The phenomena of self-activation and self-degradation can also be modelled by
adjusting activation and inhibition thresholds. Self-activation/degradation means
that a protein is able to change its state when no external influence is applied. Let
us consider the following example:

Example 10: Let Py be the answer set program containing all the rules from the
program from Example 9, but we replace rules S6-S8 with the following:

S6 :inh(a,0).
ST :inh(b,0).
S8 :inh(c,0).

to indicate that all proteins in Figure 1(c) are initially inhibited. Furthermore,
we add the additional rule S9: act_th(b,-1). to indicate that b is susceptible to
activation. According to rule G2.2, in this case protein b activates itself when
no inhibition influence is applied, i.e., self-activation takes place. The answer
set of program Py is {inh(a,0),inh(b,0),inh(c,0),inh(a,1),act(b,1),inh(c,1),
inh(a,2),act(b,2),inh(c,2),inh(a, 3), act(b,3),inh(c,3)}. The steady state in this
case is {inh(a), act(b),inh(c)}.

3.4 Starting conditions

By writing S-rules, a user can model various networks and observe their behaviour
under certain initial conditions. This requires the user to consequently set various
initial protein activation combinations and analyse the results of each execution. On
large networks with tens of proteins, the number of different possible combinations
is very high, which makes this task very tiresome. To automate this process, we
introduce two additional general rules that deal with different initial condition
combinations:

G9 : act(X,0) « not inh(X,0).
G10 : inh(X,0) < not act(X,0).

These rules force the solver to make a choice for each protein: either it is
active at the initial time point, or inhibited. In this way, different answer sets
are automatically generated for each possible combination of active and inhibited
proteins, which decreases the need for manual input of the user drastically.
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4 Efficient network modelling

Each network has 2V possible states, where N is the number of proteins in the
network. As one can see for instance in Example 6, in the answer set representation,
the state of a protein corresponds to a predicate in the set, and a network
state corresponds to a subset that contains all protein states for one timepoint.
For example, {act(a,1),act(b,1)} is a part of the answer set for the program in
Example 6 that describes the state of the network at timepoint 1. There are two
problems associated with the approach as proposed in Section 3. First of all, when
computing a trajectory for a given state it is impossible to estimate how many time
steps are needed (the upper time bound). Trajectories within too short time intervals
may not reach the steady state, whereas too long intervals increase computational
expenses. For instance, if we limit the upper time bound in Example 6 by 1 (set
rule G1 as time(0..1).) the steady state will not be present in the answer set. On
the other hand, if we set the upper time bound to, e.g., 5, we will find a steady
state but at the same time we will compute 3 extra states that do not contain any
additional information about the network behaviour.

Another problem, which follows from the first one, is that we cannot compute
attraction basins efficiently. We can iterate over all possible initial states, but for
every initial state we need to adjust the time interval every time, which, again,
makes the whole process extremely computationally inefficient.

In Fayruzov et al. (2010), we introduced a method to efficiently solve
time-dependent answer set programs like the ones resulting from the approach
proposed in Section 3. To this end, we introduced the notion of Markovian
programs and provided a temporal algorithm to solve these programs efficiently
without a reference to a specific upper time bound.

A time-dependent predicate is a predicate whose last argument represents time.
Examples of time-dependent predicates in the framework proposed in Section 3
are activates, inhibits, active, inhibited, conflict, #_act and # inh. A Markovian
program is an answer set program that satisfies the following condition: every rule
with a time-dependent predicate in its head that depends on time 7" contains only
time-dependent predicates that depend on 7" or 7' — 1 in its body. In other words,
the next state of the model depends only on the previous state or is determined with
respect to other components in the current state of the model. Note that there are
no specific constraints on rules that do not contain time-dependent predicates. It is
easy to see that the framework we have built in Section 3 conforms to the definition
of a Markovian program, which means that we can use the temporal algorithm
described in Fayruzov et al. (2010) to analyse the behaviour of the models built in
our framework.

The main idea behind the temporal algorithm is that instead of solving the
answer set program for some long interval {0,...,tmax} We consecutively solve
smaller programs for intervals {0,1}, {1,2},..., {tmax — 1, tmax}, Which can be
done more efficiently. In Fayruzov et al. (2010), we have shown that by doing
so we obtain the same answer sets as by solving the initial program for interval
{0, ..., tmax}- Moreover, we can stop the solving process at every moment, as soon
as we encounter a steady state or cycle. For more details of how these smaller
programs are defined, and for a more complete description of the algorithm, we
refer to Fayruzov et al. (2010).
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5 Modelling software

In Section 3, we explained how to model a regulatory network with ASP. However,
the more practical question is: how can a biologist benefit from this framework?
Does she or he need to know anything about ASP in order to use it?

To facilitate the use of the framework by biologists, we have developed a

Java-based GUI tool. This tool provides an interactive interface and performs
translations to ASP and back automatically. No intervention from the user’s side
is required in this translation process. This means that the tool can be used by a
biologist with no background knowledge in ASP. In fact, it is possible to use the
tool while remaining completely unaware of the underlying ASP model, i.e., while
operating only at a conceptual level of genes, proteins and interactions.
The interactive interface consists of two tabs. The first tab, presented in Figure 2,
is used to build graphical network models and to set node properties. This figure
shows the Budding Yeast network, with nodes representing proteins and edges
representing interactions between them. There are two possible ways to build a
network. The first option is interactive editing in which a user can add or delete
nodes and edges, indicate self-activation and self-inhibition, edit node names and
define activation and inhibition thresholds. The initial state of the network can also
be set by switching the nodes on/off. The second option is to write a network in
ASP and load it from a file; it can still be edited interactively after that.

Figure 2 Graphical user interface with the Budding Yeast network model: (a) positive
feedback loop; (b) negative feedback loop and (c) conflict (see online version
for colours)
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After building a network, a user can start the modelling process, which again can
be performed in two scenarios. The first scenario is to build complete network state
transition charts at once. Here, every possible state of the network is analysed and
its steady states or cycles are computed. Another scenario is when a user wants to
know the trajectory of the system from one particular state. In this case, the user
can change the default state of the network by switching certain proteins on/off.
Then, only the attractor for this state is computed.

During this phase, our application translates the graph built by the user to
an ASP program, and uses clingo to ground and solve the program. The answer
sets are translated back into a graphical representation as shown in Figure 3. This
tab represents network trajectories, and in the case of the first scenario it can
show all attraction basins together or separately. The graph shown in the figure
was computed within the first scenario and represents one attraction basin of the
Budding Yeast network. Here, a node represents a network state, and an edge
between nodes represents a transition of the network from one state to another.
The steady state of the network (marked by a colour node on the graph, the bottom
one in this case) and the size of the attraction basin is shown in the top-left corner.
Each node has a corresponding network state printed next to it.

Figure 3 An attraction basin of the Budding Yeast networks (see online version
for colours)
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We have applied our tool to model the Budding Yeast network presented
in Li et al. (2004) and the Fission Yeast network described in Davidich and
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Bornholdt (2008). The details and complete answer set programs can be found in
the technical report (Fayruzov, 2009). More information on the application of our
approach to the Fission Yeast network is also available in Fayruzov et al. (2009).

6 Related work

A detailed analysis of related approaches to model biological networks is provided
in Tran (2006). Many of the approaches proposed to model regulatory networks
such as Peleg et al. (2002), Ciocchetta and Hillston (2008) and Regev et al.
(2001) follow a simulation—perturbation strategy, i.e. to analyse the behaviour
of a system, the biologist changes the input and observes the changes in the
output. Even though the structure of the system is known, it still works as a
blackbox in the sense that the solution cannot be explained. As a result, many
computationally expensive experiments may be needed to explain some properties
of the model. ASP-based methods aim to overcome this limitation as they provide
methods for system analysis such as prediction and planning as it is argued in
Tran (2000).

To the best of our knowledge, all existing approaches that adopt ASP
to model biological network behaviour are based on the concept of action
languages. An action language is a high-level language with a simple intuitive
syntax that allows describing the states of the world and effects of actions on
these states (Gelfond and Lifschitz, 1992). The statements and queries in this
language are then translated to standard ASP syntax and executed to find the
answer sets.

The first attempt to model biological processes by means of ASP was made
by Baral et al. (2004) where they present a BioSigNet-RR system that allows
representing and reasoning about signal networks. In this paper, they define an
action language that allows expressing the structure of a signal network (they use
the NFkB network as an example) as well as the means to query the network
(does protein a bind to b?), plan the execution (what sequence of actions should
be taken to make a active?) and explain the results (given that a is active at
a certain point, what was the initial state?). This work was further extended by
Dworschak et al. (2008) who introduced several extra concepts such as allowance
and noconcurrency, as well as a special language for biological modelling called
Crarp.

It is important to emphasise the difference between the above-described
action-language-based approaches and the approach we propose here. The former
requires that for each model the whole program is built from scratch and every
interaction is defined as its own rule. In other words, the framework describes
only the description language, and the biologist has to describe every interaction
separately. In our setting, we go one step further, and provide the biologist with
a background theory based on a Boolean network model semantics. For example,
let us consider an example where protein b is activated by a and ¢ and inhibited
by d. In the default Boolean network semantics, if the number of activating links is
higher than the number of inhibition links, then protein b would be activated; if it is
lower, it would be inhibited; if it is equal, the state remains unchanged. To express
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this with action languages, we need 2 actions: activating_prot_b, inhibiting_prot_b,
and the following set of statements:

activating_prot_b causes b
inhibiting_prot_b causes—b
a,—d causes activation_prot_b
c,d causes activation_prot_b
a,c causes activation_prot_b

d,—a,—c causes inhibiting_prot_b

The number of required rules grows combinatorially with the number of
interactions.

In the framework that we propose, only factual input is needed from the
biologist: activates(a,b), activates(c,b) and inhibits(d,b). The Boolean network
semantics implemented in the framework will do all other necessary inference.
Moreover, as ASP offers non-monotonic inference, the existing semantics can be
extended to handle exceptions when needed, making the framework scalable.

Another interesting application of ASP in the biological domain was recently
proposed in Schaub and Thiele (2009). Here, the authors use ASP to expand
metabolic networks and check if the network can be completed to reach a certain
state. In contrast to the previously described approaches, this method does not aim
to study system evolution over time.

Finally, in Section 4 we proposed a method to efficiently solve ASP programs
built to model network behaviour. However, this is not the only way to deal with
the problem. Gebser et al. (2008) described another theoretical formalism, which
is called incremental program solving, and provided a description of a specially
constructed solver iclingo that allows solving incremental programs. Although this
approach is proposed in a general setting, it fits well to the network modelling
problem. While duplicating the functionality of our framework, the incremental
program approach has an important limitation. A network can potentially converge
to different steady states from one starting state, while an incremental program
would terminate after finding the first steady state and disregard the other ones. The
temporal algorithm, on the other hand, allows us to compute all possible steady
states.

7 Conclusions and future work

In this paper, we have proposed a modelling and simulation tool for gene and
protein regulatory networks based on ASP. In the user interface, a biologist
can build a network of proteins and specify the properties of the elements in a
straightforward and intuitive way. Use of the tool does not require any formal
logic knowledge from the biologist, who can operate with predefined concepts to
build a model. At the same time, this approach has the advantage of being more
expressive compared with Boolean networks, since all implicit assumptions and
background knowledge can explicitly be described in the body of the program.
Moreover, due to the non-monotonic nature of ASP, the framework is scalable,
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i.e., it can be extended with non-typical cases that are not considered in the current
version.

The constructed network is then automatically translated to an answer set
program that can be solved with any of the off-the-shelf solvers to produce steady
states of the network. In this paper we proposed a theoretically justified algorithm
that allows a more efficient network computation.

One of the limitations, inherited from Boolean networks, is that every action
should happen within one time step. In other words, it is impossible to model slow
and fast interaction; everything is aligned to the same speed. Another problem is
that in the current version of the system only synchronous execution is supported.
We plan to address these issues in the near future.
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