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A Proposal for Improving the Accuracy of Linguistic Modeling

Oscar Corddén and Francisco Herrera

Abstract—in this paper, we proposeaccurate linguistic modeling  problem and will condition the kind of FRBS selected to gen-
a methodology to design linguistic models that are accurate to a erate it. When the accuracy is the main modeling requirement,
high degree and may be suitably interpreted. This approach will other kinds of FRBS's, such as Takagi-Sugeno—Kang (TSK) [7]
be based on two main assumptions related to the interpolative rea- - . .
soning developed by fuzzy rule-based systems: a small change in9' apprOX|ma_te Mamdanl-type one_s (11, (8], 9], c_an be consid-
the structure of the linguistic model based on allowing the linguistic €red but the final model obtained will have associated the draw-
rule to have two consequents associated and a different way to ob- back of an important loss in its descriptive power.
tain the knowledge base based on generating a preliminary fuzzy  |n this paper, we introduc@ccurate linguistic modeling
rule set composed of a large number of rules and then selecting the (ALM), a linguistic modeling approach which will allow us to

subset of them best cooperating. Moreover, we will introduce two . h £l L del ith 0SNG |
variants of an automatic design method for these kinds of linguistic IMProve the accuracy of linguistic models without losing its

models based on two well-known inductive fuzzy rule generation interpretability to a high degree. This approach will be based
processes and a genetic process for selecting rules. The accuracyn two main assumptions relating to the interpolative reasoning
of the proposed methods will be compared with other linguistic developed by FRBS's:

modeling techniques with different characteristics when solving of . . I
three different applications. + a small change in the structure of the linguistic model to

Index Terms—Dbescriptive Mamdani-type fuzzy rule-based sys- locally improve the model accuracy. the coexistence of

tems, double-consequent linguistic rules, genetic algorithms, in- Single and double-consequent rules in the K_Bi
ductive fuzzy rule generation, linguistic modeling, rule selection. « a different way to derive the KB to globally improve the

rule cooperation based on the generation of a preliminary
fuzzy rule set with a large number of single- and double-
consequent rules and the selection of the subset of them

OWADAYS, one of the most important applications of best cooperating.

fuzzy rule-based systems (FRBS's3istem modelirig], To do so, this paper is set up as follows. In Section Il, the
[2], which in this field may be considered as an approach usedjgsis of ALM will be introduced. In Section 11, two variants of
model a system making use of a descriptive language basedgn,tomatic design method to generate linguistic models of this
fuzzy logic with fuzzy predicates [3]. When a descriptive Mamye,y kind based on two well-known inductive fuzzy rule gener-
dani-type FRBS [4]—a kind of fuzzy system whose knowledggion processes and a genetic process for selecting rules will be
base (KB) is comprised by fuzzy rules composed of Ii”QUiStgwoposed. In Section IV, the behavior of both processes will be
variables [5] that take values in a term set with a real-worlgha\y7ed for solving of three different applications, the fuzzy
meaning—is considered to compose the model structure, figqeling of a three-dimensional (3-D) function, the problem of
linguistic model so obtained consists of a set of linguistic d@ie taste evaluation and an electrical engineering distribution
scriptions regarding the behavior of the system being modelgghhjem. The results obtained will be compared with other pro-

[3]. Hence, the research field develop.ing ;ygtem mogieling Wigsses with different characteristics. Finally, in Section V, some
these kinds of FRBS’s is usually callédguistic modeling concluding remarks will be pointed out.

One of the problems associated with linguistic modeling is
its lack of accuracy in some cases. As Zadeh pointed out in his
principle of incompatibility{6], “as the complexity of a systemy; - A| M: A N APPROACH TOGENERATE ACCURATE LINGUISTIC
increases, our ability to make precise and yet significant state- MODELS
ments about its behavior diminishes.” Thus, although the use
of descriptive Mamdani-type FRBS'’s allows us to deal with the One of the most interesting features of an FRBS is the inter-
modeling of systems in which a certain degree of imprecisigrolative reasoning it develops. This characteristic plays a key
is involved, building a linguistic model clearly interpretable byole in the high performance of FRBS’s and is a consequence of
human beings, the accuracy obtained is not always as goodtescooperation among the fuzzy rules composing theA&Hs
desired and we prefer a loss in the model description ability kmown, the output obtained from an FRBS is not usually due to
obtain an improvement in the overall model performance. Tlhaesingle fuzzy rule but to the cooperative action of several fuzzy
choice between how interpretable and how accurate the moddes that have been fired because they match the input to the
must be usually depends on the user’s needs for the spedfystem to some degree.

ALM will deal with the way in which the linguistic model
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A. New Descriptive Knowledge Base Structure to Locally only in those cases in which it is really necessary to improve the
Improve the Model Accuracy model accuracy in this subspace and not in all the possible ones

1) Problems of the Usual Linguistic Modeling Struc@s in[11]. There_fore, t_he existence of a primary and gsecor)dary
ture: The KB structure usually employed in the field Offuz;y rule base is avoided, and thg number of rules in the single
linguistic modeling is composed of a collection of MamKB is decreased, that makes ea5|ertp mterpref[the model. _
dani-type linguistic rules with the form Thes_e double-cpnsequent rules will locally improve the in-
terpolative reasoning performed by the model allowing a shift
of the main labels making the final output of the rule lie in
an intermediate zone between the two consequent fuzzy sets.
. . . L . Hence, this rule structure allows us to avoid three of the four
with =, - -, z, andy being the input linguistic variables andy, )0 of classical linguistic rules analyzed in the previous

lt_he o.u;c_pult gnf,freszpf';lvely;t tand Wu‘:’ilv '.ir']vaimBi :Jelng subsection: the inflexibility derived from the rigid partitioning
Inguistic labels from diterent term Sets with Tuzzy Sets assocl ,q input and output spaces, the difficulty to scale to com-

atgd defmmg(‘;helr mggnmg. Elesve fuzdzy setshare dtefl'necéobn Ex spaces without increasing the fuzzy partition granularity to
UNIVErSes OT diSCoUrsey, -~ -, Un, v and are characterzed by, igh gegree and the limitation on the size of the RB.

their membership functions On the other hand, we should note that this operation mode
does not constitute an inconsistency. Let us suppose that a spe-
pa;(ps): Uy(V)—= 10,1, j=1,---,n. cific combination of antecedentsz{ is 4; and... and z,,
is A,,,” has two different consequents associatBgd:and B-.

This KB structure has the drawback of its lack of accuracphe resulting double-consequent rule may be linguistically in-
when working with very complex systems. This fact is due t@rpreted as follows:

some problems relating to the fuzzy rule structure considered,
which are a consequence of the inflexibility of the concept of IF 21 is A; and - - - andz,, is A,
linguistic variable. A brief summary of these problems is shown THEN y is betweenB; andB,.

as follows [9], [10].

* Lack of flexibility due to the rigid partitioning of the input  Finally, two other advantages of our approach with respect to
and output spaces. Nozakiet al.is that we do not need the existence of a previous

* The homogeneous partitioning of these spaces when thek fuzzy model to generate the linguistic KB and that we do
input-output mapping varies in complexity within thenot need a specific inference system to perform reasoning with
space is inefficient and does not scale to high-dimensiongk system. The only restriction in our case is to use any defuzzi-

R;: IFxyisA;; and--- andzx,, is Ay, THEN yis B;

spaces. _ - fication method working in mode B-FITA (first infer, then ag-
* Dependent input variables are very hard to partition.  gregate)—a strategy based on first defuzzifying the fuzzy output
* Limitation on the size of the rule base (RB). inferred from each individual rule and then aggregating the char-

Due to these reasons, we consider obtaining a new more flexteristic values so obtained— and considering the matching
ible KB structure that allows us to improve the accuracy of lirdegree of the rules fired (for a review of different defuzzifica-
guistic models without losing their interpretability. tion methods working in this way, refer to [12]. This is due to

2) Considering Double-Consequent Rules in the Knowledtfee fact thatach double-consequent rule is considered as two
Base: In [11], an attempt was made to put this idea into effecimple rules with the same antecedent and different consequent
first by designing a fuzzy model based on simplified TSK-typt perform the inference procedsdence, the consideration of a
rules, i.e., rules with a single point in the consequent, and thdefuzzification method working in mode A-FATI (first aggre-
transforming it into a linguistic model, which has to be as agate, then infer)—first aggregating the fuzzy outputs inferred
curate as the former. To do so, they introduce a secondary KB m each rule (usually by means of the maximum or the min-
in addition to the usual KB, and propose an inference systémum) into a single global fuzzy set and then defuzzifying it
capable of obtaining an output result from the combined actiom obtain the final output— or of a defuzzification strategy not
of both fuzzy rule bases. Hence, what the system really dammsidering the matching will cancel the influence of one of the
is to allow a specific combination of antecedents to have tvtao-rule consequents.
different consequents associated, the first and second in imporh this contribution, we will use the Minimum t-norm in the
tance, thus avoiding some of the said problems associated torthle of conjunctive and implication operator and ttenter of
linguistic rule structure. On the one hand, they achieve that theavity weighted by the matching degif@2] as defuzzification
maximum number of rules is not prefixed by the granularity cftrategy. In the latter, the final system outpyitis computed by
the fuzzy partitions associated to the input variables and, on theans of the expression:
other hand, the inflexibility derived from the use of these kinds

of partitions is avoided. The fact that the result of the inference . E;‘F:l hi -y

on the two resulting rules is an interpolation of their individual Yo = ET h;

outputs allows us to obtain a more accurate model without losing =t

its interpretability. with y; being the center of gravity of the fuzzy set infered from

Taking this idea as a starting point, we allow a specific connule R; in the KB andh; being the matching degree between the
bination of antecedents to have two consequents associatedslygtem input and the antecedentff
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B. New Way to Generate Fuzzy Rules to Globally Improve  In addition, it is possible that the KB obtained presents less
the Cooperation Among Them rules than KB’s generated from other methods thanks to two

aspects: both the existence of two rules (a double-consequent

) The sec_ond a_spectdeals with the cooperation among the “ﬂﬂé) in the same input subspace and the generation of neighbor
inthe KB, i.e., with the overlapped space zones that are COVelgeh \ith better cooperation may mean that many of the rules

by different Iing_uistic ruI'es. As is known, the generation of thfn the KB are unnecessary to give the final system response.
best fuzzy rule in each input subspace does not ensure that tg| ihese assumptions will be corroborated in view of the ex-
FRBS will perform well due to the fact that the rules composingeriments developed in Section IV.

the KB may not cooperate suitably. Many times, the accuracy
of the FRBS may be improved if other rules different than the
primary ones are generated in some subspaces because they co- [ll. Two SPECIFICALM PROCESSES
operate in a better way with their neighbor rules.
Hence, ALM will consider an operation mode based on ge

erating a preliminary fuzzy rule set composed of a large numb . )
of rulegs \?vhich wiII)E)e sirilgle— or doublg—consequentgones gmethod. It will present two variants, both of them based on mod-

; : o jcations made on two inductive linguistic rule generation pro-
pending on the complexity of the specific fuzzy subspace —h8 :
rules will be generated in the subspaces where the system is?‘ﬁﬁsgs' tthe Wef“:ﬁ aTdh!\gen%?I SI mgth?_? (\év_l\lflénlgefthod) [1|3] and
defined. Then, all these fuzzy rules will be treated as single—co?\rl adaption ot the Ishibuctet al. simpiihe uzzy ruie

sequent ones (each double-consequent rule will be broken d eration method [14] to allow it to generate linguistic rules

into two simple rules) and the subset of them with best coopé‘\“—t fuzzy consequen?s_ (I-method) (other two generation pro-
ation level will be selected in order to compose the final REEsses for fuzzy classification rules and TSK fuzzy rules based
the one proposed in that paper are to be found in [15] and

Thus, this stage will specify which double-consequent rules A tivel
the preliminary rule set will remain in the final RB; that is, ], respectively).

those fuzzy subspaces whose two simple rules associated ha\}g both cases, the modification imposed by ALM involves

been finally selected and also will remove those single-cons,ciae—neratlng the two most important consequents for each combi-

quent rules that are unnecessary due to the cooperative actiofagon of antecedents (instead of only'the most |mportapt one,
neighbor rules on their input subspace as usual). We should remark that an input subspace will only
The said operation mode gives more freedom to the RB geng?‘-\’e two consequents associated (and, thus, a double-conse-

ation process since the rule selection process can make the tg%?m rule) when there is a need to do so, i.e., when there is any

RB present single-consequent rules not being the best one a on it allowing two different consequents to be generated.

their fuzzy input subspaces in order to improve the cooperationCO" the other hand, the rule selection process will be based on

of the global KB a genetic algorithm (GA) [17], although any other optimization
' technigue can be used to develop this task.

Both processes will be described in depth in the next two
C. Some Important Remarks About ALM subsections.

_In this section, two specific ALM processes will be intro-
Lgced, only differing on the composition of the rule generation

On the one hand, in view of the assumptions presented inthe )
previous subsections, any ALM process will be composed of tAe Linguistic Rule Generation Method
two following methods: Our linguistic rule generation method is based on
1) linguistic rule generation methgavhich will generate a the existence of a set of input-output data (examples)
preliminary rule set where single and double-consequebt = {c1,---, e, -, ¢}, a = (af,---, 24, 4", repre-
linguistic rules will coexist according to the problemsenting the behavior of the system being modeled, and of a
complexity; previous definition of the data base (DB) composed of the
2) rule selection processhat will select the subset of rulesfuzzy partitions considered for the input and output variables.
cooperating best from the preliminary fuzzy rule set gerd-hese fuzzy partitions may be obtained from the expert infor-
erated in the previous step. mation (if it is availaible) or by a normalization process, where
On the other hand, we may draw two very important corgach variable domain is divided into a number of equal or
clusions from the operation mode of ALM. First, it is possibléinequal partitions, a kind of membership function is selected
that, although the preliminary fuzzy rule set generated has sof#td a fuzzy set is assigned to each subspace. In this paper,
double-consequent rules, the final KB does not contain any ri#& Will work with symmetrical fuzzy partitions of triangular
of this kind after the selection process. In this case, the linguisiiembership functions [see Fig. 1].
model obtained has taken advantage of the way in which theAS mentioned, this method will present two variants, the
fuzzy rules has been generated because many rule subsets With-based ALM and the I-based ALM. The following subsec-
different cooperation levels have been analyzed. This is whyfi@ns introduce them both.
will present a KB composed of rules cooperating well, afactthat1) The WM-based ALM Generation Methoth this first
may not happen in other inductive design methods —such as §#e€. the generation of the RB is put into effect by means of
Wang and Mendel’s rule generation method [13], that will b€ following steps.
considered in next sections—which are based on directly gen-1) Generate a preliminary linguistic rule sethis set will
erating the best consequent for each fuzzy input subspace. be formed by the rule best covering each example
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2) if |E'| # 0, i.e., if there is any data on it, then the fol-

lowing holds.
a) For each linguistic label; in the output variable
term set{B,---, B}, build a rule using the cur-

rent antecedent and; in the consequent. Compute
the covering value of each linguistic rule so gen-
erated,R; € R° = {Ry,---, R;}, over each ex-
amplee; € F’ as follows:

R; :IF 1 is A; and- - -andx,, is A, THEN y is B;
Rj(el) =T (uAl (‘Tll)v Ty, A, ('T’il)7 UB; (yl))

with 7 = 1,..-,¢ andT being a t-norm. In this
paper, we will work with the minimum.
b) Selecttheéwo rulesfrom ¢ with the highest values
in therule selection functior$(-) considered.
¢) Add this double-consequent rule to the RB.
Otherwise, do not generate rules in that input fuzzy sub-
space.
Different choices may be considered for the rule selection
function, S. In this paper, we work with the following ones.
* Maximum covering over the example setThis index
computes theaccumulated covering degree of the rule
over all the examples in the example &kt

Fig. 1. Graphic representation of the fuzzy partition considered.

contained inE. The structure of these rules is obtained
by setting each one of the rule variables to the linguistic
label associated to the fuzzy set best covering every
example component.

Give an importance degree to each rulet &; : IF x4 is

Aq and...andz, is A, THENy is B be the linguistic
rule generated from the example Its importance degree
will be obtained as follows:

2)

pa, (zh) - ne(h).

3) Obtain afinal RB from the preliminary fuzzy rule sehis

step is the only one that is different from the original WM
method. While in that method the rule with the highest
importance degree is the only one chosen for each com-
bination of antecedents, in our case, we allow two dif-

S1(R;) = > Rj(e).

e CE/

Maximum covering of the example best coveredThe
value associated to each rule is ésvering degree over

ferent rules, the two most important ones in each input
subspace (if they exist), to form part of the RB composing
a double-consequent rule. Of course, a combination of
antecedents may have no rule associated (if there are no

examples in that input subspace) or only one rule (ifall | Average of covering degreesTheaverage of the two pre-
the examples in that subspace generated the same rule). .o covering degreés calculated. To do so, th index

_Therfforz'dthe geger";‘]“‘)” f}f r“'esb‘f’“h d°“b"|* consequent s ormalized (dividing it by the size dF’, |E']) to have
is only addressed when the problem complexity, repre- oy in thdo, 1] interval
sented by the example set, shows that it is necessary.

2eer Bile)

2) The I-Based ALM Generation Methodin [14], Ishibuchi

et alproposed an inductive method to design simplified TSK |EY|

FRBS'’s. The algorithm worked in a different way from the WM

method since all the examples located in each fuzzy input subWe should note that unlike the generation method introduced

space are considered to generate a single fuzzy rule for that soldhe previous section, in this case, it is very difficult for a fuzzy

space, its consequent obtained by averaging the outputs of theigespace to have a single linguistic rule associated. It may have

examples weighted by the matching degree of their inputs witlone (when there is no example located on it) or two rules as-

the rule antecedent. sociated (otherwise), due to the fact that each example is almost
We have developed two different modifications on the pr&ways covered by two different fuzzy sets because of the type

vious algorithm. First, it has been adapted to generate descapoutput fuzzy partition considered. Therefoifeis generation

tive Mamdani-type rules. Second, we have allowed the procggecess will always generate more (or, at least, the same) rules

to generate not only one but two different consequents wherihian the WM-based one

is necessary, the same as in the previous section. Thus, the gen-

eration method so obtained consists of the following stBps. B. Rule Selection Genetic Process

each multidimensional fuzzy input subspace obtained by comThe selection of the subset of linguistic rules best cooper-

bining the individual input variable subspaces using the “andating is a combinatorial optimization problem [3], [18]. Since

conjunction do the number of variables involved in it, i.e., the number of pre-
1) build the sett’ composed of the examples € £ that liminary rules, may be very large, we consider an approximate

are located in this subspace; algorithm to solve it—a GA [17].

the best covered example ki

S2(R;) = max R;(eq).

F,ZEE’

S3(R;) = - max R;(ep).

e, €F
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Our rule selection genetic process is based on a binary coded
GA in which the selection of the individuals is performed using
the stochastic universal sampling procedure together with an
elitist selection scheme and the generation of the offspring pop-
ulation is put into effect by using the classical binary multipoint
crossover (performed at two points) and uniform mutation op-
erators [19], [20].

The coding scheme generates fixed-length chromosomes.
Considering the single-consequent rules contained in the
linguistic rule set derived from the previous step counted from
1 tom, anm-bit stringC = (¢, -+, ¢n) represents a subset

of candidate rules to form the RB finally obtained as this stag:_e _ _ _ _
s ig. 2. Graphical representation of the function considered.
output B® such that

evaluation [11], [14], and a real-world Spanish electrical engi-
neering distribution problem [23]-[25]. In all three cases, we
will compare the accuracy of the linguistic models generated

The initial population is generated by introducing a chromqf m our . .
. . . processes with the ones designed by means of other
some representing the complete previously obtained rule Se?éthods: the one proposed by Nozakial. (NIT-method) in

I.e., with all¢; = 1. The remaining chromosomes are SGIeCte[@1] that has been analyzed in Section II-A.2, and the basic

at random. - .
As regards the fitness funtiafi(C;), it is based on a global WM-method and I-method ones. In addition, classical regres-
. sion techniques and neural models will be considered in the
error measure that determines the accuracy of the FRBS ep- : S
. . électrical distribution problem.
coded in the chromosome, which depends on the cooperation
level of the rules existing in the KB. We usually work with they Fuzzy Modeling of a 3-D Function
mean square error (SE), although other measures may be used. ) o
SE over a training data sé is represented by the following The expression of the seleqted function is shown as foIIows_,
expression: along with the universes of discourse considered for the vari-

ables [19]. It is a simple function presenting two discontinu-

If ¢; = 1thenR; € B’ elseR; & B®.

1 ities at the point40,0) and(1,1). Its representation is shown
F(C)) = 218 > (= S(eat))? in Fig. 2.
e €F
_ . _ F(xl,xg):10~M,
with S(ex') being the output value obtained from the FRBS 1 — 2x1%2 + T2
using the RB coded id’;, when the input variable values are z1,22 € [0,1], F(z1,z2) € [0, 10].
ext = (2%, 2L) andy! is the known desired value.

We should note that this basic rule selection genetic procesdn order to model this function, a training data set composed
can be extended in different ways: trying also to minimize tHff 674 pieces of data gmformly d|§tr|buted in the 3-D definition
number of rules in the selected RB by means of a weight&gace has been obtained experimentally. A test set composed
average [18] or a multi-objective GA [21], forcing this RB tg0f 67 examples has be_en randomly ger_le_rated to eval_uate _the
cover all the examples in the training set to a specific degrB&rformance of the design methods, avoiding any possible bias
[19] or considering a niching GA to perform a better search fi¢lated to the data in the training set. _
the multimodal space [22]. _The DB used for.a}ll design methods is co.nsut.utfad by three

For the sake of simplicity, none of this extensions will be coffimary fuzzy partitions formed byseven linguistic terms
sidered in this paper. Although better results could be obtaingh triangular-shaped fuzzy sets giving meaning to them
in other case, the implementation of the rule selection is not@ Shown in Fig. 1]. The linguistic term set considered is
key question in our methodology and, thus, we prefer not to ity B, NM, NS, ZE, PS, PM, PB}, standingN for nega-
clude additional experimentations related to this point. Mor&Ve, ZE for zero, P for positive, andS, M, and B for small,
over, we think that the criterion considered, the SE over a ddRgdium, and big, respectively. _
set, will be enough to obtain good results due to the fact that it™inally, the parameters considered for the rule selection ge-
is directly related to the accuracy of the linguistic model; that REtic process are: Number of generations: 500; Population size:
significantly affected by an excessive number of rules or by tifd: Crossover probability: 0.6; and Mutation probability: 0.1

possibility of non covering any of the training examples. ~ (Per individual). -~ _
The results obtained in the experiments developed are col-

lected in Table | where £ stands for the number of single-

consequent rules in the corresponding K&, and SE.;

for the values obtained in the SE measure computed over the
With the aim of analyzing the behavior of the proposed ALMraining and test data sets, respectively, and SF for the rule se-

processes, three different applications have been chosen:|dution function used in the I-method and I-based ALM gener-

fuzzy modeling of a 3-D function [19], the problem of rice tastation method. As may be observed, the results obtained by our

IV. EXAMPLES OF APPLICATION: EXPERIMENTS DEVELOPED
AND RESULTS OBTAINED
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TABLE |
RESULTS OBTAINED IN THE MODELING OF THE SELECTED FUNCTION

Generation Selection

Method #R SEtra S Etgt #R SEtra SEtst
NIT-method 98 0.175382 0.061249 - — —
WM-method 49 0.194386 0.044466 - — —
WM-based ALM 88 0.220062 0.146529 55 0.019083  0.026261
I-method (SF=51) 49 0.168582 0.076571 - — —
I-method (SF=S5) 49 0.194386 0.044466 - — —
I-method (SF=Sj3) 49 0.097398 0.043984 - — —

I-based ALM (SF=S;) 98 0.254952 0.189540 55 0.019083 0.022120
I-based ALM (SF=S,) 98 0.295414 0.218886 53  0.025444 - 0.030144
I-based ALM (SF=S3) 98 0.264324 0.184874 51  0.020137  0.025837

TABLE I
RESULTS OBTAINED IN THE RICE TASTE EVALUTION USINGTWO LABELS IN THE FUzzY PARTITION

Generation Selection

Method #R SEtra SEtst #R SEtra SEtst
NIT-method 64 0.00862 0.00985 - — —
WM-method 15 0.01328 0.01311 - — —
WM-based ALM 19.8 0.02192 0.02412 5 0.00341 0.00398
I-method (SF=35,) 32 0.02128 0.02126 - — —
I-method (SF=S5) 32 0.05220 0.05369 - — —
I-method (SF=S3) 32  0.00910 0.01012 - — —

I-based ALM (SF=S;) 64 0.02391 0.02628 8.5 0.00356  0.00508
I-based ALM (SF=S,) 64 0.02391 0.02628 8.6 0.00358  0.00509
Lbased ALM (SF=S;) 64 0.02391 0.02628 7.9 0.00359  0.00470

processes after each individual stage, generation and selectiofn this section we deal with obtaining several linguistic
have been included, and the best results are shown in boldfar@dels to solve the rice evaluation problem by considering the
In view of these results, we should underline the good petata set presented in [11]. This set is composed of 105 data
formance presented by both variants of our ALM process thatrays collecting subjective evaluations of the five input and
generate the most accurate models in the approximation of tree output variables, all of them normalized[in1] for the
training and test sets. Their behavior is also appropriate as same number of rice kinds.
gards the model complexity since our models presents only awith the aim of not biasing the learning, ten different parti-
few more rules than the ones generated from the WM-methtions of the data set have been randomly obtained, composed by
and the I-method. For example, by only adding eight new rul@s (30) pieces of data in the training (test) set, to generate ten
to the RB generated by means of the WM-method (and by figaguistic models in each experiment. We will use the same lin-
moving two), the best model is obtained by the I-based ALMuistic modeling processes considered in the previous section,
process (considering the rule selection functiaf with a sig- as well as the same parameter values in the rule selection ge-
nificantly higher accuracy than the latter one and with a venetic process.
small loss of interpretability (see both RB’s in Table IV). Fi- As was done in [11], a different number of linguistic labels
nally, all the ALM models are more accurate to a high degréms been considered for the fuzzy partitions (two and three tri-
than the NIT-method one, presenting much simpler KB's @ngular fuzzy sets). Higher granularities will not be considered

maximum of 55 rules against 98). since they cause the KB’s in the linguistic models obtained to
_ ) be excessively complex (to have many rules) and thus less in-
B. Rice Taste Evaluation terpretable.

Rice taste evaluation is usually put into effect by means of aThe results obtained are collected in Tables Il and Ill. The
sensory teswwhere a group of 24 experts givesaraluationof  values shown in columr8E,,,,, SE;:, and #2 have been com-
rice kinds according to five characteristifsvor, appearance puted as an average of the values obtained by the ten linguistic
taste stickinessandtoughnes$11], [14]. models generated in each case.

The modeling of this problem becomes very complex due to From an analysis of these results, we may see that all the
the large quantity of relevant variables and to the fact that ti¢M models clearly outperform again the remainder linguistic
problem-solving goal is not only to obtain an accurate modehodels in the two experiments developed. As regards the indi-
but also a user-interpretable model representing the nonlingatual results, the best ones correspond to the WM-based ALM
relationships existing in the problem as well as putting sonpeocess—which obtains very simple models with an average of
light on the reasoning process performed by the human expefite rules—when considering two labels and to the I-based one
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TABLE Il
RESULTS OBTAINED IN THE RICE TASTE EVALUTION USING THREE LABELS IN THE FUZzY PARTITION

Generation Selection

Method " #R SE;q SE.q #R SE¢r, SE;qs:
NIT-method 364.8 0.00251 0.00322 - —_ —_
WM-method 23 0.00333 0.00375 - — —
WM-based ALM 25.7 0.00595 0.00736 12.2 0.00185 0.00290
I-method (SF=S1) 1824 0.00390 0.00512 - — —
I-method (SF=S,) 182.4 0.00500 0.00468 - — —
I-method (SF=S3) 182.4 0.00328 0.00431 — —

I-based ALM (SF=S;) 364.8 0.00695 0.00634 146 0.00146  0.00289
I-based ALM (SF=S;) 364.8 0.00644 0.00602 150.3 0.00144 0.00344
I-based ALM (SF=S3) 364.8 0.00713 0.00726 136.2 0.00141 0.00275

TABLE IV TABLE V
RBS OF THELINGUISTIC MODELS OBTAINED FOR THE FUNCTION BY THE RBS OF THEBEST LINGUISTIC MODELS IN THE RICE PROBLEM GENERATED
WM-METHOD (TOP) AND |-BASED ALM PROCESS(BOTTOM) BY THE WM METHOD (ToP) AND WM-BASED ALM PROCESS

(BotTOM) USING 2 LABELS

T2

1:;3 gg xll\;[ 11:;; f’ﬁ 11:;2 1;1: ﬁlg Flavor | App. | Taste | Stick. | Tough. | Eval.
Ri: Good Good | Good Sticl Tender High
NM | PB | ZE | NS | NM| NM| NB | NB Re: —Good | Good | Good | Not ?tl Tender Hiﬁh
NS |PB [PS [ZE | NS | NM| NM | NB Rs: ~Good | Good | Good | Notst. | Tough | High
ZE | PB | PM | PS | ZE | NS | NM | NB Ry: Good | Good | Bad | Notst. | Tender | High
PS |PB [PM | PM | PS | ZE | NS | NB Rs: ~Good | Good | Bad | Sticky | Tender | High
PM | PB | PB | PM | PM|PS | ZE | NB Re: ~ Good | Good | Good | Sticky | Tough | High
PB |PB |PB | PB | PB | PB|{PB | NB Ry: ~Good Bad Bad | Not st. | Tough Low
Za Rg: _ Good | Good Bﬁ Not st. | Tough Low
& T Rg: . Bad Bad B Not st. | Tender Low
ot |NB|NM|NS|2ZE|PS|PM | B Rio: -~ Bad | Good | Good | Shcky | Tender | Tow
NB NB | NB | NB | NB | NB | NB Rii: _Good | Bad | Bad | Notst. | Tender | Low
NM|PB|ZE | NM| NM| NB | NB | NB Rys: ~ Bad Bad | Bad | Notst. | Tough | Low
NS NM Ri3: Good Bad Good | Not st. | Tender Low
NS [PB|[PS |ZE | NS | NM| NB | NB Rig: Bad Good | Good | Not st. | Tender | Low
PM NS | NM Ryy: Bad Good Bad | Not st. | Tender Low
ZE PB | PM | PS ZE | NS | NM | NB . _
PS | P | PM | PS5 | PS5 | ZE | NS | NB Flavor | App. | Taste | Stick. | Tough. | Eval.
PB | PM R1: Good | Good | Good | Sticky | Tender | High
PM | PB | PB PM I PM | PS ZE NB Ry Good Good Good Sticky Tough High
PE ) Ra3: Bad Good | Good | Not st. [ Tender High
PB | PB | PB | PB | PB | PB | PB Rq:  Good Bad Bad Not st. | Tender Low
Rs: Bad Bad Bad Not st. | Tough Low
Rs: Bad Good Bad Not st. | Tender Low

using the rule selection functiofl; when working with three
(although the number of rules is somewhat large, which al
makes better to choose the WM-based ALM model in order
improve the interpretability). Sometimes, there is a need to measure the amount of elec-
Even considering the generation of double-consequent rulaggity lines that an electric company owns. This measurement
the RB’s generated from the two ALM processes contain lesgy be useful for several aspects such us the estimation of the
rules than the ones obtained from the corresponding single-camintenance costs of the network, which was the main goal
sequent generation processes in all cases. Moreover, all of thefnthe problem presented here in Spain [23]-[25]. High and
present less rules than the NIT-method KB. Overall, our modetgedium voltage lines can be easily measured, but low voltage
are simpler and this makes them easier to be interpreted. line is contained in cities and villages and it would be very ex-
In fact, none of the 20 models generated from the WM-baspénsive to measure it. This kind of line used to be very convo-
ALM process presents double-consequent rules in their RBigted and, in some cases, one company may serve more than
This leads us to conclude that, as mentioned in Sections [11B 000 small nuclei.
and II-C, the operation mode based on generating a preliminaryT herefore, there is a need to find a relationship between some
fuzzy rule set with a large number of rules and selecting tloharacteristics of the population and the length of line installed
subset of them cooperating best allows us to obtain good resirts, making use of some known data, that may be employed to
in linguistic modeling. predict the real length of line in any other village. We will try to
As an example, Table V shows the composition of the RB’s gblve this problem by generating different kinds of models de-
the linguistic model with the best generalization level generatésrmining the unknown relationship. To do so, we were provided
from the WM-based ALM procesSE:,, = 0.00383,SE;,; = with the measured line length (output variable), and the number
0.00285) when considering 2 labels, and of the one generatetlinhabitants and the mean distance from the center of the town
from the WM method using the same data set as (#l},, = to the three furthest clients (input variables) in a sample of 495
0.014 70, SE; = 0.016 70). rural nuclei [23].

0 . . . T
% Electrical Engineering Distribution Problem
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TABLE VI
RESULTS OBTAINED IN THE ELECTRICAL APPLICATION CONSIDERING FIVE LABELS IN THE FUzZZY PARTITIONS

Generation Selection

Method #R SE;rq SE;s #R SFEire SEg
NIT-method 40 229104.8 206636.4 - — —
WM-method 13  298446.0 282058.1 - — —
WM-based ALM 23  263674.1 268679.9 13 178571.4 180847.8
I-method (SF=S;) 20 320443.5 282657.9 - — —
I-method (SF=5,) 20 310308.8 286775.1 - — —
I-method (SF=5Ss) 20 329726.2 306325.7 - — —_

I-based ALM (SF=5;) 40 283205.6 288685.8 23  186928.2  183504.6
I-based ALM (SF=5;) 40 2647184 262801.3 22 179383.2 181284.2
I-based ALM (SF=S3) 40 283205.6 288685.8 23 1869282 183504.6

TABLE VI
RESULTS OBTAINED IN THE ELECTRICAL APPLICATION CONSIDERING SEVEN LABELS IN THE FUZZY PARTITIONS

Generation Selection

Method #R SEtra SEtst #R SEtra SEt,gt
NIT-method 64 185383.1 1704804 - — —
WM-method 24 2226227 240018.2 - — -—
WM-based ALM 34 231174.2 260067.3 20  155866.3 178601.1
I-method (SF=51) 32 275870.0 269601.7 - —_ —
I-method (SF=S.) 32 239380.7 2761084 - — —_
I-method (SF=53) 32 267923.9 249523.8 -~ — —

I-based ALM (SF=S;) 64 219533.6 191484.0 34 1556116 2117246
I-based ALM (SF=S;) 64 214601.7 252990.3 38  166499.3  187903.8
I-based ALM (SF=S;) 64 208317.0 188929.1 35 154469.9 167061.3

To compare classical methods, linguistic modeling and neural TABLE VIII
modeling we have randomly divided the sample into two sets RB'S FROM THEWM-METHOD (TOP) AND WM-BASED ALM PROCESS
. L (BOTTOM) FOR THE ELECTRICAL APPLICATION (SEVEN LABELS)
comprising 396 and 99 samples, labeled training and test. The

SE is considered again to measure the accuracy of the different z2
models generated. 5 [ES T VS]] S ™M B T VB TEB

In this case, the linguistic variable fuzzy partitions are ES | ES | VS | VS | § VS | M
divided into five and seven fuzzy sets in the experiments VS | ES |VS | VS | B 5 B
developed, with the term set considered in the latter case being 13[ “;g 1;:1 f,B ‘;B f{
{ES,VS,S,M,B,VB,EB}, with S standing for small, B M
M for medium, B for big, and £ and V' for extremely and VB
very, respectively. The values of the rule selection process EB s
parameters are still the same. The results obtained with the T2
different linguistic modeling methods considered are shownin = [ES VS TS TM T B TVBTEB
Tables VI and V. ES | BS | ES VS VS Vs | M
. In view of the results _obtained,. we should remark some VS T ES :,g e 5
important conclusions. First, and in the same way as in the M | B
two previous applications, the different models generated from S Vs
the two variants of our ALM process clearly outperform the M S VB M

] . : } B M

NIT-method and both single consequent inductive generation <
methods, WM-method and I-method, in the two experiments EB [

carried out, with the differences being more significant between
them in this problem. For example, in the vast majority of the

cases, the accuracy of the models generated from the first step
of the proposed process (i.e., before applying the rule selectl6nt: both between the models generated by the I-based ALM

genetic process) is already better than the model designed fifAcess and the WM-based one and among the three models

the corresponding single consequent generation process. 9enerated by the former variant.

The WM-based ALM process generates the most accurateAs regards the model complexity, the behavior is different
model with five labels but, on the contrary, the best model is obr the two variants, but really good in both. While the models
tained from the I-based ALM process (with 8k) when using obtained by means of the I-based ALM process present a few
seven labels. In the latter case, the differences are more sigmbre rules than the ones obtained from the I-method (a max-



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 3, JUNE 2000

TABLE IX
OVERALL RESULTSOBTAINED IN THE ELECTRICAL APPLICATION

Method ’ SEt,»a SEtst

Linear 287775 209656
Exponential 232743 197004
2th order polynomial 235948 203232
3rd order polynomial 235934 202991
3 layer perceptron 2-25-1 169399 167092
NIT-method 185383 170480
WM-method 222622 240018
WM-based ALM 155866 178601
I-method (SF=S3) 267923 249523
I-based ALM (SF=S3) 154469 167061
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plexity, while maintining the model description by the following
interpretation:

IF z1 is A; and---andz,, is A,
THEN y is betweenB; and Bs.

On the other hand, the generation of a preliminary fuzzy rule
set composed of a large number of single and double-consequent
rules according to the problem complexity, the consideration of
all these rules as simple ones and the selection of the subset
cooperating best among them have allowed us to improve the
cooperation among the rules in the KB and, thus, the global

model accuracy in all the definition space.

imum of 23 against 20, when considering five labels, and 38
against 32, when considering seven), those RB’s generated from
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working with five labels and 20 against 24 when considerinfem Hlt_jroelectnca del Canta_bnco and for solving it by means
seven, as shown in Table VIII). The latter is a very importaft’ classical and neural techniques.

result, because we are able to obtain a simpler and more accu-
rate model following the approach proposed in this paper (we
should remember that we found the same assumption in the ricgi]
taste evaluation problem).

Finally, Table IX shows the best results obtained by all [
the modeling techniques considered for the problem. The
parameters of the polynomial models were fitted by Leven- 3]
berg—Marquardt, while exponential and linear models werey;
fitted by linear least squares. The multilayer perceptron was
trained with the quick propagation algorithm. The number of 5]
neurons in the hidden layer was chosen to minimize the test
error. [6]

As may be seen, all the linguistic models clearly outperform
classical regression ones in the approximation of both datgz;
sets. Besides, the linguistic model generated from the I-based
process considering the rule selection functigf is more
accurate than the neural one, which is the second best modé?]
in view of its generalization level. Although the results are
almost the same in this characteristic (167 061 versus 167 092)[9]
the value obtained by the linguistic model in the SE over the
training data set shows a significant performance advantage for
it over the neural network (154 469 versus 169 399). Thereford!0
this model is the one that best approximates the real system and
that presents best generalization capabilities and, moreover,itl]
has the advantage of being much more interpretable than the
neural model. [12]

(23]

V. CONCLUDING REMARKS
[14]
In this paper, ALM has been proposed, which is a new ap-

proach to design linguistic models accurate to a high degree artP!
suitably interpretable by human-beings. Both ALM assump-
tions trying to improve the interpolative reasoning in FRBS’s[16]
have proven to be effective. On the one hand, double-conse-
quent linguistic rules have demonstrated to improve the modqh]
accuracy in some specific space zones presenting a higher com-
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