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A Proposal for Improving the Accuracy of Linguistic Modeling
Oscar Cordón and Francisco Herrera

Abstract—In this paper, we proposeaccurate linguistic modeling,
a methodology to design linguistic models that are accurate to a
high degree and may be suitably interpreted. This approach will
be based on two main assumptions related to the interpolative rea-
soning developed by fuzzy rule-based systems: a small change in
the structure of the linguistic model based on allowing the linguistic
rule to have two consequents associated and a different way to ob-
tain the knowledge base based on generating a preliminary fuzzy
rule set composed of a large number of rules and then selecting the
subset of them best cooperating. Moreover, we will introduce two
variants of an automatic design method for these kinds of linguistic
models based on two well-known inductive fuzzy rule generation
processes and a genetic process for selecting rules. The accuracy
of the proposed methods will be compared with other linguistic
modeling techniques with different characteristics when solving of
three different applications.

Index Terms—Descriptive Mamdani-type fuzzy rule-based sys-
tems, double-consequent linguistic rules, genetic algorithms, in-
ductive fuzzy rule generation, linguistic modeling, rule selection.

I. INTRODUCTION

NOWADAYS, one of the most important applications of
fuzzy rule-based systems (FRBS’s) issystem modeling[1],

[2], which in this field may be considered as an approach used to
model a system making use of a descriptive language based on
fuzzy logic with fuzzy predicates [3]. When a descriptive Mam-
dani-type FRBS [4]—a kind of fuzzy system whose knowledge
base (KB) is comprised by fuzzy rules composed of linguistic
variables [5] that take values in a term set with a real-world
meaning—is considered to compose the model structure, the
linguistic model so obtained consists of a set of linguistic de-
scriptions regarding the behavior of the system being modeled
[3]. Hence, the research field developing system modeling with
these kinds of FRBS’s is usually calledlinguistic modeling.

One of the problems associated with linguistic modeling is
its lack of accuracy in some cases. As Zadeh pointed out in his
principle of incompatibility[6], “as the complexity of a system
increases, our ability to make precise and yet significant state-
ments about its behavior diminishes.” Thus, although the use
of descriptive Mamdani-type FRBS’s allows us to deal with the
modeling of systems in which a certain degree of imprecision
is involved, building a linguistic model clearly interpretable by
human beings, the accuracy obtained is not always as good as
desired and we prefer a loss in the model description ability to
obtain an improvement in the overall model performance. The
choice between how interpretable and how accurate the model
must be usually depends on the user’s needs for the specific
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problem and will condition the kind of FRBS selected to gen-
erate it. When the accuracy is the main modeling requirement,
other kinds of FRBS’s, such as Takagi–Sugeno–Kang (TSK) [7]
or approximate Mamdani-type ones [1], [8], [9], can be consid-
ered but the final model obtained will have associated the draw-
back of an important loss in its descriptive power.

In this paper, we introduceaccurate linguistic modeling
(ALM), a linguistic modeling approach which will allow us to
improve the accuracy of linguistic models without losing its
interpretability to a high degree. This approach will be based
on two main assumptions relating to the interpolative reasoning
developed by FRBS’s:

• a small change in the structure of the linguistic model to
locally improve the model accuracy: the coexistence of
single and double-consequent rules in the KB;

• a different way to derive the KB to globally improve the
rule cooperation based on the generation of a preliminary
fuzzy rule set with a large number of single- and double-
consequent rules and the selection of the subset of them
best cooperating.

To do so, this paper is set up as follows. In Section II, the
basis of ALM will be introduced. In Section III, two variants of
an automatic design method to generate linguistic models of this
new kind based on two well-known inductive fuzzy rule gener-
ation processes and a genetic process for selecting rules will be
proposed. In Section IV, the behavior of both processes will be
analyzed for solving of three different applications, the fuzzy
modeling of a three-dimensional (3-D) function, the problem of
rice taste evaluation and an electrical engineering distribution
problem. The results obtained will be compared with other pro-
cesses with different characteristics. Finally, in Section V, some
concluding remarks will be pointed out.

II. ALM: A N APPROACH TOGENERATEACCURATELINGUISTIC

MODELS

One of the most interesting features of an FRBS is the inter-
polative reasoning it develops. This characteristic plays a key
role in the high performance of FRBS’s and is a consequence of
thecooperation among the fuzzy rules composing the KB. As is
known, the output obtained from an FRBS is not usually due to
a single fuzzy rule but to the cooperative action of several fuzzy
rules that have been fired because they match the input to the
system to some degree.

ALM will deal with the way in which the linguistic model
makes inference in order to improve its accuracy while not
losing its description. Hence, it will be based on two main
aspects that will be described in the two following subsections.
The remaining one in this section analyzes some interesting
remarks of the proposed approach.

1063–6706/00$10.00 © 2000 IEEE
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A. New Descriptive Knowledge Base Structure to Locally
Improve the Model Accuracy

1) Problems of the Usual Linguistic Modeling Struc-
ture: The KB structure usually employed in the field of
linguistic modeling is composed of a collection of Mam-
dani-type linguistic rules with the form

IF is and and is THEN is

with and being the input linguistic variables and
the output one, respectively; and with being
linguistic labels from different term sets with fuzzy sets associ-
ated defining their meaning. These fuzzy sets are defined on the
universes of discourse and are characterized by
their membership functions

This KB structure has the drawback of its lack of accuracy
when working with very complex systems. This fact is due to
some problems relating to the fuzzy rule structure considered,
which are a consequence of the inflexibility of the concept of
linguistic variable. A brief summary of these problems is shown
as follows [9], [10].

• Lack of flexibility due to the rigid partitioning of the input
and output spaces.

• The homogeneous partitioning of these spaces when the
input–output mapping varies in complexity within the
space is inefficient and does not scale to high-dimensional
spaces.

• Dependent input variables are very hard to partition.
• Limitation on the size of the rule base (RB).

Due to these reasons, we consider obtaining a new more flex-
ible KB structure that allows us to improve the accuracy of lin-
guistic models without losing their interpretability.

2) Considering Double-Consequent Rules in the Knowledge
Base: In [11], an attempt was made to put this idea into effect
first by designing a fuzzy model based on simplified TSK-type
rules, i.e., rules with a single point in the consequent, and then
transforming it into a linguistic model, which has to be as ac-
curate as the former. To do so, they introduce a secondary KB,
in addition to the usual KB, and propose an inference system
capable of obtaining an output result from the combined action
of both fuzzy rule bases. Hence, what the system really does
is to allow a specific combination of antecedents to have two
different consequents associated, the first and second in impor-
tance, thus avoiding some of the said problems associated to the
linguistic rule structure. On the one hand, they achieve that the
maximum number of rules is not prefixed by the granularity of
the fuzzy partitions associated to the input variables and, on the
other hand, the inflexibility derived from the use of these kinds
of partitions is avoided. The fact that the result of the inference
on the two resulting rules is an interpolation of their individual
outputs allows us to obtain a more accurate model without losing
its interpretability.

Taking this idea as a starting point, we allow a specific com-
bination of antecedents to have two consequents associated but

only in those cases in which it is really necessary to improve the
model accuracy in this subspace and not in all the possible ones
as in [11]. Therefore, the existence of a primary and a secondary
fuzzy rule base is avoided, and the number of rules in the single
KB is decreased, that makes easier to interpret the model.

These double-consequent rules will locally improve the in-
terpolative reasoning performed by the model allowing a shift
of the main labels making the final output of the rule lie in
an intermediate zone between the two consequent fuzzy sets.
Hence, this rule structure allows us to avoid three of the four
problems of classical linguistic rules analyzed in the previous
subsection: the inflexibility derived from the rigid partitioning
of the input and output spaces, the difficulty to scale to com-
plex spaces without increasing the fuzzy partition granularity to
a high degree and the limitation on the size of the RB.

On the other hand, we should note that this operation mode
does not constitute an inconsistency. Let us suppose that a spe-
cific combination of antecedents, “ is and and
is ,” has two different consequents associated:and .
The resulting double-consequent rule may be linguistically in-
terpreted as follows:

IF is and and is

THEN is between and

Finally, two other advantages of our approach with respect to
Nozakiet al. is that we do not need the existence of a previous
TSK fuzzy model to generate the linguistic KB and that we do
not need a specific inference system to perform reasoning with
the system. The only restriction in our case is to use any defuzzi-
fication method working in mode B-FITA (first infer, then ag-
gregate)—a strategy based on first defuzzifying the fuzzy output
inferred from each individual rule and then aggregating the char-
acteristic values so obtained— and considering the matching
degree of the rules fired (for a review of different defuzzifica-
tion methods working in this way, refer to [12]. This is due to
the fact thateach double-consequent rule is considered as two
simple rules with the same antecedent and different consequent
to perform the inference process. Hence, the consideration of a
defuzzification method working in mode A-FATI (first aggre-
gate, then infer)—first aggregating the fuzzy outputs inferred
from each rule (usually by means of the maximum or the min-
imum) into a single global fuzzy set and then defuzzifying it
to obtain the final output— or of a defuzzification strategy not
considering the matching will cancel the influence of one of the
two-rule consequents.

In this contribution, we will use the Minimum t-norm in the
role of conjunctive and implication operator and thecenter of
gravity weighted by the matching degree[12] as defuzzification
strategy. In the latter, the final system outputis computed by
means of the expression:

with being the center of gravity of the fuzzy set infered from
rule in the KB and being the matching degree between the
system input and the antecedent of.
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B. New Way to Generate Fuzzy Rules to Globally Improve
the Cooperation Among Them

The second aspect deals with the cooperation among the rules
in the KB, i.e., with the overlapped space zones that are covered
by different linguistic rules. As is known, the generation of the
best fuzzy rule in each input subspace does not ensure that the
FRBS will perform well due to the fact that the rules composing
the KB may not cooperate suitably. Many times, the accuracy
of the FRBS may be improved if other rules different than the
primary ones are generated in some subspaces because they co-
operate in a better way with their neighbor rules.

Hence, ALM will consider an operation mode based on gen-
erating a preliminary fuzzy rule set composed of a large number
of rules, which will be single- or double-consequent ones de-
pending on the complexity of the specific fuzzy subspace —no
rules will be generated in the subspaces where the system is not
defined. Then, all these fuzzy rules will be treated as single-con-
sequent ones (each double-consequent rule will be broken down
into two simple rules) and the subset of them with best cooper-
ation level will be selected in order to compose the final RB.
Thus, this stage will specify which double-consequent rules in
the preliminary rule set will remain in the final RB; that is,
those fuzzy subspaces whose two simple rules associated have
been finally selected and also will remove those single-conse-
quent rules that are unnecessary due to the cooperative action of
neighbor rules on their input subspace.

The said operation mode gives more freedom to the RB gener-
ation process since the rule selection process can make the final
RB present single-consequent rules not being the best ones in
their fuzzy input subspaces in order to improve the cooperation
of the global KB.

C. Some Important Remarks About ALM

On the one hand, in view of the assumptions presented in the
previous subsections, any ALM process will be composed of the
two following methods:

1) linguistic rule generation method, which will generate a
preliminary rule set where single and double-consequent
linguistic rules will coexist according to the problem
complexity;

2) rule selection process, that will select the subset of rules
cooperating best from the preliminary fuzzy rule set gen-
erated in the previous step.

On the other hand, we may draw two very important con-
clusions from the operation mode of ALM. First, it is possible
that, although the preliminary fuzzy rule set generated has some
double-consequent rules, the final KB does not contain any rule
of this kind after the selection process. In this case, the linguistic
model obtained has taken advantage of the way in which the
fuzzy rules has been generated because many rule subsets with
different cooperation levels have been analyzed. This is why it
will present a KB composed of rules cooperating well, a fact that
may not happen in other inductive design methods —such as the
Wang and Mendel’s rule generation method [13], that will be
considered in next sections—which are based on directly gen-
erating the best consequent for each fuzzy input subspace.

In addition, it is possible that the KB obtained presents less
rules than KB’s generated from other methods thanks to two
aspects: both the existence of two rules (a double-consequent
rule) in the same input subspace and the generation of neighbor
rules with better cooperation may mean that many of the rules
in the KB are unnecessary to give the final system response.

All these assumptions will be corroborated in view of the ex-
periments developed in Section IV.

III. T WO SPECIFICALM PROCESSES

In this section, two specific ALM processes will be intro-
duced, only differing on the composition of the rule generation
method. It will present two variants, both of them based on mod-
ifications made on two inductive linguistic rule generation pro-
cesses, the Wang and Mendel’s method (WM-method) [13] and
an adaption of the Ishibuchiet al. simplified TSK fuzzy rule
generation method [14] to allow it to generate linguistic rules
with fuzzy consequents (I-method) (other two generation pro-
cesses for fuzzy classification rules and TSK fuzzy rules based
on the one proposed in that paper are to be found in [15] and
[16], respectively).

In both cases, the modification imposed by ALM involves
generating the two most important consequents for each combi-
nation of antecedents (instead of only the most important one,
as usual). We should remark that an input subspace will only
have two consequents associated (and, thus, a double-conse-
quent rule) when there is a need to do so, i.e., when there is any
data on it allowing two different consequents to be generated.

On the other hand, the rule selection process will be based on
a genetic algorithm (GA) [17], although any other optimization
technique can be used to develop this task.

Both processes will be described in depth in the next two
subsections.

A. Linguistic Rule Generation Method

Our linguistic rule generation method is based on
the existence of a set of input–output data (examples)

, repre-
senting the behavior of the system being modeled, and of a
previous definition of the data base (DB) composed of the
fuzzy partitions considered for the input and output variables.
These fuzzy partitions may be obtained from the expert infor-
mation (if it is availaible) or by a normalization process, where
each variable domain is divided into a number of equal or
unequal partitions, a kind of membership function is selected
and a fuzzy set is assigned to each subspace. In this paper,
we will work with symmetrical fuzzy partitions of triangular
membership functions [see Fig. 1].

As mentioned, this method will present two variants, the
WM-based ALM and the I-based ALM. The following subsec-
tions introduce them both.

1) The WM-based ALM Generation Method:In this first
case, the generation of the RB is put into effect by means of
the following steps.

1) Generate a preliminary linguistic rule set: This set will
be formed by the rule best covering each example
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Fig. 1. Graphic representation of the fuzzy partition considered.

contained in . The structure of these rules is obtained
by setting each one of the rule variables to the linguistic
label associated to the fuzzy set best covering every
example component.

2) Give an importance degree to each rule: Let IF is
and and is THEN is be the linguistic

rule generated from the example. Its importance degree
will be obtained as follows:

3) Obtain a final RB from the preliminary fuzzy rule set: This
step is the only one that is different from the original WM
method. While in that method the rule with the highest
importance degree is the only one chosen for each com-
bination of antecedents, in our case, we allow two dif-
ferent rules, the two most important ones in each input
subspace (if they exist), to form part of the RB composing
a double-consequent rule. Of course, a combination of
antecedents may have no rule associated (if there are no
examples in that input subspace) or only one rule (if all
the examples in that subspace generated the same rule).
Therefore, the generation of rules with double consequent
is only addressed when the problem complexity, repre-
sented by the example set, shows that it is necessary.

2) The I-Based ALM Generation Method:In [14], Ishibuchi
et al.proposed an inductive method to design simplified TSK
FRBS’s. The algorithm worked in a different way from the WM
method since all the examples located in each fuzzy input sub-
space are considered to generate a single fuzzy rule for that sub-
space, its consequent obtained by averaging the outputs of those
examples weighted by the matching degree of their inputs with
the rule antecedent.

We have developed two different modifications on the pre-
vious algorithm. First, it has been adapted to generate descrip-
tive Mamdani-type rules. Second, we have allowed the process
to generate not only one but two different consequents when it
is necessary, the same as in the previous section. Thus, the gen-
eration method so obtained consists of the following steps.For
each multidimensional fuzzy input subspace obtained by com-
bining the individual input variable subspaces using the “and”
conjunction do:

1) build the set composed of the examples that
are located in this subspace;

2) if , i.e., if there is any data on it, then the fol-
lowing holds.

a) For each linguistic label in the output variable
term set, , build a rule using the cur-
rent antecedent and in the consequent. Compute
the covering value of each linguistic rule so gen-
erated, , over each ex-
ample as follows:

IF is and and is THEN is

with and being a t-norm. In this
paper, we will work with the minimum.

b) Select thetwo rulesfrom with the highest values
in therule selection function considered.

c) Add this double-consequent rule to the RB.
Otherwise, do not generate rules in that input fuzzy sub-
space.

Different choices may be considered for the rule selection
function, . In this paper, we work with the following ones.

• Maximum covering over the example set: This index
computes theaccumulated covering degree of the rule
over all the examples in the example set

• Maximum covering of the example best covered: The
value associated to each rule is itscovering degree over
the best covered example in

• Average of covering degrees: Theaverage of the two pre-
vious covering degreesis calculated. To do so, the index
is normalized (dividing it by the size of ) to have
them both in the interval

We should note that unlike the generation method introduced
in the previous section, in this case, it is very difficult for a fuzzy
subspace to have a single linguistic rule associated. It may have
none (when there is no example located on it) or two rules as-
sociated (otherwise), due to the fact that each example is almost
always covered by two different fuzzy sets because of the type
of output fuzzy partition considered. Therefore,this generation
process will always generate more (or, at least, the same) rules
than the WM-based one.

B. Rule Selection Genetic Process

The selection of the subset of linguistic rules best cooper-
ating is a combinatorial optimization problem [3], [18]. Since
the number of variables involved in it, i.e., the number of pre-
liminary rules, may be very large, we consider an approximate
algorithm to solve it—a GA [17].
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Our rule selection genetic process is based on a binary coded
GA in which the selection of the individuals is performed using
the stochastic universal sampling procedure together with an
elitist selection scheme and the generation of the offspring pop-
ulation is put into effect by using the classical binary multipoint
crossover (performed at two points) and uniform mutation op-
erators [19], [20].

The coding scheme generates fixed-length chromosomes.
Considering the single-consequent rules contained in the
linguistic rule set derived from the previous step counted from
1 to , an -bit string represents a subset
of candidate rules to form the RB finally obtained as this stage
output such that

If then else

The initial population is generated by introducing a chromo-
some representing the complete previously obtained rule set,
i.e., with all . The remaining chromosomes are selected
at random.

As regards the fitness funtion , it is based on a global
error measure that determines the accuracy of the FRBS en-
coded in the chromosome, which depends on the cooperation
level of the rules existing in the KB. We usually work with the
mean square error (SE), although other measures may be used.
SE over a training data set is represented by the following
expression:

with being the output value obtained from the FRBS
using the RB coded in , when the input variable values are

and is the known desired value.
We should note that this basic rule selection genetic process

can be extended in different ways: trying also to minimize the
number of rules in the selected RB by means of a weighted
average [18] or a multi-objective GA [21], forcing this RB to
cover all the examples in the training set to a specific degree
[19] or considering a niching GA to perform a better search in
the multimodal space [22].

For the sake of simplicity, none of this extensions will be con-
sidered in this paper. Although better results could be obtained
in other case, the implementation of the rule selection is not a
key question in our methodology and, thus, we prefer not to in-
clude additional experimentations related to this point. More-
over, we think that the criterion considered, the SE over a data
set, will be enough to obtain good results due to the fact that it
is directly related to the accuracy of the linguistic model; that is
significantly affected by an excessive number of rules or by the
possibility of non covering any of the training examples.

IV. EXAMPLES OF APPLICATION: EXPERIMENTSDEVELOPED

AND RESULTSOBTAINED

With the aim of analyzing the behavior of the proposed ALM
processes, three different applications have been chosen: the
fuzzy modeling of a 3-D function [19], the problem of rice taste

Fig. 2. Graphical representation of the function considered.

evaluation [11], [14], and a real-world Spanish electrical engi-
neering distribution problem [23]–[25]. In all three cases, we
will compare the accuracy of the linguistic models generated
from our processes with the ones designed by means of other
methods: the one proposed by Nozakiet al. (NIT-method) in
[11] that has been analyzed in Section II-A.2, and the basic
WM-method and I-method ones. In addition, classical regres-
sion techniques and neural models will be considered in the
electrical distribution problem.

A. Fuzzy Modeling of a 3-D Function

The expression of the selected function is shown as follows,
along with the universes of discourse considered for the vari-
ables [19]. It is a simple function presenting two discontinu-
ities at the points and . Its representation is shown
in Fig. 2.

In order to model this function, a training data set composed
of 674 pieces of data uniformly distributed in the 3-D definition
space has been obtained experimentally. A test set composed
of 67 examples has been randomly generated to evaluate the
performance of the design methods, avoiding any possible bias
related to the data in the training set.

The DB used for all design methods is constituted by three
primary fuzzy partitions formed byseven linguistic terms
with triangular-shaped fuzzy sets giving meaning to them
[as shown in Fig. 1]. The linguistic term set considered is

, standing for nega-
tive, for zero, for positive, and , , and for small,
medium, and big, respectively.

Finally, the parameters considered for the rule selection ge-
netic process are: Number of generations: 500; Population size:
61; Crossover probability: 0.6; and Mutation probability: 0.1
(per individual).

The results obtained in the experiments developed are col-
lected in Table I where # stands for the number of single-
consequent rules in the corresponding KB, and
for the values obtained in the SE measure computed over the
training and test data sets, respectively, and SF for the rule se-
lection function used in the I-method and I-based ALM gener-
ation method. As may be observed, the results obtained by our
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TABLE I
RESULTSOBTAINED IN THE MODELING OF THESELECTED FUNCTION

TABLE II
RESULTSOBTAINED IN THE RICE TASTE EVALUTION USINGTWO LABELS IN THE FUZZY PARTITION

processes after each individual stage, generation and selection,
have been included, and the best results are shown in boldface.

In view of these results, we should underline the good per-
formance presented by both variants of our ALM process that
generate the most accurate models in the approximation of the
training and test sets. Their behavior is also appropriate as re-
gards the model complexity since our models presents only a
few more rules than the ones generated from the WM-method
and the I-method. For example, by only adding eight new rules
to the RB generated by means of the WM-method (and by re-
moving two), the best model is obtained by the I-based ALM
process (considering the rule selection function) with a sig-
nificantly higher accuracy than the latter one and with a very
small loss of interpretability (see both RB’s in Table IV). Fi-
nally, all the ALM models are more accurate to a high degree
than the NIT-method one, presenting much simpler KB’s (a
maximum of 55 rules against 98).

B. Rice Taste Evaluation

Rice taste evaluation is usually put into effect by means of a
sensory test, where a group of 24 experts gives anevaluationof
rice kinds according to five characteristics:flavor, appearance,
taste, stickiness, andtoughness[11], [14].

The modeling of this problem becomes very complex due to
the large quantity of relevant variables and to the fact that the
problem-solving goal is not only to obtain an accurate model,
but also a user-interpretable model representing the nonlinear
relationships existing in the problem as well as putting some
light on the reasoning process performed by the human experts.

In this section we deal with obtaining several linguistic
models to solve the rice evaluation problem by considering the
data set presented in [11]. This set is composed of 105 data
arrays collecting subjective evaluations of the five input and
one output variables, all of them normalized in for the
same number of rice kinds.

With the aim of not biasing the learning, ten different parti-
tions of the data set have been randomly obtained, composed by
75 (30) pieces of data in the training (test) set, to generate ten
linguistic models in each experiment. We will use the same lin-
guistic modeling processes considered in the previous section,
as well as the same parameter values in the rule selection ge-
netic process.

As was done in [11], a different number of linguistic labels
has been considered for the fuzzy partitions (two and three tri-
angular fuzzy sets). Higher granularities will not be considered
since they cause the KB’s in the linguistic models obtained to
be excessively complex (to have many rules) and thus less in-
terpretable.

The results obtained are collected in Tables II and III. The
values shown in columns , , and # have been com-
puted as an average of the values obtained by the ten linguistic
models generated in each case.

From an analysis of these results, we may see that all the
ALM models clearly outperform again the remainder linguistic
models in the two experiments developed. As regards the indi-
vidual results, the best ones correspond to the WM-based ALM
process—which obtains very simple models with an average of
five rules—when considering two labels and to the I-based one
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TABLE III
RESULTSOBTAINED IN THE RICE TASTE EVALUTION USING THREE LABELS IN THE FUZZY PARTITION

TABLE IV
RBS OF THELINGUISTIC MODELS OBTAINED FOR THE FUNCTION BY THE

WM-METHOD (TOP) AND I-BASED ALM PROCESS(BOTTOM)

using the rule selection function when working with three
(although the number of rules is somewhat large, which also
makes better to choose the WM-based ALM model in order to
improve the interpretability).

Even considering the generation of double-consequent rules,
the RB’s generated from the two ALM processes contain less
rules than the ones obtained from the corresponding single-con-
sequent generation processes in all cases. Moreover, all of them
present less rules than the NIT-method KB. Overall, our models
are simpler and this makes them easier to be interpreted.

In fact, none of the 20 models generated from the WM-based
ALM process presents double-consequent rules in their RB’s.
This leads us to conclude that, as mentioned in Sections II-B
and II-C, the operation mode based on generating a preliminary
fuzzy rule set with a large number of rules and selecting the
subset of them cooperating best allows us to obtain good results
in linguistic modeling.

As an example, Table V shows the composition of the RB’s of
the linguistic model with the best generalization level generated
from the WM-based ALM process

when considering 2 labels, and of the one generated
from the WM method using the same data set as well

.

TABLE V
RBS OF THEBEST LINGUISTIC MODELS IN THE RICE PROBLEM GENERATED

BY THE WM METHOD (TOP) AND WM-BASED ALM PROCESS

(BOTTOM) USING 2 LABELS

C. Electrical Engineering Distribution Problem

Sometimes, there is a need to measure the amount of elec-
tricity lines that an electric company owns. This measurement
may be useful for several aspects such us the estimation of the
maintenance costs of the network, which was the main goal
of the problem presented here in Spain [23]–[25]. High and
medium voltage lines can be easily measured, but low voltage
line is contained in cities and villages and it would be very ex-
pensive to measure it. This kind of line used to be very convo-
luted and, in some cases, one company may serve more than
10 000 small nuclei.

Therefore, there is a need to find a relationship between some
characteristics of the population and the length of line installed
in it, making use of some known data, that may be employed to
predict the real length of line in any other village. We will try to
solve this problem by generating different kinds of models de-
termining the unknown relationship. To do so, we were provided
with the measured line length (output variable), and the number
of inhabitants and the mean distance from the center of the town
to the three furthest clients (input variables) in a sample of 495
rural nuclei [23].
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TABLE VI
RESULTSOBTAINED IN THE ELECTRICAL APPLICATION CONSIDERINGFIVE LABELS IN THE FUZZY PARTITIONS

TABLE VII
RESULTSOBTAINED IN THE ELECTRICAL APPLICATION CONSIDERINGSEVEN LABELS IN THE FUZZY PARTITIONS

To compare classical methods, linguistic modeling and neural
modeling we have randomly divided the sample into two sets
comprising 396 and 99 samples, labeled training and test. The
SE is considered again to measure the accuracy of the different
models generated.

In this case, the linguistic variable fuzzy partitions are
divided into five and seven fuzzy sets in the experiments
developed, with the term set considered in the latter case being

, with standing for small,
for medium, for big, and and for extremely and

very, respectively. The values of the rule selection process
parameters are still the same. The results obtained with the
different linguistic modeling methods considered are shown in
Tables VI and VII.

In view of the results obtained, we should remark some
important conclusions. First, and in the same way as in the
two previous applications, the different models generated from
the two variants of our ALM process clearly outperform the
NIT-method and both single consequent inductive generation
methods, WM-method and I-method, in the two experiments
carried out, with the differences being more significant between
them in this problem. For example, in the vast majority of the
cases, the accuracy of the models generated from the first step
of the proposed process (i.e., before applying the rule selection
genetic process) is already better than the model designed from
the corresponding single consequent generation process.

The WM-based ALM process generates the most accurate
model with five labels but, on the contrary, the best model is ob-
tained from the I-based ALM process (with SF) when using
seven labels. In the latter case, the differences are more signif-

TABLE VIII
RB’S FROM THEWM-METHOD (TOP) AND WM-BASED ALM PROCESS

(BOTTOM) FOR THEELECTRICAL APPLICATION (SEVEN LABELS)

icant, both between the models generated by the I-based ALM
process and the WM-based one and among the three models
generated by the former variant.

As regards the model complexity, the behavior is different
in the two variants, but really good in both. While the models
obtained by means of the I-based ALM process present a few
more rules than the ones obtained from the I-method (a max-
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TABLE IX
OVERALL RESULTSOBTAINED IN THE ELECTRICAL APPLICATION

imum of 23 against 20, when considering five labels, and 38
against 32, when considering seven), those RB’s generated from
the WM-based ALM process have the same or less rules than
the ones derived from the WM-method (13 in both cases when
working with five labels and 20 against 24 when considering
seven, as shown in Table VIII). The latter is a very important
result, because we are able to obtain a simpler and more accu-
rate model following the approach proposed in this paper (we
should remember that we found the same assumption in the rice
taste evaluation problem).

Finally, Table IX shows the best results obtained by all
the modeling techniques considered for the problem. The
parameters of the polynomial models were fitted by Leven-
berg–Marquardt, while exponential and linear models were
fitted by linear least squares. The multilayer perceptron was
trained with the quick propagation algorithm. The number of
neurons in the hidden layer was chosen to minimize the test
error.

As may be seen, all the linguistic models clearly outperform
classical regression ones in the approximation of both data
sets. Besides, the linguistic model generated from the I-based
process considering the rule selection function is more
accurate than the neural one, which is the second best model
in view of its generalization level. Although the results are
almost the same in this characteristic (167 061 versus 167 092),
the value obtained by the linguistic model in the SE over the
training data set shows a significant performance advantage for
it over the neural network (154 469 versus 169 399). Therefore,
this model is the one that best approximates the real system and
that presents best generalization capabilities and, moreover, it
has the advantage of being much more interpretable than the
neural model.

V. CONCLUDING REMARKS

In this paper, ALM has been proposed, which is a new ap-
proach to design linguistic models accurate to a high degree and
suitably interpretable by human-beings. Both ALM assump-
tions trying to improve the interpolative reasoning in FRBS’s
have proven to be effective. On the one hand, double-conse-
quent linguistic rules have demonstrated to improve the model
accuracy in some specific space zones presenting a higher com-

plexity, while maintining the model description by the following
interpretation:

IF is and and is

THEN is between and

On the other hand, the generation of a preliminary fuzzy rule
set composed of a large number of single and double-consequent
rules according to the problem complexity, the consideration of
all these rules as simple ones and the selection of the subset
cooperating best among them have allowed us to improve the
cooperation among the rules in the KB and, thus, the global
model accuracy in all the definition space.
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