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Abstract

The aim of this paper is to study the integration of multiplicative preference relation as a preference representation structure
in fuzzy multipurpose decision-making problems. Assuming fuzzy multipurpose decision-making problems under di4erent
preference representation structures (ordering, utilities and fuzzy preference relations) and using the fuzzy preference rela-
tions as uniform representation elements, the multiplicative preference relations are incorporated in the decision problem by
means of a transformation function between multiplicative and fuzzy preference relations. A consistency study of this trans-
formation function, which demonstrates that it does not change the informative content of multiplicative preference relation,
is shown. As a consequence, a selection process based on fuzzy majority for multipurpose decision-making problems under
multiplicative preference relations is presented. To design it, an aggregation operator of information, called ordered weighted
geometric operator, is introduced, and two choice degrees, the quanti7er-guided dominance degree and the quanti7er-guided
non-dominance degree, are de7ned for multiplicative preference relations. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Decision making in situations with multiple cri-
teria and=or persons is a prominent area of research
in normative decision theory. This topic has been
widely studied [2,8,11,21,23]. We do not distinguish
between “persons” and “criteria”, and interpret the
decision process in the fuzzy framework of mul-
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tipurpose decision-making (MPDM) [4], assuming
that the fuzzy property of human decisions can be
satisfactorily modeled by fuzzy sets theory as in
[8,11,13,14].
In an MPDM problem, we have a set of alternatives

to be analyzed according to di4erent purposes in order
to select the best one(s). For each purpose a set of eval-
uations about the alternatives is known. Then, a clas-
sical choice scheme for an MPDM problem follows
two steps before it achieves a 7nal decision [4,6,19]:
“aggregation” and “exploitation”. The aggregation
phase de7nes an (outranking) relation which indicates
the global preference between every ordered pair of
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alternatives, taking into consideration the di4erent
purposes. The exploitation phase transforms the
global information about the alternatives into a global
ranking of them. This can be done in di4erent ways,
the most common one being the use of a ranking
method to obtain a score function [18].
In [4], we consider MPDM problems where, for

each purpose (expert or criterion), the information
about the alternatives could be supplied in di4erent
ways. With a view to build a more Iexible frame-
work and to give more freedom degree to represent
the evaluations, we assumed that they could be pro-
vided in any of these three ways: (i) as a preference
ordering of the alternatives, (ii) as a fuzzy prefer-
ence relation and (iii) as a utility function. There we
presented a decision process to deal with this decision
situation which, before applying the classical choice
scheme, made the information uniform, using fuzzy
preference relations as the main element of the uni-
form representation of the evaluations, and then ob-
tained the solution by means of a selection process
based on the concept of fuzzy majority [10] and on
the Ordered Weighted Averaging (OWA) operator
[30].
In this paper, we increase the Iexibility degree of

our decision model proposed in [4]. We give a new
possibility for representing the evalutions about the
alternatives, i.e., to usemultiplicative preference rela-
tions. This representation structure of evaluations has
been widely used (see [9,20–22,27,29]). In [20,21]
Saaty designed a choice scheme, called Analytic Hi-
erarchy Process (AHP), for dealing with decision
problems where the evaluations about the alternatives
are provided by means of the multiplicative prefer-
ence relations. We incorporate the multiplicative pref-
erence relations in our decision model presenting a
transformation mechanism between multiplicative and
fuzzy preference relations and analyzing its consis-
tency. Then, as a consequence, we propose an alter-
native choice scheme to the classical one designed
by Saaty. Following our selection process given in
[4], we design a new choice scheme using the con-
cept of fuzzy majority and a new aggregation opera-
tor, called ordered weighted geometric (OWG) oper-
ator.
In order to do this, the paper is set out as follows.

The MPDM problem under four evaluation structures
is presented in Section 2. A transformation mecha-

nism between multiplicative and fuzzy preference re-
lations is proposed in Section 3. Section 4 is devoted
to presenting the OWG operator and to design the new
scheme choice for dealing with decision problems un-
der multiplicative preference relations. In Section 5
some concluding remarks are pointed out. Finally, the
fuzzy majority concept and the OWA operator are pre-
sented in Appendix A.

2. The MPDM problem under four evaluation
structures of preferences

Let X = {x1; x2; : : : ; xn; (n¿2)} be a 7nite set of
alternatives. The alternatives will be classi7ed from
best to worst (ordinal ranking), using the informa-
tion known according to a 7nite set of general pur-
poses (experts or criteria). In the following, without
loss of generality, we will use the term experts, i.e.,
E= {e1; e2; : : : ; em; (m¿2)}. As each expert, ek ∈E,
is characterized by his own ideas, attitudes, motiva-
tions and personality, it is quite natural to consider
that di4erent experts will provide their preferences in
a di4erent way. Then, we assume that the experts’
preferences over the set of alternatives, X , may be
represented in one of the following four ways:
1. A preference ordering of the alternatives. In

this case, an expert, ek , provides his prefer-
ences on X as an individual preference ordering,
Ok = {ok(1); : : : ; ok(n)}, where ok(·) is a permu-
tation function over the index set, {1; : : : ; n}, for
the expert, ek [6,24]. Therefore, according to the
viewpoint of each expert, an ordered vector of
alternatives, from the best one to the worst one,
is given.

2. A fuzzy preference relation. With this represen-
tation, an expert’s preferences on X is described
by a fuzzy preference relation, Pk ⊂X × X , with
membership function, �Pk :X ×X → [0; 1], where
�Pk (xi; xj)=pk

ij denotes the preference degree or
intensity of the alternative xi over xj [10,12,14,25]:
pk

ij =
1
2 indicates indi4erence between xi and xj,

pk
ij =1 indicates that xi is absolutely preferred to

xj, and pk
ij¿

1
2 indicates that xi is preferred to xj.

In this case, the preference matrix, Pk , is assumed
additive reciprocal, i.e., by de7nition [17,25] pk

ij+
pk

ji =1 and pk
ii =

1
2 .
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3. A multiplicative preference relation. With this
representation, an expert’s preferences on X
are described by a positive preference relation,
Ak ⊂X ×X; Ak = [ak

ij], where ak
ij indicates a ratio

of preference intensity for alternative xi to that of
xj, i.e., it is interpreted as xi is ak

ij times as good
as xj. According to Miller’s study [16], Saaty
suggests measuring ak

ij using a ratio scale, and
precisely the 1–9 scale [21]: ak

ij =1 indicates in-
di4erence between xi and xj, ak

ij =9 indicates that
xi is absolutely preferred to xj, and ak

ij ∈ 2; 3; : : : ; 8
indicates intermediate evaluations. In order to
guarantee that Ak is “self-consistent”, only some
pairwise comparison statements are collected to
construct it. The rest of the values are those which
satisfy the following conditions [21]:
(a) Multiplicative reciprocity property: ak

ij · ak
ji

=1 ∀i; j.
(b) Saaty’s consistency property: ak

ij = ak
it · ak

tj
∀i; j; t.

Therefore, we consider multiplicative prefer-
ence relations assessed in Saaty’s discrete scale,
which has only the following set of values:
{ 1
9 ;

1
8 ;

1
7 ; : : : ;

1
2 ; 1; 2; : : : ; 7; 8; 9}.

4. An utility function. In this case, an expert, ek , pro-
vides his preferences on X as a set of n utility val-
ues, Uk = {uk

i ; i=1; : : : ; n}; uk
i ∈ [0; 1], where uk

i
represents the utility evaluation given by the ex-
pert ek to the alternative xi [15,26].

In this context, the resolution process of the MPDM
problem consists of obtaining a set of solution alter-
natives, Xsol ⊂X , from the preferences given by the
experts. Since the experts provide their preferences in
di4erent ways, the 7rst step of the resolution process
of the MPDM problem must be to obtain a uniform
representation of the preferences. As we pointed out
in [4], we consider fuzzy preference relations as the
main element of the uniform representation of the pref-
erences. Once this uniform representation has been
achieved, we can develop from it a selection process
to achieve the set of solution alternatives. In this sense,
the resolution process of the MPDM problem presents
the scheme given in Fig. 1. This resolution process is
developed in the following two steps [4]: (i) making
the information uniform and (ii) the application of a
selection process. As follows, we summarize the most
important results in each step.

Fig. 1. Resolution process of the MPDM problem.

2.1. Making the information uniform

In the classical resolution processes for an MPDM
problem, a set of preferences supplied in the same way
is assumed [19]. A common representation of the pref-
erences is necessary in order to facilitate the combi-
nation of preferences to achieve a consensus 7nal de-
cision. Due to their apparent merits, many authors use
fuzzy preference relations as the base element of the
uniform representation [4,7,10,12,14,17,25,28]. The
use of fuzzy preference relations in decision-making
situations to represent an expert’s opinion about a set
of alternatives, appears to be a useful tool in modelling
decision processes, overcoat when we want to aggre-
gate experts’ preferences into group preferences, that
is, in the resolution processes of the MPDM problems.
Furthermore, preference orderings and utility values
are included in the family of fuzzy preference rela-
tions [26] and most of the existing results on MPDM
are obtained under fuzzy preference relations.
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Tomake the information uniform, it is neccessary to
obtain transformation functions relating the di4erent
evaluation structures of preferences with fuzzy pref-
erence relations. These transformation functions de-
rive an individual fuzzy preference relation from each
evaluation structure of preferences. In [3,4] we studied
the transformation of preference orderings and utility
values into fuzzy preference relations. This study can
be summarized in the following proposition.

Proposition 1. Suppose that we have a set of
alternatives; X = {x1; : : : ; xn}; and �k

i represents an
evaluation of alternative xi indicating the perfor-
mance of that alternative according to a point of view
(expert or criterion); ek . Then, the intensity of pref-
erence of alternative xi over alternative xj; pk

ij for ek
is given by the following transformation function

pk
ij =’(�k

i ; �
k
j )=

1
2 · [1 +  (�k

i ; �
k
j )−  (�k

j ; �
k
i )];

where  is a function verifying
1:  (z; z)= 1

2 ; ∀z ∈R (set of reals).
2:  is non-decreasing in the �rst argument and non-

increasing in the second argument.

Then, in order to make uniform the information rep-
resented by multiplicative preference relations, in the
following section, we will study the case for multi-
plicative and fuzzy preference relations.

2.2. Application of a selection process

Once the information is uniformed, we have a set
of m individual fuzzy preference relations over the set
of alternatives X , and we apply a selection process
which has two phases [4,6,19]: (i) aggregation and
(ii) exploitation.

2.2.1. Aggregation phase
This phase de7nes a collective fuzzy preference re-

lation, Pc = [pc
ij], which indicates the global prefer-

ence between every ordered pair of alternatives ac-
cording to the majority of experts’ opinions. Using the
concept of fuzzy majority applied in the aggregation
operations by means of an OWA operator [30], Pc is
obtained by means of the aggregation of all individual
fuzzy preference relations {P1; : : : ; Pm}:
pc

ij =�Q(p1
ij ; : : : ; p

m
ij);

where Q is a fuzzy linguistic quanti7er that represents
the concept of fuzzy majority and it is used to compute
the weighting vector of the OWA operator, �Q (see
Appendix A).

2.2.2. Exploitation phase
This phase transforms the global information about

the alternatives into a global ranking of them, supply-
ing the set of solution alternatives. Using again the
OWA operator and the concept of fuzzy majority, but
in another sense, two choice degrees of alternatives
are applied over the collective fuzzy preference rela-
tion: the quanti�er-guided dominance degree and the
quanti�er-guided non-dominance degree.
1. Quanti�er-guided dominance degree. For the al-

ternative, xi, we compute the quanti7er-guided
dominance degree, QGDDi, used to quantify the
dominance that one alternative has over all the
others in a fuzzy majority sense as follows:

QGDDi =�Q(pc
i1; : : : ; p

c
in):

2. Quanti�er-guided non-dominance degree. We
also compute the quanti7er-guided non-domin-
ance degree, QGNDDi, according to the following
expression:

QGNDDi =�Q(1− ps
1i ; : : : ; 1− ps

ni);

where

ps
ji = max{pc

ji − pc
ij ; 0}

represents the degree to which xi is strictly dom-
inated by xj. In our context, QGNDDi gives the
degree to which each alternative is not dominated
by a fuzzy majority of the remaining alternatives.

Finally, the solution Xsol is obtained by means of the
application of both choice degrees of alternatives. This
application can be carried out according to di4erent
choice policies, e.g., sequential or conjunctive (see
[4,6]).
We should point out that in this phase we can use a

fuzzy linguistic quanti7erQ di4erent from that used in
the aggregation phase because the aggregation context
is di4erent.
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3. Transformation function between multiplicative
and fuzzy preference relations

The relationship between multiplicative and fuzzy
preference relations is analyzed assuming that in the
considered MPDM problem an expert, ek , provides
his preferences on X by means of a multiplicative
preference relation, Ak = [ak

ij].
In general, if

A′ = {Ak = [ak
ij] | ak

ij · ak
ji =1; ak

ij ∈ [1=9; 9];

k =1; : : : ; m}
is the set of multiplicative preference relations in
Saaty’s sense, and

P′ = {Pk = [pk
ij] |pk

ij + pk
ji =1; pk

ij ∈ [0; 1];

k =1; : : : ; m}
is the set of additive fuzzy preference relations, then
we are looking for a continuous function

F :A′ →P′; |F(Ak)=Pk; ∀k:
This class of functions is equivalent to the class of
functions verifying

f : [1=9; 9]→ [0; 1];

f(x) + f(1=x) = 1;

f(9) = 1:

Function f can be rewritten in the following way:

f(x)= 1
2 + h(x)

which implies that

h(x) + h(1=x) = 0;

h(9) = 1
2 :

On the other hand, it is well known that the general
solution of functional equation [1]

l(x · y)= l(x) + l(y)

is in [1;+∞]:

l(z)=C · ln z; C ∈R:

In our situation, the following relationship holds
y=1=x; and making x=1 we have

0= h(1) + h(1)= 2 · h(1)= 2 · h(x · y);
and therefore, function h veri7es

h(x) + h(y)= h(x · y)
that is

h(z)=C · ln z; C ∈R:

Since h(9)= 1
2 , then C =1=(2 · ln 9), and therefore

h(z)=
1
2
ln z
ln 9

=
1
2
log9 z:

Summarising, we have the following result:

Proposition 2. Suppose that we have a set of
alternatives; X = {x1; : : : ; xn}, and associated with it
a multiplicative preference relation Ak = [ak

ij]. Then;
the corresponding additive fuzzy preference relation;
Pk = [pk

ij]; associated with Ak is given as follows:

pk
ij =f(ak

ij)=
1
2
(1 + log9 a

k
ij):

In the following subsection, we study the consis-
tency of this transformation function.

3.1. Consistency of the transformation function
between multiplicative and fuzzy preference relations

In this subsection, we demonstrate that the trans-
formation function acts coherently because it does not
change the informative content of the multiplicative
preference relations when we make the information
uniform in the decision model shown in Section 2.
To do so, we analyze the consistency of f show-
ing that the ranking among the alternatives derived
from Ak is the same one as from Pk =f(Ak): This
study of consistency is done on the basis of the selec-
tion models presented in [21] (called multiplicative
selection model) and in [4] (called fuzzy additive
selection model). In [21] Saaty proposed the eigen-
vector method to achieve a ranking among the
alternatives from a multiplicative matrix Ak . In [4], as
was mentioned earlier, we proposed amethod based on
two quanti7er-guided choice degrees (the quanti7er-
guided dominance degree and the quanti7er-guided
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non-dominance degree) to achieve a ranking among
the alternatives from a fuzzy matrix Pk . In [5] we
presented a similar consistency study for the transfor-
mation function given in Proposition 1.
Some important aspects of the multiplicative selec-

tion model that we use to demonstrate the consistency
of the transformation function f are given in the fol-
lowing subsection.

3.1.1. Multiplicative selection model
The MPDM problem when the experts express

their preferences using multiplicative preference rela-
tions have been extensively studied by Saaty [20,21].
From m + 1 multiplicative preference relations,
{A1; A2; : : : ; Am} expressing the experts’ preferences
and B= [bvw]; v; w=1; : : : ; m; expressing the relative
importance degrees among experts, Saaty designed
the decision AHP, which obtains the set of solution
alternatives by means of the eigenvector method. This
method is applied as follows:
1. Applying the exact eigenvector method to each

multiplicative preference relation we obtain the
normalized eigenvector for each multiplicative
preference relation, i.e., ,k =(,k

1 ; ,
k
2 ; : : : ; ,

k
n); ∀Ak;

and b=(b1; : : : ; bm) for B. These are the local
priority vectors corresponding to the maximum
eigenvalues of each matrix {�1A; : : : ; �m

A ; �
m+1
B }. The

computation of the maximum eigenvalues and the
corresponding eigenvectors is described below.
(a) The computation of the maximum eigenval-

ues: We multiply each matrix of comparisons
on the right by an estimated solution vec-
tor obtaining a new vector. Then, we divide
the 7rst component of this vector by the 7rst
component of the estimated solution vector,
the second component of the new vector by
the second component of the estimated solu-
tion vector and so on, obtaining another vec-
tor. If we take the sum of the components of
this vector and divide by the number of com-
ponents (n for Ak and m for B) we have an
approximation to the maximum eigenvalues.
These eigenvalues are used in estimating the
consistency as reIected in the proportional-
ity of preferences. For example, the closer �k

A
is to n (the number of activities in the matrix
Ak) the more consistent is the result.

(b) The computation of the eigenvectors: The
equations

Ak · ,k = �k
A · ,k ; k =1; : : : ; m; and

B · ,m+1 = �m+1
B · ,m+1;

are iterated till column vectors ,t (t=
1; : : : ; m + 1) satisfying these equations are
obtained. The normalized ,t column vectors
correspond to the principal eigenvectors of
the multiplicative preference relations. The
iterations start with initial unit vectors ,t .

2. The global priority vector ,=(,1; : : : ; ,n) is cal-
culated according to the principle of the hierar-
chical composition:

,=
m∑

k=1

bk · ,k :

3. Finally, the solution set of alternatives is obtained
from ,.

According to Saaty when we have consistent multi-
plicative preference relations Ak; then the following
relation is satis7ed:

ak
ij =

,k
i

,k
j
:

In what follows, we consider the local priority vec-
tors normalized in the unit interval [0; 1].

3.1.2. Consistency
The fuzzy additive selection model, assuming that

the experts express their preferences using fuzzy pref-
erence relations, is based on the two following choice
degrees [4]: the quanti7er-guided dominance degree
and the quanti7er-guided non-dominance degree. Both
degrees are calculated for the collective fuzzy prefer-
ence relation Pc. However, if we want to use them in
the consistency demonstration of f they have to be
de7ned for any fuzzy preference relation, Pk . Then, to
di4erentiate these degrees from the former ones, we
note them by QGDDk

i and QGNDDk
i ∀i; ∀Pk , respec-

tively. The consistency condition of f is expressed in
the following propositions.

Proposition 3. Let xi; xj ∈ X; assuming that for
a given consistent multiplicative preference relation;
Ak ; without loss of generality; the eigenvector method
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provides eigenvalues to verify ,k
i6,k

j ; then the
quanti�er-guided dominance degree obtained from
the fuzzy preference relation Pk =f(Ak) satis�es
the following relationship:

QGDDk
j¿QGDDk

i

Proof. We have to demonstrate the following state-
ment:

if ,k
i6,k

j ⇒QGDDk
j¿QGDDk

i :

By de7nition, choose a fuzzy linguistic quanti7er Q to
calculate the weighting vector W = [w1; : : : ; wn], then

QGDDk
i =�Q(pk

i1; : : : ; p
k
in)=

n∑
t=1

wt · qk
it ;

where qk
it is the tth largest value in the collection

pk
i1; : : : ; p

k
in. Then, applying the transformation func-

tion f(Ak)=Pk and the property of consistency of
Ak (ak

it = ,k
i =,

k
t ),

QGDDk
i =

n∑
t=1

wt ·
[
1
2
· (1 + log9 a

k
it)
]

=
1
2
·
[

n∑
t=1

wt +
n∑

t=1

wt log9 a
k
it

]

=
1
2
· [1 + log9 /t(ak

it)
wt
]

=
1
2
·
[
1 + log9

(,k
i )
∑

twt

/t(,k
t )wt

]

=
1
2
·
[
1 + log9

,k
i

C

]
where C =/t(,k

t )
wt :

Thus, given that the relationship between ,k
i and

QGDDk
i exists, it is clear that the proposition is

satis7ed.

Lemma 1. Let xi; xj ∈ X; assuming that for a given
consistent multiplicative preference relation; Ak ;
without loss of generality; the eigenvector method
provides eigenvalues verifying ,k

i6,k
j . If from the

strict preference relation Pk; s associated to the fuzzy

preference relation Pk =f(Ak) we obtain the follow-
ing sets of values:

Pk; s
t = {pk; s

vt |pk; s
vt =pk

vt − pk
tv¿0; ∀v}; ∀xt ; t ∈ {i; j};

then the following relationship is satis�ed:

#(Pk; s
i )¿#(Pk; s

j ):

Proof. We know that pk; s
vi =max{pk

vi − pk
iv; 0};∀v:

Then, pk; s
vi =pk

vi − pk
iv if it satis7es the condition

pk
vi − pk

iv¿0:

Thus, applying f (Pk =f(Ak)) and assuming the
consistency of Ak; i.e., ak

tv = ,k
t =,

k
v ∀t; v, we obtain the

following condition:

,k
v

,k
i
¿

,k
i

,k
v
⇒ (,k

v)
2¿(,k

i )
2:

This means that ∀v|(,k
v)

2¿(,k
i )

2 then pk; s
vi ∈Pk; s

i .
Hence, it is obvious that #(Pk; s

i )¿#(Pk; s
j ).

Proposition 4. Let xi; xj ∈ X; assuming that for a
given consistent multiplicative preference relation; Ak ;
without loss of generality; the eigenvector method
provides eigenvalues which verify ,k

i6,k
j ; then the

quanti�er-guided non-dominance degree obtained
from the fuzzy preference relation Pk =f(Ak) satis-
�es the following relationship:

QGNDDk
j¿QGNDDk

i :

Proof. Similarly, we have to demonstrate the follow-
ing statement:

if ,k
i6,k

j ⇒QGNDDk
j¿QGNDDk

i :

By de7nition, choose a fuzzy linguistic quanti7er Q to
calculate the weighting vector W = [w1; : : : ; wn], then

QGNDDk
i =�Q(1− pk; s

1i ; : : : ; 1− pk; s
ni )

=
n∑

t=1

wt · (1− qk; s
ti );

where pk; s
vi =max{pk

vi − pk
iv; 0}; and [qk; s

1i ; : : : ; q
k; s
ni ]

is the vector associated to the collection [pk; s
0(1)i ; : : : ;

pk; s
0(n)i]; such that

pk; s
0(a)i6pk; s

0(b)i if a6b; a; b ∈ {1; : : : ; n};
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with 0 being a permutation over the set of values
{pk; s

vi ;∀v}.
On the other hand, we know that 1 − qk; s

ti =
2·pk

i0(t); t= ni; : : : ; n; 26ni6n; and 1−qk; s
ti =1; t=1

; : : : ; ni − 1. Therefore,

QGNDDk
i =

ni−1∑
t=1

wt +
n∑

t=ni

wt · (2 · pk
i0(t))

= 1 +
n∑

t=ni

wt · (2 · pk
i0(t) − 1):

Then, using the transformation function f

QGNDDk
i = 1 +

n∑
t=ni

wt · log9 ak
i0(t)

= 1 + log9

n∏
t=ni

(ak
i0(t))

wt

= 1 + log9
(,k

i )
∑n

t=ni
wt∏n

t=ni(,
k
0(t))

wt

= 1 + log9
(,k

i )
∑n

t=ni
wt∏n

t=ni(,
k
0(t))

wt
:

Similarly, we have for QGNDDk
j the following ex-

pression:

QGNDDk
j =1 + log9

(,k
j )
∑n

t=nj
wt∏n

t=nj (,
k
0(t))

wt
:

We know by Lemma 1 that n− ni +1¿n− nj +1,
i.e., ni6nj. Then,

(,k
j )
∑n

t=nj
wt¿(,k

i )
∑n

t=ni
wt :

On the other hand, as ,k
v ∈ [0; 1] it is clear that

n∏
t = nj

(,k
0(t))

wt6
n∏

t=ni

(,k
0(t))

wt :

Therefore, concluding, we have that QGNDDk
j¿

QGNDDk
i .

Remark. These propositions establish that the domi-
nance and non-dominance choice degrees for a fuzzy

preference relation Pk =f(Ak) and Saaty’s priority
vectors for Ak give the same ordering among the alter-
natives. However, this does not establish any compar-
ison criterion between Saaty’s selection method and
the fuzzy majority-based selection method presented
in [4].

In the following section, as a consequence of this
consistency study, we propose an alternative choice
scheme to the AHP proposed by Saaty. The choice
scheme follows the structure of the selection process
shown in Section 2, and therefore, it is based on the
dominance and non-dominance concepts and on the
fuzzy majority one.

4. A multiplicative selection model based on fuzzy
majority

In the AHP it is assumed that we have a set of
m + 1 individual multiplicative preference relations,
{A1; A2; : : : ; Am; B}; where B is the importance matrix.
Following the scheme of the selection process given
in Section 2, we present a selection process based on
fuzzy majority to choose the best alternatives from
multiplicative preference relations. With a view to
design it, we introduce a new aggregation operator
guided by fuzzy majority in Section 4.1. In the follow-
ing subsections we show how to apply this aggregation
operator to solve the MPDM problem under multi-
plicative preference relations representing the experts’
preferences.

4.1. The ordered weighted geometric operator

If we have a set of m multiplicative preference re-
lations, {A1; A2; : : : ; Am}; to be aggregated, normally,
the collective multiplicative preference relation, Ac,
which expresses the opinion of the group, is derived
by means of the geometric mean, i.e.,

Ac = [acij]; acij =
m∏

k=1

(ak
ij)

1=m:

In this context, we can de7ne the ordered weighted
geometric (OWG) operator, which provides a fam-
ily of aggregators having the “and” operator at one
extreme, the “or” operator at the other extreme, and
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the geometric mean as a particular case. The (OWG)
operator is based on the OWA operator [30] and on
the geometric mean, therefore, it is a special case of
OWA operator. It is applied in our selection process
to calculate a collective multiplicative preference
relation and the quanti7er-guided dominance and
non-dominance choice degrees from multiplicative
preference relations.

De%nition 1. Let {a1; a2; : : : ; am} be a list of values to
aggregate, then, an OWG operator of dimension m is
a function �G,

�G : Rm →R

that has associated a set of weights W and is de7ned
as

�G(a1; a2; : : : ; am)=
m∏

k=1

cwk
k

where W = [w1; : : : ; wm], is an exponential weighting
vector, such that, wi ∈ [0; 1] and

∑
k wk =1; and C is

the associated ordered value vector. Each element ci ∈
C is the ith largest value in the collection {a1; : : : ; am}.
It is noted that di4erent OWG operators are dis-

tinguished by their weighting vector. There are three
important special cases of OWG aggregations:

1. �G
−(a1; a2; : : : ; am)= minm

k=1(ak). In this case
W = [0; 0; : : : ; 1].

2. �G
+(a1; a2; : : : ; am)= maxm

k=1(ak). In this case
W = [1; 0; : : : ; 0].

3. �G
GM (a1; a2; : : : ; am)=

∏m
k=1(ak)1=m. In this case

W = [1=m; 1=m; : : : ; 1=m].

We can use a process to obtain W similar to that
used in the OWA operator (see Appendix A), i.e.,
the vector may be obtained using a fuzzy linguistic
quanti7er, Q, representing the concept of fuzzy ma-
jority. When a fuzzy quantifer Q is used to compute
the weights of the OWG operator �G, then, it is sym-
bolized by �G

Q.
The OWG operator satis7es the following proper-

ties:

1. The OWG operator is a max–min operator, i.e,

min
k
(a1; : : : ; am)6�G(a1; a2; : : : ; am)

6max
k

(a1 : : : ; am):

2. The OWG operator is commutative.
3. The OWG operator is idempotent.
4. The OWG operator is increasing monotonous.

To conclude, we present the following result that
connects the OWG operator with the OWA operator
by means of the function f(y)= 1

2 (1 + log9 y).

Proposition 5. TheOWG operator for the set of mul-
tiplicative preferences relations {A1; : : : ; Am} acts as
the OWA operator for the set of fuzzy preferences
relations {P1; : : : ; Pm} where pk

ij =f(ak
ij).

Proof. Aggregating the multiplicative preference re-
lations by means of the OWG operator we have

{A1; : : : ; Am}→Ac where acij =�G
Q(a

1
ij ; : : : ; a

m
ij):

Then,

Ac →Pc where pc
ij =f(acij)=

1
2
(1 + log9 a

c
ij):

On the other hand, applying the transformation func-
tion f over the set of multiplicative preference rela-
tions we have

{A1; : : : ; Am}→{P1; : : : ; Pm}

where pk
ij =f(ak

ij) =
1
2 (1 + log9 a

k
ij);

and thus, aggregating the fuzzy preference relations
by means of the OWA operator we have

{P1; : : : ; Pm}→Pd where pd
ij =�Q(p1

ij ; : : : ; p
m
ij);

with Pd symbolizing the collective fuzzy preference
relation.
As a consequence of function f being non-

decreasing, if ak
ij is the lth largest value of the collec-

tion {a1ij ; : : : ; am
ij} then pk

ij is the lth largest value of
the collection {p1

ij ; : : : ; p
m
ij}; i.e., we have

pc
ij =f(acij)=

1
2
(1 + log9 a

c
ij)

=
1
2
(1 + log9 �

G
Q(a

1
ij ; : : : ; a

m
ij))

=
1
2

(
1 + log9

(
m∏
l

(cl)wl

))
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=
1
2

(
1 +

m∑
l

(wl · log9 cl)
)

=
1
2

(
m∑
l

wl +
m∑
l

wl · log9 cl
)

=
m∑
l

wl ·
[
1
2
· (1 + log9 cl)

]

=
m∑
l

wl · bl =�Q(p1
ij ; : : : ; p

m
ij)=pd

ij:

4.2. Dominance and non-dominance choice degrees
for multiplicative preference relations

Using the results on consistency shown in Section
3.1.2 and the OWG operator, we can de7ne the dom-
inance and non-dominance choice degrees in a fuzzy
majority sense for multiplicative preference relations.
They are obtained via the transformation function f
from the equivalent choice degrees de7ned for fuzzy
preference relations as follows:

1. Quanti7er-guided dominance degree for an alterna-
tive xi; symbolized MQGDDk

i ; from a multiplica-
tive preference relation, Ak; is de7ned according to
the following expression:

MQGDDk
i =

1
2
· (1 + log9 �

G
Q(a

k
i1; : : : ; a

k
in):

2. Quanti7er-guided non-dominance degree for an al-
ternative xi; symbolized MQGNDDk

i ; from a multi-
plicative preference relation, Ak; is de7ned accord-
ing to the following expression:

MQGNDDk
i =1 + log9 �

G
Q(r

k
il; : : : ; r

k
in);

where rkij is a preference obtained as rkij =
min{ak

ij; 1}. This expression is achieved given
that

QGNDDi =�Q(1− ps
1i ; : : : ; 1− ps

ni)

=�Q(min{2 ·pij; 1}; : : : ;min{2 ·pin; 1})

=�Q(1 + min{log9 ai1; 0}; : : : ; 1

+min{log9 ain; 0})
= 1 +

∑
j

wj · log9(min{aij; 1}):

In the following subsection, we present a selection
process based on fuzzy majority using these choice
degrees, which allows us to deal with MPDM prob-
lems under multiplicative preference relations.

4.3. Multiplicative selection process based on fuzzy
majority

Assume an MPDM problem where the experts ex-
press their preferences on X by means of the set of
multiplicative preference relations {A1; : : : ; Am} and
where a multiplicative importance matrix B on the ex-
perts is known. Then, using the scheme of the selec-
tion process presented in Section 2, the multiplicative
selection process based on fuzzy majority is structured
in the following two phases:

1. Aggregation phase. This phase de7nes a collec-
tive multiplicative preference relation, Ac = [acij],
which indicates the global preference according to
the fuzzy majority of experts’ opinions. Ac is ob-
tained from {A1; : : : ; Am} and B by means of the
following expression:

acij =�G
Q (a

1
ij · b1; : : : ; am

ij · bm);
where bk is the kth expert’s importance degree
derived from B according to some of the choice
degrees de7ned for multiplicative preference re-
lations, and �G

Q is the OWG operator guided by
the concept of fuzzy majority represented by the
fuzzy linguistic quanti7er Q.

2. Exploitation phase. Using the quanti7er-guided
choice degrees de7ned for multiplicative prefer-
ence relations, this phase transforms the global
information about the alternatives into a global
ranking of them, supplying the set of solution al-
ternatives. According to the exploitation scheme
designed in [4,6], the choice degrees can be ap-
plied in three steps:
Step 1: Using the OWG operator �G

Q we obtain
the two choice degrees of alternatives from Ac:

[MQGDD1; : : : ; MQGDDn] and

[MQGNDDk
1 ; : : : ; MQGNDDk

n ];
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with

MQGDDi = 1
2 · (1 + log9 �

G
Q (a

c
i1; : : : ; a

c
in)

and

MQGNDDk
i =1 + log9 �

G
Q (r

c
i1; : : : ; r

c
in):

The application of each choice degree of alternatives
over X allows us to obtain the following sets of alter-
natives:

XMQGDD =

{
xi | xi ∈X; MQGDDi

= sup
xj∈X

MQGDDj

}
;

X MQGNDD =

{
xi | xi ∈X;MQGNDDi

= sup
xj∈X

MQGNDDj

}
;

whose elements are called maximum dominance
elements and maximal non-dominated elements,
respectively.
Step 2: The application of the conjunction selection

policy, obtaining the following set of alternatives:

XQGCP =XMQGDD ∩ XMQGNDD:

If XQGCP �= ∅, then end.
Otherwise continue.
Step 3: The application of one of the two sequential

selection policies, according to either a dominance or
non-dominance criterion, i.e.,

• Dominance-based sequential selection process
MQG-DD-NDD. To apply the quanti7er-guided
dominance degree over X , and obtain XMQGDD. If
#(XMQGDD)= 1 then end, and this is the solution
set. Otherwise, continue obtaining

XMQG-DD-NDD =

{
xi | xi ∈XMQGDD;MQGNDDi

= sup
xj∈XMQGDD

MQGNDDj

}
:

This is the selection set of alternatives.

• Non-dominance-based sequential selection pro-
cess MQG-NDD-DD. To apply the quanti7er-
guided non-dominance degree over X , and obtain
XMQGNDD. If #(XMQGNDD)= 1 then end, and this is
the solution set. Otherwise, continue obtaining

XMQG-NDD-DD =

{
xi | xi ∈XMQGNDD;MQGDDi

= sup
xj∈XMQGNDD

MQGDDj

}
:

This is the selection set of alternatives.

4.4. Example

Consider the following illustrative example of
the classi7cation method of alternatives studied in
this paper. Assume that we have a set of three ex-
perts, E= {e1; e2; e3}, and a set of three alternatives,
X = {x1; x2; x3}. Suppose that experts supply their
opinions by means of the following multiplicative
preference relations:

A1 =



1 3 5
1
3 1 2
1
5

1
2 1


 ; A2 =



1 2 7
1
2 1 5
1
7

1
5 1


 ;

A3 =



1 2 3
1
2 1 2
1
3

1
2 1


 ;

the important matrix being:

B=



1 5 3
1
5 1 3

5
1
3

5
3 1


 :

In the decision process we use the fuzzy major-
ity criterion with the fuzzy linguistic quanti7er
“at least half ”, with the pair (0; 0:5), and the corre-
sponding OWG operator with the weighting vector,
W = [23 ;

1
3 ; 0].

4.4.1. Multiplicative selection process based on
fuzzy majority

1. Aggregation phase. Using the quanti7er-guided
dominance degree we obtain from B the
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following importance vector:

(b1 = 0:82; b2 = 0:46; b3 = 0:57):

Then the collective multiplicative preference re-
lation is

Ac =



0:72 1:9 3:78

0:27 0:72 2:28

0:17 0:36 0:72


 :

2. Exploitation phase. The quanti7er-guided
choice degrees of alternatives acting over the
collective multiplicative preference relation sup-
ply the following values:

x1 x2 x3
MQGDDi 0:75 0:6 0:37

MQGNDDi 1 0:95 0:74

These values represent the dominance that one
alternative has over “at least half” of the alterna-
tives according to “at least half” of the experts,
and the non-dominance degree to which the al-
ternative is not dominated by “at least half” of
the alternatives according to “at least half” of the
experts, respectively. Clearly, the maximal sets
are

XMQGDD = {x1} and XMQGNDD = {x1};
therefore, the selection set of alternatives accord-
ing to complete selection procedures is the sin-
gleton {x1}.

5. Concluding remarks

In this paper, we have studied how to integrate the
multiplicative preference relations in fuzzy MPDM
models under di4erent preference representation struc-
tures (orderings, utilities and fuzzy preference rela-
tions). We have given a consistent method using the
fuzzy preference relations as uniform representation
element. This study together with our fuzzy MPDM
model presented in [4] provides a more Iexible frame-
work to manage di4erent structures of preferences,
constituting an approximate decision model to real de-
cision situations with experts of di4erent knowledge
areas.

Later, we have provided an alternative choice pro-
cess to the classical AHP for dealing with MPDM
problems under multiplicative preference relations.
The aim of the multiplicative selection model is that
it is based on fuzzy majority represented by a fuzzy
linguistic quanti7er. Futhermore, to design it, we
have introduced a new aggregation operator based on
the OWA operators to aggregate multiplicative pref-
erence relations, and have extended quanti7er-guided
dominance and non-dominance degrees to act with
multiplicative preference relations.

A. Appendix: Fuzzy majority and OWA operator

The majority is traditionally de7ned as a threshold
number of individuals. Fuzzy majority is a soft ma-
jority concept expressed by a fuzzy quanti7er, which
is manipulated via a fuzzy logic-based calculus of lin-
guistically quanti7ed propositions.
In this appendix we present the fuzzy quanti7ers,

used for representing the fuzzy majority, and the
OWA operators, used for aggregating information.
The OWA operator reIects the fuzzy majority calcu-
lating its weights by means of the fuzzy quanti7ers.

A.1. Fuzzy majority

Quanti7ers can be used to represent the amount of
items satisfying a given predicate. Classic logic is re-
stricted to the use of the two quanti7ers, there exists
and for all, that are closely related, respectively, to
the or and and connectives. Human discourse is much
richer and more diverse in its quanti7ers, e.g. about
5, almost all, a few, many, most, as many as possi-
ble, nearly half, at least half. In an attempt to bridge
the gap between formal systems and natural discourse
and, in turn, to provide a more Iexible knowledge
representation tool, Zadeh introduced the concept of
fuzzy quanti7ers [31].
Zadeh suggested that the semantic of a fuzzy quan-

ti7er can be captured by using fuzzy subsets for its
representation. He distinguished between two types
of fuzzy quanti7ers, absolute and relative. Absolute
quanti7ers are used to represent amounts that are ab-
solute in nature such as about 2 ormore than 5. These
absolute linguistic quanti7ers are closely related to
the concept of the count or number of elements. He
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Fig. 2. Relative fuzzy quanti7ers.

de7ned these quanti7ers as fuzzy subsets of the non-
negative real numbers, R+. In this approach, an abso-
lute quanti7er can be represented by a fuzzy subset Q,
such that for any r ∈R+ the membership degree of r
in Q, Q(r), indicates the degree to which the amount
r is compatible with the quanti7er represented by Q.
Relative quanti7ers, such as most, at least half, can
be represented by fuzzy subsets of the unit interval,
[0,1]. For any r ∈ [0; 1], Q(r) indicates the degree to
which the proportion r is compatible with the meaning
of the quanti7er it represents. Any quanti7er of natu-
ral language can be represented as a relative quanti7er
or given the cardinality of the elements considered,
as an absolute quanti7er. Functionally, fuzzy quanti-
7ers are usually of one of three types, increasing, de-
creasing, and unimodal. An increasing-type quanti7er
is characterized by the relationship Q(r1)¿Q(r2) if
r1¿r2. These quanti7ers are characterized by values
such as most, at least half. A decreasing-type quanti-
7er is characterized by the relationship Q(r1)6Q(r2)
if r1 ¡ r2.
An absolute quanti7er Q : R+ → [0; 1] satis7es

Q(0)= 0; and ∃k such that Q(k)= 1:

A relative quanti7er, Q : [0; 1] → [0; 1]; satis7es

Q(0)= 0; and ∃r ∈ [0; 1] such that Q(r)= 1:

A non-decreasing quanti7er satis7es:

∀a; b if a¿b then Q(a)¿Q(b):

The membership function of a non-decreasing rel-
ative quanti7er can be represented as

Q(r)=




0 if r¡a;
r−a
b−a if a6r6b;

1 if r¿b

with a; b; r ∈ [0; 1].
Some examples of relative quanti7ers are shown

in Fig. 2, where the parameters, (a; b) are (0:3; 0:8),
(0; 0:5) and (0:5; 1), respectively.

A.2. The OWA operator

The OWA operator was proposed by Yager in [30].
It provides a family of aggregation operators which
have the “and” operator at one extreme and the “or”
operator at the other extreme.
An OWA operator of dimension n is a function �,

� : [0; 1]n → [0; 1];

that is associated with a set of weights. Let
{a1; : : : ; am} be a list of values to aggregate, then the
OWA operator � is de7ned as

�(a1; : : : ; am)=W · BT =
m∑

i=1

wi · bi

where W = [w1; : : : ; wm], is a weighting vector, such
that, wi ∈ [0; 1] and

∑
i wi =1; and B is the associated

ordered value vector. Each element bi ∈B is the ith
largest value in the collection a1; : : : ; am.
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The OWA operators 7ll the gap between the op-
erators Min and Max. It can be immediately veri-
7ed that OWA operators are commutative, increasing
monotonous and idempotent, but in general not asso-
ciative.
A natural question in the de7nition of the OWA op-

erator is how to obtain the associated weighting vec-
tor. In [30], Yager proposed two ways to obtain it.
The 7rst approach is to use some kind of learning
mechanism using some sample data; and the second
approach is to try to give some semantics or meaning
to the weights. The 7nal possibility has allowed mul-
tiple applications on areas of fuzzy and multi-valued
logics, evidence theory, design of fuzzy controllers,
and the quanti7er-guided aggregations.
We are interested in the area of quanti7er-guided

aggregations. Our idea is to calculate weights for the
aggregation operations (made by means of the OWA
operator) using linguistic quanti7ers that represent the
concept of fuzzy majority. In [30], Yager suggested an
interesting way to compute the weights of the OWA
aggregation operator using fuzzy quanti7ers, which,
in the case of a non-decreasing relative quanti7er Q,
is given by the expression

wi =Q(i=n)− Q((i − 1)=n); i=1; : : : ; n:

When a fuzzy quanti7er Q is used to compute the
weights of the OWA operator �, it is symbolized by
�Q:
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