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Study on the Impact of Partition-Induced Dataset
Shift on k-fold Cross-Validation
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Abstract— Cross-validation is a very commonly employed
technique used to evaluate classifier performance. However, it
can potentially introduce dataset shift, a harmful factor that
is often not taken into account and can result in inaccurate
performance estimation. This paper analyzes the prevalence and
impact of partition-induced covariate shift on different k-fold
cross-validation schemes. From the experimental results obtained,
we conclude that the degree of partition-induced covariate shift
depends on the cross-validation scheme considered. In this way,
worse schemes may harm the correctness of a single-classifier
performance estimation and also increase the needed number
of repetitions of cross-validation to reach a stable performance
estimation.

Index Terms— Covariate shift, cross-validation, dataset shift,
partitioning.

I. INTRODUCTION

IN ORDER to evaluate the expected performance of a
classifier over a dataset, k-fold cross-validation schemes

are commonly used in the classification literature [1]. Also,
when comparing classifiers, it is common to compare them
according to their performances averaged over a number of
iterations of cross-validation. Even though it has been proved
that these schemes asymptotically converge to a stable value,
which allows realistic comparisons between classifiers [2], [3],
in practice a very low number of iterations are often used. The
most common variations are 2×5, 5×2, and 10×1, with this
notation meaning 2-folds iterated five times, 5-folds iterated
two times, and 10-folds iterated once, respectively. Note that
when more than one iteration takes place, the partitions are
assumed to be constructed independently.

The topic of data stability and classifier bias is very relevant
to the field, as can be seen in the numerous attempts to design
unbiased classifiers in the recent literature [4], [5], or in the
recent research on streaming data [6] . While those designs are
definitely worthwhile, we believe that a study of the intrinsic
characteristics of the data is needed to have a full picture of
the problem. Among the said data characteristics, the amount
of partition-induced dataset shift is very relevant and, to the
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best of our knowledge, usually not taken into account. Here,
we try to prove the relevance and need for accounting of this
particular issue.

This paper studies the intrinsic variability present in k-fold
cross-validation schemes from the point of view of dataset
shift [7], [8], which is defined as the situation where the
data the classifier is trained on and the data the classifier is
going to be used on do not follow the same distribution. More
specifically, we focus on covariate shift (a specific kind of
dataset shift where the covariates follow a different distribution
in the training and test datasets), and the situations where
it may appear and cause inaccurate classifier performance
estimations.

This paper analyzes how different partitioning methods can
introduce dataset shift (or, more specifically, covariate shift)
and the effect it has over both the reliability of the estimation
of a classifier performance based on a low number of iterations
of k-fold cross-validation, and the number of iterations needed
to reach a stable classifier performance estimation.

To best analyze the impact of dataset shift, we use four
different strategies to create the partitioning.

1) Standard stratified cross-validation (SCV), which is the
most commonly employed method in the literature.
It places an equal number of samples of each class on
each partition to maintain class distributions equal in all
partitions. For an example of its use, see [9].

2) Distribution-balanced SCV (DB-SCV) [10], a method
that attempts to minimize covariate shift by keeping
data distribution as similar as possible between training
and test folds by maximizing diversity on each fold and
trying to keep all folds as similar as possible to each
other.

3) Distribution optimally balanced SCV (DOB-SCV),
a slight modification of the above and an original contri-
bution of the work presented here, tries to improve the
performance of DB-SCV by taking into account more
information when choosing in which fold to place each
sample.

4) Maximally shifted SCV (MS-SCV), a method designed
for testing the maximal influence partition-based covari-
ate shift can have on classifier performance by intro-
ducing the maximum possible amount of shift on each
partition. To do so, it does the opposite as DB-SCV and
creates folds that are as different as possible to each
other.

While there is a published work that proposes a different
cross-validation strategy [11] designed specifically to combat
covariate shift, we chose not to include it in this paper
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Fig. 1. Extreme example of partition-based covariate shift. Note that the
examples on the bottom left of the “cross” class will be wrongly classified
because of covariate shift. (a) Full dataset. (b) Training set. (c) Test set.

because it is designed to train classifiers in problems where
covariate shift is already present, while the intent here is
to analyze to what extent general-purpose cross-validation
strategies generate extra covariate shift which is not intrinsic
to the problem.

The goal of this paper is to analyze the accuracy of classifier
performance prediction both when a low number of iterations
of k-fold cross-validation are used and when enough of them
are used so that a stable value has been achieved. More
specifically, we study the following.

1) The accuracy of a single cross-validation experiment
in terms of 1 v 1 classifier comparison, and whether
different partitioning methods can have an impact on it.

2) The number of independent cross-validation experiments
necessary to converge to a stable result in terms of 1 v 1
classifier comparison, also analyzing whether different
partitioning methods produce different results.

Algorithm 1 SCV Partitioning Method
for each class c j ∈ C do

n← count(c j )/k
for each fold Fi (i = 0, . . . , k − 1) do

E ← randomly select n examples of class c j from D
Fi ← Fi ∪ E
D← D \ E

end for
end for

A supplementary material website has been created for this
paper, which can be found at http://sci2s.ugr.es/covariate-shift-
cross-validation.

The remainder of this paper is organized as follows.
Section II provides a background on cross-validation and
dataset shift. In Section III, the different partitioning meth-
ods used for the experimentation in this paper are detailed.
Section IV shows the datasets and classification algorithms
used in the experimental study. Section V shows the strategy
employed to test the suitability of each partitioning method,
while Section VI shows the results obtained. This paper is then
closed with a few concluding remarks and recommendations
in Section VII.

II. BACKGROUND

This section presents a brief introduction to classifier eval-
uation through cross-validation in Section II-A and to dataset
shift in Section II-B, introducing the concepts relevant to this
paper.

A. Cross-Validation for Classifier Evaluation

Cross-validation is a technique used for assessing how
a classifier will perform when classifying new instances of
the task at hand. One iteration of cross-validation involves
partitioning a sample of data into two complementary subsets:
training the classifier on one subset (called the training set)
and testing its performance on the other subset (test set).

In k-fold cross-validation, the original sample is randomly
partitioned into k subsamples. Of the k subsamples, a single
subsample is retained as the validation data for testing the
classifier, and the remaining k − 1 subsamples are used as
training data. The cross-validation process is then repeated
k times, with each of the k subsamples used exactly once as
the test data. The k results from the folds are then averaged
to produce a single performance estimation.

Cross-validation has been the subject of profuse study in the
literature, some of the most interesting and relevant results are
listed here:

1) repeated iterations of cross-validation asymptotically
converge to a correct estimation of classifier perfor-
mance [2];

2) ten-fold cross-validation is better than leave-one-out
validation for model selection, and also better than other
k-fold options [1];

3) k-fold cross-validation tends to underestimate classifier
performance [1].



1306 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 8, AUGUST 2012

Algorithm 2 DB-SCV Partitioning Method
for each class c j ∈ C do

e← randomly select an example of class c j from D
i = 0
while count(c j ) > 0 do

Fi ← Fi ∪ {e}
D← D \ {e}
i = (i + 1) mod k
e← closest example to e of class c j from D

end while
end for

B. Dataset Shift

The term “dataset shift” refers to the issue where training
and test data follow different data distributions [7], [8]. It can
happen because of the intrinsic nature of the problem (for
example, a classifier trained over financial data from the past
five years and used to predict future market changes), or it can
be introduced in cross-validation schemes without noticing.

This paper focuses on the latter, studying k-fold cross-
validation strategies and the types and impact of dataset shift
in them. There are two potential types of dataset shift.

1) Prior Probability Shift: It happens when the class distri-
bution is different between the training and test sets [12].
In the most extreme example, the training set would not
have a single example of a class, leading to a degenerate
classifier. The problems caused by this kind of shift have
already been studied, and it is commonly prevented by
applying a SCV scheme [13].

2) Covariate Shift: In this case, it is the inputs that have
different distributions between the training and test
sets [14]. Fig. 1 depicts an extreme example of this type
of shift that can also lead to extremely poor classifier
performance. This type of shift is often ignored in the
literature, and the analysis of its prevalence and potential
impact is the main contribution of this paper.

III. PARTITIONING METHODS

This section presents a detailed explanation of the different
partitioning methods used for testing in this paper, including
the pseudo-code to make the replication of our experiments
easier. Some assumptions made throughout the pseudo-codes
are as follows.

1) The number of folds in a given cross-validation imple-
mentation is denoted as k.

2) Folds are named Fi (i = 0, . . . , k − 1). They are treated
as a set of examples, and are initially empty.

3) D is another set of examples, initially containing all the
examples in the dataset.

4) There is a set of classes C = {c1, . . . , cm}, where m is
the number of classes.

5) There is a function count(ci ) that returns the number of
examples of class ci in D.

6) These methods detail the way to construct the test sets;
the training sets are simply the remainder of the dataset.

Algorithm 3 DOB-SCV Partitioning Method
for each class c j ∈ C do

while count(c j ) > 0 do
e0 ← randomly select an example of class c j from D
ei ← i th closest example to e0 of class c j from D (i =
1, . . . , k − 1)
Fi ← Fi ∪ {ei } (i = 0, . . . , k − 1)
D← D \ {ei } (i = 0, . . . , k − 1)

end while
end for

This section also includes, in Section III-E, an analysis of
the differences between DB-SCV and DOB-SCV.

A. SCV

This is the standard method most authors in the field of
classification apply. A pseudo-code explaining how it works
can be seen in Algorithm 1.

SCV is a simple method: it counts how many samples of
each class there are on the dataset, and distributes them evenly
on the folds, so that each fold contains the same number of
examples of each class. This avoids prior probability shift,
since if there is an equal distribution class-wise on each fold,
training and test set will have the same class distribution.
However, this method does not take into account the covari-
ates of the samples, so it can potentially generate covariate
shift.

B. DB-SCV

This method, proposed in [10], adds an extra consideration
to the partitioning strategy as an attempt to reduce covariate
shift on top of preventing prior probability shift. The method
follows the steps detailed in Algorithm 2.

The idea is that by assigning close-by examples to different
folds, each fold will end up with enough representatives
of every region, thus avoiding covariate shift. To achieve
this goal, DB-SCV starts on a random unassigned example
and assigns it to the first fold. It then hops to the nearest
unassigned neighbor of the same class, and assigns it to the
second fold, repeating the process until there are no more
examples of that class (when it gets to the last fold, cycles
and continues with the first one again). The whole process is
repeated for each class.

C. DOB-SCV

This method includes a variation from the one above, and is
an original contribution of the work described in this paper. Its
basic difference with DB-SCV lies in the order in which the
examples are picked to be assigned to each fold. The specifics
about this method can be found in Algorithm 3.

Instead of choosing samples one by one like DB-SCV does,
DOB-SCV picks a random unassigned example, and then finds
its k−1 nearest unassigned neighbors of the same class. Once
it has found them, it assigns each of those examples to a
different fold. The process is repeated until all examples are
assigned.
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Algorithm 4 MS-SCV Partitioning Method
for each class c j ∈ C do

n ← count(c j )/k
e← randomly select an example of class c j from D
for each fold Fi (i = 0, . . . , k − 1) do

for s = 1→ n do
Fi ← Fi ∪ {e}
D← D \ {e}
e← closest example to e of class c j from D

end for
end for

end for

Fig. 2. Artificial dataset used to show differences between DB-SCV and
DOB-SCV.

D. MS-SCV

This method is basically the opposite of the previous one in
terms of covariate shift, trying to maximize it while keeping
prior probability shift at a minimum. Its pseudo-code is shown
in Algorithm 4.

MS-SCV is basically a mirrored version of DB-SCV: it
picks an unassigned example at random, assigns it to a fold,
and finds the nearest unassigned neighbor of the same class.
However, instead of assigning it to the next fold, it assigns it
to the same fold, and keeps assigning examples to the same
fold until the maximum number of examples of that class have
been assigned to the fold. Once that fold is “full,” it goes to
the next fold and repeats the process until all folds are filled.
This procedure is again repeated for each class present in the
dataset. In this case, the assignation of all close examples to
the same fold creates incidences of severe covariate shift, since
entire regions are kept without a single example representing
them in some folds.

E. Difference Between DB-SCV and DOB-SCV

DB-SCV and DOB-SCV are similar methods with the
same philosophy: they attempt to minimize covariate shift by
distributing samples of the same class as evenly as possible
in terms of their covariates. However, the way DB-SCV is
designed makes it a little more sensitive to random choices,
since the order in which it traverses the dataset depends only
on the nearest neighbor each time, which, if the dataset is
particularly poorly suited for this method, can lead to bad
performance, while DOB-SCV is more resilient to this factor
because of it restarting its exploration of the dataset more often
and exploring several directions at once.

To illustrate the type of situation where DB-SCV could
perform worse than DB-SCV, we have designed an artificial

Fig. 3. Artificial dataset partitioned with DB-SCV. Arrows represent
unassigned nearest neighbor exploration, white node is randomly chosen as
starting point, and ellipses contain the partitions created.

Fig. 4. Artificial dataset partitioned with DOB-SCV. Arrows represent
unassigned nearest neighbor exploration, white nodes are randomly chosen
as starting points, and shapes contain the partitions created.

dataset which can be seen in Fig. 2. This dataset was built
to clearly show the situation, since the visualization of high-
dimensional datasets is not straightforward, and thus real-
world datasets are less suitable for this task. To simplify, let all
the samples of this dataset be of the same class and focus only
on the avoidance of covariate shift. Also, assume for simplicity
a fourfold partitioning scheme, so considering there are eight
samples and two will be assigned to each fold.

In Fig. 3 the result of applying DB-SCV to the artificial
dataset is shown. In it, arrows represent unassigned nearest
neighbor exploration, white node is randomly chosen as start-
ing point, and ellipses contain the partitions created. It can
be seen how exploring only the nearest neighbor can lead
the process to spiral around the center, resulting in a poor
assignation of samples to folds and introduces a significant
amount of covariate shift.

Fig. 4 shows the application of DOB-SCV to the same
dataset, with the same starting point. It can be seen how
DOB-SCV mostly avoids the pitfall because of its ability to
see several neighbors at once, avoiding tunnel vision which
can be costly in situations like this. The second white node in
the figure corresponds to the second random choice, and we
picked the one that results in the worst partitioning. The figure
shows a better behavior for DOB-SCV than the one presented
by DB-SCV, since the partitions created are better distributed
in the domain space.

IV. DATASETS AND CLASSIFIERS

In this section, the experimental framework is presented
showing the datasets used in Section IV-A and the classifi-
cation algorithms studied in Section IV-B.
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TABLE I

DATASETS USED FOR THE EXPERIMENTAL STUDY

Dataset No. of attributes (R/I/N) No. of examples

Appendicitis 7 (7/0/0) 106

Australian 14 (3/5/6) 690

Banana 2 (2/0/0) 5300

Bands 19 (13/6/0) 365

Breast 9 (0/0/9) 277

Bupa 6 (1/5/0) 345

Chess 36 (0/0/36) 3196

Crx 15 (3/3/9) 653

German 20 (0/7/13) 1000

Haberman 3 (0/3/0) 306

Heart 13 (1/12/0) 270

Hepatitis 19 (2/17/0) 80

Housevotes 16 (0/0/16) 232

Ionosphere 33 (32/1/0) 351

Mammographic 5 (0/5/0) 830

Monk-2 6 (0/6/0) 432

Mushroom 22 (0/0/22) 5644

Phoneme 5 (5/0/0) 5404

Pima 8 (8/0/0) 768

Saheart 9 (5/3/1) 462

Sonar 3 (60/0/0) 208

Spambase 57 (57/0/0) 4597

Spectfheart 44 (0/44/0) 267

Tic-tac-toe 9 (0/0/9) 958

Titanic 3 (3/0/0) 2201

Wdbc 30 (30/0/0) 569

Wisconsin 9 (0/9/0) 683

In order to achieve relevant results, 27 datasets and
9 classifiers were used. They can be seen in Sections IV-A and
IV-B, respectively. All classifiers were compared against each
other (resulting in 36 unique pairs) over their performance in
the test set. The performance metric chosen was the area under
the curve (AUC) [15], since it is less sensitive to imbalance
than other commonly employed metrics, such as accuracy, and
therefore allows us to obtain more solid conclusions.

A. Datasets

As has been mentioned before, we employed 27 datasets
in our experimentation. They are all binary classification
problems, and were obtained from the KEEL dataset reposi-
tory [16]. When there were missing values, the whole example
was eliminated. A list of the datasets used can be seen in
Table I, where “(R/I/N)” refers to real, integer, and nominal
attributes.

B. Classification Algorithms

Table II shows the nine classification algorithms employed
in this paper, which were chosen to provide a wide range of
classifiers. The parameters used were the default ones present

TABLE II

CLASSIFICATION ALGORITHMS USED

Algorithm Abbreviation Type of classifier

Nearest neighbor k = 1 [17] 1 NN Lazy learner

Nearest neighbor k = 3 [17] 3 NN Lazy learner

C4.5 [18] C4.5 Decision tree

Fuzzy unordered rule
FURIA

Fuzzy rule-based
induction algorithm [19] (Mamdami)

Linear discriminant
LDA Statistical

analysis [20]

PART [21] PART Partial decision tree

Positive definite
PDFC

Fuzzy rule-based
fuzzy classifier [22] (TSK)

Repeated incremental pruning
RIPPER Rule-based

to produce error reduction [23]

Support vector
SVM

Support vector
machine [24] machine

in the KEEL tool [25], and are the ones suggested by the
original authors of the methods.

V. ANALYZING PARTITIONING METHODS

We performed three independent experiments using the
same procedure, where the only difference was the type of
cross-validation scheme used. We tested the 2× 5, 5× 2, and
10× 1 cross-validation schemes.

For each of the above validation schemes, we created 100
independent experiments using each of the methods described
in Section III to test both single-experiment accuracy and
number of iterations needed to converge to a stable result.

To evaluate single-iteration accuracy, we used the following
procedure. Since the procedure is not trivial to understand, we
include an example here with the case of 5 × 2 experiments;
10× 1 and 2× 5 are done analogously.

1) A reference is needed in order to know whether a
classifier performance estimation is accurate. The said
reference is based on the “true” performance of the
classifiers. To obtain this “truth,” we created an extra 200
independent partitions using SCV, and then averaged the
performance of each classifier on each dataset over those
200 partitions. The performance is measured as AUC in
the test set. The results can be seen in Table III.

2) Perform a Wilcoxon signed-ranks test with the averaged
data for each classifier pair. The results can be seen in
Table IV, where the numbers on each cell should be
read as R+/R−/p-value (where R+ corresponds to row
winning, and R− to column). Discard the classifier pairs
where p-value > 0.1. In the table, the cases with p-value
under 0.1 are marked in bold. We chose to focus only on
the pairwise comparisons between classifiers where the
true comparison showed a significant difference between
classifiers, since it is harder to reach relevant conclusions
from the cases where a significant difference could not
be found.

3) For each of the 100 instances of 5× 2 cross-validation
created with each partitioning method, perform a
Wilcoxon signed-ranks test for each classifier pair that
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TABLE III

AVERAGED “TRUE” CLASSIFIER PERFORMANCE (AUC IN TEST SET)

Dataset 1 NN 3 NN C45 FURIA LDA PART PDFC RIPPER SVM

Appendicitis 0.7506 0.7450 0.7054 0.7265 0.7323 0.7028 0.7278 0.7305 0.6744

Australian 0.8228 0.8474 0.8449 0.8579 0.8649 0.6443 0.8262 0.8206 0.8045

Banana 0.8695 0.8822 0.8855 0.8780 0.5171 0.5617 0.8942 0.6637 0.9004

Bands 0.6904 0.6632 0.6211 0.6047 0.6021 0.5115 0.7068 0.6113 0.7060

Breast 0.5827 0.5842 0.5965 0.6255 0.6115 0.5049 0.6433 0.6151 0.5904

Bupa 0.6050 0.6266 0.6310 0.6554 0.6579 0.5206 0.6914 0.6349 0.6825

Chess 0.9692 0.9692 0.9930 0.9931 0.8510 0.8218 0.9955 0.9926 0.9839

Crx 0.8189 0.8542 0.8539 0.8653 0.5000 0.5561 0.8277 0.8272 0.8035

German 0.6275 0.6349 0.6303 0.6070 0.6438 0.5000 0.6490 0.6434 0.7056

Haberman 0.5462 0.5501 0.5745 0.5864 0.5637 0.5015 0.5575 0.5970 0.5564

Heart 0.7681 0.8038 0.7809 0.7970 0.8365 0.5254 0.8035 0.7539 0.7869

Hepatitis 0.7412 0.7085 0.6588 0.6810 0.7168 0.5857 0.7244 0.7217 0.7410

Housevotes 0.9505 0.9561 0.9646 0.9633 0.9712 0.9620 0.9506 0.9591 0.9483

Ionosphere 0.8750 0.8536 0.8736 0.8805 0.8205 0.8074 0.9352 0.8828 0.9308

Mammographic 0.7550 0.8107 0.8317 0.8342 0.8252 0.7722 0.8181 0.7453 0.8078

Monk-2 0.7419 0.9509 1.0000 1.0000 0.7756 0.5027 1.0000 0.9995 0.9611

Mushroom 1.0000 1.0000 1.0000 1.0000 0.5000 0.8905 1.0000 1.0000 1.0000

Phoneme 0.8690 0.8490 0.8331 0.8071 0.6837 0.5159 0.8474 0.8268 0.8377

Pima 0.6513 0.6713 0.7047 0.7005 0.7235 0.5044 0.6777 0.7029 0.6837

Saheart 0.5938 0.6067 0.6336 0.6375 0.6772 0.5050 0.6007 0.6250 0.6019

Sonar 0.8575 0.8344 0.7354 0.7796 0.7377 0.5416 0.8735 0.7297 0.8709

Spambase 0.8969 0.8981 0.9214 0.9278 0.8695 0.6334 0.9439 0.9230 0.9339

Spectfheart 0.6217 0.6369 0.6201 0.6008 0.5607 0.5000 0.6666 0.6505 0.7589

Tic-tac-toe 0.9104 0.8956 0.8152 0.9765 0.6510 0.5000 0.9884 0.9731 0.8856

Titanic 0.5227 0.5493 0.6911 0.6754 0.6996 0.5001 0.6826 0.6699 0.6824

Wdbc 0.9534 0.9642 0.9330 0.9452 0.9429 0.8149 0.9695 0.9299 0.9540

Wisconsin 0.9570 0.9640 0.9482 0.9568 0.9509 0.5473 0.9620 0.9606 0.9690

showed a significant difference in step 2 (those marked
with bold font), using the p-values obtained in that step
as the significance threshold. Count how many of the
100 instances achieve the same results. Table V shows
an example table of results for DOB-SCV. A similar
table is constructed for each of the other partitioning
methods studied. The number on each cell is the number
of DOB-SCV partitions where the Wilcoxon signed-
ranks test declared a significant difference between the
compared classifiers’ performance. For example, the
71 in the PART versus 1 NN comparison means that
71 out of 100 independent Wilcoxon signed-ranks test
(each one with a different partition) proved significant
with a threshold of p-value = 7.45E− 08. The p-value
was obtained from that same cell in Table IV.

4) Average the results of each cell to obtain an aggregated
estimation of how close a given partitioning method is
to the “true” estimation. In the example of DOB-SCV
for 5 × 2, that average turns out to be 55.684. This is
how Table VI is constructed.

To sum up: For each dataset, we averaged the performance
(AUC over the test set) of each classifier over the 200
cross-validation experiments, and then performed a Wilcoxon

signed-ranks test [26] with a significance level of 0.1 to test
whether there existed significant differences between their
performances. We considered this Wilcoxon test to be the true
comparison between each classifier pair.

To figure out the number of iterations needed for con-
vergence to a stable result, we used the method recom-
mended in [27], which determines the convergence based on
reaching a Pearson correlation between accumulated average
performances of consecutive instances of cross-validation of
0.9999. More specifically, the method follows these steps in
Algorithm 5 (again, using the example of 5 × 2 with DOB-
SCV, the others being analogous).

To achieve more significant results, we repeated this test
10 times for each dataset–classifier pair.

All the experiments were conducted using the KEEL
software tool [25].

VI. RESULTS

This section presents a summary of the results obtained
by the experiments run following the above framework.
Because of space concerns, only a brief summary of the
results are included; for a more detailed analysis check http://
sci2s.ugr.es/covariate-shift-cross-validation. We first focus on
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TABLE IV

WILCOXON SIGNED-RANKS TEST. R+ (R−) DENOTES THE R SCORE OF THE ROW (COLUMN) ALGORITHM.

RESULTS ARE PRESENTED AS R+/R−/ p-VALUE

1 NN 3 NN C45 FURIA LDA PART PDFC RIPPER SVM

1 NN - 119.5/258.5/0.1001 150/228/>0.2 120.5/257.5/0.1029 235/143/>0.2 375/3/7.45E-08 38.5/339.5/9.90E-05 143.5/234.5/>0.2 85.0/293.0/1.12E-02

3 NN 258.5/119.5/0.1001 - 185/193/>0.2 143.5/234.5/>0.2 261.0/117.0/0.0859 377/1/2.98E-08 68.5/309.5/2.84E-03 193.5/184.5/>0.2 120/258/0.1004

C45 228/150/>0.2 193/185/>0.2 - 120.5/257.5/0.1029 242/136/>0.2 378/0/1.49E-08 90.5/287.5/1.68E-02 180/198/>0.2 146/232/>0.2

FURIA 257.5/120.5/0.1029 234.5/143.5/>0.2 257.5/120.5/0.1029 - 278.0/100.0/0.0319 378/0/1.49E-08 108.0/270.0/0.0521 245.5/132.5/0.1814 185/193/>0.2

LDA 143/235/>0.2 117.0/261.0/0.0859 136/242/>0.2 100.0/278.0/0.0319 - 340.0/38.0/ 77.0/301.0/ 124/254/0.1225 83.0/295.0/9.61E-03

PART 3/375/7.45E-08 1/377/2.98E-08 0/378/1.49E-08 0/378/1.49E-08 38.0/340.0/ - 1/377/2.98E-08 3/375/7.45E-08 3/375/7.45E-08

PDFC 339.5/38.5/9.90E-05 309.5/68.5/2.84E-03 287.5/90.5/1.68E-02 270.0/108.0/0.0521 301.0/77.0/ 377/1/2.98E-08 - 310.5/67.5/ 273.0/105.0/0.0435

RIPPER 234.5/143.5/>0.2 184.5/193.5/>0.2 198/180/>0.2 132.5/245.5/0.1814 254/124/0.1225 375/3/7.45E-08 67.5/310.5/ - 139/239/>0.2

SVM 293/85/1.12E-02 258/120/0.1004 232/146/>0.2 193/185/>0.2 295.0/83.0/9.61E-03 375/3/7.45E-08 105.0/273.0/0.0435 239/139/>0.2 -

TABLE V

NUMBER OF TIMES WILCOXON SIGNED-RANKS OBTAINED THE SAME RESULT IN DOB-SCV AS IT DID IN THE “TRUE” RUN

1 NN 3NN C45 FURIA LDA PART PDFC RIPPER SVM

1 NN - - - - - 71 42 - 23
3 NN - - - - 96 82 40 - -

C45 - - - - - 30 60 - -

FURIA - - - - 72 37 49 - -

LDA - 96 - 72 - 48 91 - 51
PART 71 82 30 37 48 - 66 59 56
PDFC 42 40 60 49 91 66 - 27 58
RIPPER - - - - - 59 27 - -

SVM 23 - - - 51 56 58 - -

TABLE VI

SINGLE CROSS-VALIDATION EXPERIMENT AND AVERAGE ACCURACY OF

THE WILCOXON SIGNED-RANKS TEST

CV scheme DOB-SCV DB-SCV SCV MS-SCV

2× 5 52.687 51.250 31.500 1.250

5× 2 55.684 52.737 39.789 0.000

10× 1 49.857 51.095 45.333 1.762

Average 52.743 51.694 38.874 1.004

the single-experiment case, in Section VI-A and then present
the results corresponding to the number of iterations needed
to stabilize in Section VI-B.

A. Single Cross-Validation Example

Table VI shows a summary of the results regarding single-
experiment reliability. The data in said table represents the
percentage of the time taken by a single cross-validation exper-
iment in comparing two datasets using a Wilcoxon signed-
ranks test obtained the right result, which is understood to
be the “true” one as defined in Section V. Remember that the
significance level is set to the same as the “true” data achieved,
and that only comparisons between classifiers that showed a
significant difference in performance are considered.

Some interesting conclusions can be extracted by looking
at these results.

1) Partition-induced covariate shift can significantly ham-
per the reliability of running a single experiment.
MS-SCV produces a much worse accuracy than all other
partitioning strategies.

2) Randomly distributing the examples of a dataset can
sometimes induce covariate shift, as can be deduced

TABLE VII

NUMBER OF CROSS-VALIDATION EXPERIMENTS NEEDED TO

CONVERGE TO A STABLE PERFORMANCE ESTIMATION

CV
DOB-SCV DB-SCV SCV MS-SCVscheme

2× 5 16.71±12.01 16.82±11.67 18.39±11.88 31.42±13.23

5× 2 33.46±24.05 34.86±23.85 37.16±24.41 62.58±26.17

10×1 53.98±32.08 54.70±32.17 59.73±32.14 85.77±27.14

from SCV having a lower accuracy than both DB-SCV
and DOB-SCV.

3) DOB-SCV and DB-SCV obtain similar results, with a
slight advantage in favor of DOB-SCV.

B. Number of Iterations Needed to Stabilize

Table VII shows the average number of cross-validation
experiments needed to converge to a stable performance esti-
mation, along with the standard deviation.

A number of interesting conclusions can be drawn from
this table.

1) It can be seen that covariate shift can potentially have
a serious impact in the stability of the results obtained
by classifiers, as proven by the difference in iterations
needed between MS-SCV and the other methods.

2) The sporadic appearance of covariate shift has an impact
in convergence terms, as shown by the fact that both
DB-SCV and DOB-SCV converge faster than SCV.

3) 2×5 experiments converge significantly faster than 5×2
and 10× 1, and 5× 2 also converges significantly faster
than 10× 1. This is because each instance of the 2× 5
method is already comprised of five runs of twofold
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Algorithm 5 Convergence Estimation Algorithm
for each method studied mi in Methods do

for each dataset studied d j in Datasets do
Estimate the performance of mi over d j using DOB-SCV
5× 2 cross-validation, saving it in Estimi j0
Estimate the performance of mi over d j using a different
instance of DOB-SCV 5 × 2 cross-validation, saving it
in Estimi j1
Estimi j1 ← Eij0 ∪ Estimi j1
k ← 2
while PearsonCorrelation(Eij0, Eij1)<0.9999 do

Estimi j0 ← Estimi j1
Estimi j1 ← Estimi j1 ∪ Estimi j k , where Estimi j k is a
new performance estimation obtained with a different
DOB-SCV 5× 2 instance
k← k + 1

end while
The convergence for mi over d j is defined as k:
Convi j ← k.

end for
end for

cross-validation, effectively using more information per
iteration than 5 × 2 and 10 × 1. An analogous reason
explains the difference between 5× 2 and 10× 1.

VII. CONCLUSION

We presented an experimental analysis on the impact
partition-based covariate shift can have on the reliability of
classifier performance through cross-validation.

We studied four different partitioning methods and showed
that, when a covariate shift is introduced, single-experiment
reliability decreases and the number of iterations required to
reach a stable state increases.

We found that cross-validation approaches that try and
limit the impact of partition-induced covariate shift are
more reliable when running a single experiment, and need
a lower number of iterations to stabilize. Among them,
we showed that DOB-SCV is slightly more effective than
DB-SCV, presenting an example of the type of situation where
DOB-SCV can perform better than DB-SCV. We thus recom-
mend cross-validation users to use DOB-SCV as the partition-
ing method in order to avoid covariate-shift-related problems.

We studied the number of iterations needed to reach a
stable performance estimation with the different partitioning
strategies, and found that DOB-SCV and DB-SCV outperform
the others, which supports the claim that partition-induced
covariate shift can hinder the reliability of classifier evaluation
and the need for a specifically designed partitioning method
to avoid it.
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